| /* |
| * fs/direct-io.c |
| * |
| * Copyright (C) 2002, Linus Torvalds. |
| * |
| * O_DIRECT |
| * |
| * 04Jul2002 akpm@zip.com.au |
| * Initial version |
| * 11Sep2002 janetinc@us.ibm.com |
| * added readv/writev support. |
| * 29Oct2002 akpm@zip.com.au |
| * rewrote bio_add_page() support. |
| * 30Oct2002 pbadari@us.ibm.com |
| * added support for non-aligned IO. |
| * 06Nov2002 pbadari@us.ibm.com |
| * added asynchronous IO support. |
| * 21Jul2003 nathans@sgi.com |
| * added IO completion notifier. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include <linux/bio.h> |
| #include <linux/wait.h> |
| #include <linux/err.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/rwsem.h> |
| #include <linux/uio.h> |
| #include <asm/atomic.h> |
| |
| /* |
| * How many user pages to map in one call to get_user_pages(). This determines |
| * the size of a structure on the stack. |
| */ |
| #define DIO_PAGES 64 |
| |
| /* |
| * This code generally works in units of "dio_blocks". A dio_block is |
| * somewhere between the hard sector size and the filesystem block size. it |
| * is determined on a per-invocation basis. When talking to the filesystem |
| * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity |
| * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted |
| * to bio_block quantities by shifting left by blkfactor. |
| * |
| * If blkfactor is zero then the user's request was aligned to the filesystem's |
| * blocksize. |
| * |
| * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. |
| * This determines whether we need to do the fancy locking which prevents |
| * direct-IO from being able to read uninitialised disk blocks. If its zero |
| * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is |
| * not held for the entire direct write (taken briefly, initially, during a |
| * direct read though, but its never held for the duration of a direct-IO). |
| */ |
| |
| struct dio { |
| /* BIO submission state */ |
| struct bio *bio; /* bio under assembly */ |
| struct inode *inode; |
| int rw; |
| loff_t i_size; /* i_size when submitted */ |
| int lock_type; /* doesn't change */ |
| unsigned blkbits; /* doesn't change */ |
| unsigned blkfactor; /* When we're using an alignment which |
| is finer than the filesystem's soft |
| blocksize, this specifies how much |
| finer. blkfactor=2 means 1/4-block |
| alignment. Does not change */ |
| unsigned start_zero_done; /* flag: sub-blocksize zeroing has |
| been performed at the start of a |
| write */ |
| int pages_in_io; /* approximate total IO pages */ |
| size_t size; /* total request size (doesn't change)*/ |
| sector_t block_in_file; /* Current offset into the underlying |
| file in dio_block units. */ |
| unsigned blocks_available; /* At block_in_file. changes */ |
| sector_t final_block_in_request;/* doesn't change */ |
| unsigned first_block_in_page; /* doesn't change, Used only once */ |
| int boundary; /* prev block is at a boundary */ |
| int reap_counter; /* rate limit reaping */ |
| get_block_t *get_block; /* block mapping function */ |
| dio_iodone_t *end_io; /* IO completion function */ |
| sector_t final_block_in_bio; /* current final block in bio + 1 */ |
| sector_t next_block_for_io; /* next block to be put under IO, |
| in dio_blocks units */ |
| struct buffer_head map_bh; /* last get_block() result */ |
| |
| /* |
| * Deferred addition of a page to the dio. These variables are |
| * private to dio_send_cur_page(), submit_page_section() and |
| * dio_bio_add_page(). |
| */ |
| struct page *cur_page; /* The page */ |
| unsigned cur_page_offset; /* Offset into it, in bytes */ |
| unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ |
| sector_t cur_page_block; /* Where it starts */ |
| |
| /* |
| * Page fetching state. These variables belong to dio_refill_pages(). |
| */ |
| int curr_page; /* changes */ |
| int total_pages; /* doesn't change */ |
| unsigned long curr_user_address;/* changes */ |
| |
| /* |
| * Page queue. These variables belong to dio_refill_pages() and |
| * dio_get_page(). |
| */ |
| struct page *pages[DIO_PAGES]; /* page buffer */ |
| unsigned head; /* next page to process */ |
| unsigned tail; /* last valid page + 1 */ |
| int page_errors; /* errno from get_user_pages() */ |
| |
| /* BIO completion state */ |
| spinlock_t bio_lock; /* protects BIO fields below */ |
| unsigned long refcount; /* direct_io_worker() and bios */ |
| struct bio *bio_list; /* singly linked via bi_private */ |
| struct task_struct *waiter; /* waiting task (NULL if none) */ |
| |
| /* AIO related stuff */ |
| struct kiocb *iocb; /* kiocb */ |
| int is_async; /* is IO async ? */ |
| int io_error; /* IO error in completion path */ |
| ssize_t result; /* IO result */ |
| }; |
| |
| /* |
| * How many pages are in the queue? |
| */ |
| static inline unsigned dio_pages_present(struct dio *dio) |
| { |
| return dio->tail - dio->head; |
| } |
| |
| /* |
| * Go grab and pin some userspace pages. Typically we'll get 64 at a time. |
| */ |
| static int dio_refill_pages(struct dio *dio) |
| { |
| int ret; |
| int nr_pages; |
| |
| nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); |
| down_read(¤t->mm->mmap_sem); |
| ret = get_user_pages( |
| current, /* Task for fault acounting */ |
| current->mm, /* whose pages? */ |
| dio->curr_user_address, /* Where from? */ |
| nr_pages, /* How many pages? */ |
| dio->rw == READ, /* Write to memory? */ |
| 0, /* force (?) */ |
| &dio->pages[0], |
| NULL); /* vmas */ |
| up_read(¤t->mm->mmap_sem); |
| |
| if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { |
| struct page *page = ZERO_PAGE(dio->curr_user_address); |
| /* |
| * A memory fault, but the filesystem has some outstanding |
| * mapped blocks. We need to use those blocks up to avoid |
| * leaking stale data in the file. |
| */ |
| if (dio->page_errors == 0) |
| dio->page_errors = ret; |
| page_cache_get(page); |
| dio->pages[0] = page; |
| dio->head = 0; |
| dio->tail = 1; |
| ret = 0; |
| goto out; |
| } |
| |
| if (ret >= 0) { |
| dio->curr_user_address += ret * PAGE_SIZE; |
| dio->curr_page += ret; |
| dio->head = 0; |
| dio->tail = ret; |
| ret = 0; |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Get another userspace page. Returns an ERR_PTR on error. Pages are |
| * buffered inside the dio so that we can call get_user_pages() against a |
| * decent number of pages, less frequently. To provide nicer use of the |
| * L1 cache. |
| */ |
| static struct page *dio_get_page(struct dio *dio) |
| { |
| if (dio_pages_present(dio) == 0) { |
| int ret; |
| |
| ret = dio_refill_pages(dio); |
| if (ret) |
| return ERR_PTR(ret); |
| BUG_ON(dio_pages_present(dio) == 0); |
| } |
| return dio->pages[dio->head++]; |
| } |
| |
| /** |
| * dio_complete() - called when all DIO BIO I/O has been completed |
| * @offset: the byte offset in the file of the completed operation |
| * |
| * This releases locks as dictated by the locking type, lets interested parties |
| * know that a DIO operation has completed, and calculates the resulting return |
| * code for the operation. |
| * |
| * It lets the filesystem know if it registered an interest earlier via |
| * get_block. Pass the private field of the map buffer_head so that |
| * filesystems can use it to hold additional state between get_block calls and |
| * dio_complete. |
| */ |
| static int dio_complete(struct dio *dio, loff_t offset, int ret) |
| { |
| ssize_t transferred = 0; |
| |
| /* |
| * AIO submission can race with bio completion to get here while |
| * expecting to have the last io completed by bio completion. |
| * In that case -EIOCBQUEUED is in fact not an error we want |
| * to preserve through this call. |
| */ |
| if (ret == -EIOCBQUEUED) |
| ret = 0; |
| |
| if (dio->result) { |
| transferred = dio->result; |
| |
| /* Check for short read case */ |
| if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) |
| transferred = dio->i_size - offset; |
| } |
| |
| if (dio->end_io && dio->result) |
| dio->end_io(dio->iocb, offset, transferred, |
| dio->map_bh.b_private); |
| if (dio->lock_type == DIO_LOCKING) |
| /* lockdep: non-owner release */ |
| up_read_non_owner(&dio->inode->i_alloc_sem); |
| |
| if (ret == 0) |
| ret = dio->page_errors; |
| if (ret == 0) |
| ret = dio->io_error; |
| if (ret == 0) |
| ret = transferred; |
| |
| return ret; |
| } |
| |
| static int dio_bio_complete(struct dio *dio, struct bio *bio); |
| /* |
| * Asynchronous IO callback. |
| */ |
| static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) |
| { |
| struct dio *dio = bio->bi_private; |
| unsigned long remaining; |
| unsigned long flags; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| /* cleanup the bio */ |
| dio_bio_complete(dio, bio); |
| |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| remaining = --dio->refcount; |
| if (remaining == 1 && dio->waiter) |
| wake_up_process(dio->waiter); |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| |
| if (remaining == 0) { |
| int ret = dio_complete(dio, dio->iocb->ki_pos, 0); |
| aio_complete(dio->iocb, ret, 0); |
| kfree(dio); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The BIO completion handler simply queues the BIO up for the process-context |
| * handler. |
| * |
| * During I/O bi_private points at the dio. After I/O, bi_private is used to |
| * implement a singly-linked list of completed BIOs, at dio->bio_list. |
| */ |
| static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) |
| { |
| struct dio *dio = bio->bi_private; |
| unsigned long flags; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| bio->bi_private = dio->bio_list; |
| dio->bio_list = bio; |
| if (--dio->refcount == 1 && dio->waiter) |
| wake_up_process(dio->waiter); |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| return 0; |
| } |
| |
| static int |
| dio_bio_alloc(struct dio *dio, struct block_device *bdev, |
| sector_t first_sector, int nr_vecs) |
| { |
| struct bio *bio; |
| |
| bio = bio_alloc(GFP_KERNEL, nr_vecs); |
| if (bio == NULL) |
| return -ENOMEM; |
| |
| bio->bi_bdev = bdev; |
| bio->bi_sector = first_sector; |
| if (dio->is_async) |
| bio->bi_end_io = dio_bio_end_aio; |
| else |
| bio->bi_end_io = dio_bio_end_io; |
| |
| dio->bio = bio; |
| return 0; |
| } |
| |
| /* |
| * In the AIO read case we speculatively dirty the pages before starting IO. |
| * During IO completion, any of these pages which happen to have been written |
| * back will be redirtied by bio_check_pages_dirty(). |
| * |
| * bios hold a dio reference between submit_bio and ->end_io. |
| */ |
| static void dio_bio_submit(struct dio *dio) |
| { |
| struct bio *bio = dio->bio; |
| unsigned long flags; |
| |
| bio->bi_private = dio; |
| |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| dio->refcount++; |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| |
| if (dio->is_async && dio->rw == READ) |
| bio_set_pages_dirty(bio); |
| |
| submit_bio(dio->rw, bio); |
| |
| dio->bio = NULL; |
| dio->boundary = 0; |
| } |
| |
| /* |
| * Release any resources in case of a failure |
| */ |
| static void dio_cleanup(struct dio *dio) |
| { |
| while (dio_pages_present(dio)) |
| page_cache_release(dio_get_page(dio)); |
| } |
| |
| /* |
| * Wait for the next BIO to complete. Remove it and return it. NULL is |
| * returned once all BIOs have been completed. This must only be called once |
| * all bios have been issued so that dio->refcount can only decrease. This |
| * requires that that the caller hold a reference on the dio. |
| */ |
| static struct bio *dio_await_one(struct dio *dio) |
| { |
| unsigned long flags; |
| struct bio *bio = NULL; |
| |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| |
| /* |
| * Wait as long as the list is empty and there are bios in flight. bio |
| * completion drops the count, maybe adds to the list, and wakes while |
| * holding the bio_lock so we don't need set_current_state()'s barrier |
| * and can call it after testing our condition. |
| */ |
| while (dio->refcount > 1 && dio->bio_list == NULL) { |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| dio->waiter = current; |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| io_schedule(); |
| /* wake up sets us TASK_RUNNING */ |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| dio->waiter = NULL; |
| } |
| if (dio->bio_list) { |
| bio = dio->bio_list; |
| dio->bio_list = bio->bi_private; |
| } |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| return bio; |
| } |
| |
| /* |
| * Process one completed BIO. No locks are held. |
| */ |
| static int dio_bio_complete(struct dio *dio, struct bio *bio) |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec; |
| int page_no; |
| |
| if (!uptodate) |
| dio->io_error = -EIO; |
| |
| if (dio->is_async && dio->rw == READ) { |
| bio_check_pages_dirty(bio); /* transfers ownership */ |
| } else { |
| for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { |
| struct page *page = bvec[page_no].bv_page; |
| |
| if (dio->rw == READ && !PageCompound(page)) |
| set_page_dirty_lock(page); |
| page_cache_release(page); |
| } |
| bio_put(bio); |
| } |
| return uptodate ? 0 : -EIO; |
| } |
| |
| /* |
| * Wait on and process all in-flight BIOs. This must only be called once |
| * all bios have been issued so that the refcount can only decrease. |
| * This just waits for all bios to make it through dio_bio_complete. IO |
| * errors are propagated through dio->io_error and should be propagated via |
| * dio_complete(). |
| */ |
| static void dio_await_completion(struct dio *dio) |
| { |
| struct bio *bio; |
| do { |
| bio = dio_await_one(dio); |
| if (bio) |
| dio_bio_complete(dio, bio); |
| } while (bio); |
| } |
| |
| /* |
| * A really large O_DIRECT read or write can generate a lot of BIOs. So |
| * to keep the memory consumption sane we periodically reap any completed BIOs |
| * during the BIO generation phase. |
| * |
| * This also helps to limit the peak amount of pinned userspace memory. |
| */ |
| static int dio_bio_reap(struct dio *dio) |
| { |
| int ret = 0; |
| |
| if (dio->reap_counter++ >= 64) { |
| while (dio->bio_list) { |
| unsigned long flags; |
| struct bio *bio; |
| int ret2; |
| |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| bio = dio->bio_list; |
| dio->bio_list = bio->bi_private; |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| ret2 = dio_bio_complete(dio, bio); |
| if (ret == 0) |
| ret = ret2; |
| } |
| dio->reap_counter = 0; |
| } |
| return ret; |
| } |
| |
| /* |
| * Call into the fs to map some more disk blocks. We record the current number |
| * of available blocks at dio->blocks_available. These are in units of the |
| * fs blocksize, (1 << inode->i_blkbits). |
| * |
| * The fs is allowed to map lots of blocks at once. If it wants to do that, |
| * it uses the passed inode-relative block number as the file offset, as usual. |
| * |
| * get_block() is passed the number of i_blkbits-sized blocks which direct_io |
| * has remaining to do. The fs should not map more than this number of blocks. |
| * |
| * If the fs has mapped a lot of blocks, it should populate bh->b_size to |
| * indicate how much contiguous disk space has been made available at |
| * bh->b_blocknr. |
| * |
| * If *any* of the mapped blocks are new, then the fs must set buffer_new(). |
| * This isn't very efficient... |
| * |
| * In the case of filesystem holes: the fs may return an arbitrarily-large |
| * hole by returning an appropriate value in b_size and by clearing |
| * buffer_mapped(). However the direct-io code will only process holes one |
| * block at a time - it will repeatedly call get_block() as it walks the hole. |
| */ |
| static int get_more_blocks(struct dio *dio) |
| { |
| int ret; |
| struct buffer_head *map_bh = &dio->map_bh; |
| sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ |
| unsigned long fs_count; /* Number of filesystem-sized blocks */ |
| unsigned long dio_count;/* Number of dio_block-sized blocks */ |
| unsigned long blkmask; |
| int create; |
| |
| /* |
| * If there was a memory error and we've overwritten all the |
| * mapped blocks then we can now return that memory error |
| */ |
| ret = dio->page_errors; |
| if (ret == 0) { |
| BUG_ON(dio->block_in_file >= dio->final_block_in_request); |
| fs_startblk = dio->block_in_file >> dio->blkfactor; |
| dio_count = dio->final_block_in_request - dio->block_in_file; |
| fs_count = dio_count >> dio->blkfactor; |
| blkmask = (1 << dio->blkfactor) - 1; |
| if (dio_count & blkmask) |
| fs_count++; |
| |
| map_bh->b_state = 0; |
| map_bh->b_size = fs_count << dio->inode->i_blkbits; |
| |
| create = dio->rw & WRITE; |
| if (dio->lock_type == DIO_LOCKING) { |
| if (dio->block_in_file < (i_size_read(dio->inode) >> |
| dio->blkbits)) |
| create = 0; |
| } else if (dio->lock_type == DIO_NO_LOCKING) { |
| create = 0; |
| } |
| |
| /* |
| * For writes inside i_size we forbid block creations: only |
| * overwrites are permitted. We fall back to buffered writes |
| * at a higher level for inside-i_size block-instantiating |
| * writes. |
| */ |
| ret = (*dio->get_block)(dio->inode, fs_startblk, |
| map_bh, create); |
| } |
| return ret; |
| } |
| |
| /* |
| * There is no bio. Make one now. |
| */ |
| static int dio_new_bio(struct dio *dio, sector_t start_sector) |
| { |
| sector_t sector; |
| int ret, nr_pages; |
| |
| ret = dio_bio_reap(dio); |
| if (ret) |
| goto out; |
| sector = start_sector << (dio->blkbits - 9); |
| nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); |
| BUG_ON(nr_pages <= 0); |
| ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); |
| dio->boundary = 0; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Attempt to put the current chunk of 'cur_page' into the current BIO. If |
| * that was successful then update final_block_in_bio and take a ref against |
| * the just-added page. |
| * |
| * Return zero on success. Non-zero means the caller needs to start a new BIO. |
| */ |
| static int dio_bio_add_page(struct dio *dio) |
| { |
| int ret; |
| |
| ret = bio_add_page(dio->bio, dio->cur_page, |
| dio->cur_page_len, dio->cur_page_offset); |
| if (ret == dio->cur_page_len) { |
| /* |
| * Decrement count only, if we are done with this page |
| */ |
| if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) |
| dio->pages_in_io--; |
| page_cache_get(dio->cur_page); |
| dio->final_block_in_bio = dio->cur_page_block + |
| (dio->cur_page_len >> dio->blkbits); |
| ret = 0; |
| } else { |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| /* |
| * Put cur_page under IO. The section of cur_page which is described by |
| * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page |
| * starts on-disk at cur_page_block. |
| * |
| * We take a ref against the page here (on behalf of its presence in the bio). |
| * |
| * The caller of this function is responsible for removing cur_page from the |
| * dio, and for dropping the refcount which came from that presence. |
| */ |
| static int dio_send_cur_page(struct dio *dio) |
| { |
| int ret = 0; |
| |
| if (dio->bio) { |
| /* |
| * See whether this new request is contiguous with the old |
| */ |
| if (dio->final_block_in_bio != dio->cur_page_block) |
| dio_bio_submit(dio); |
| /* |
| * Submit now if the underlying fs is about to perform a |
| * metadata read |
| */ |
| if (dio->boundary) |
| dio_bio_submit(dio); |
| } |
| |
| if (dio->bio == NULL) { |
| ret = dio_new_bio(dio, dio->cur_page_block); |
| if (ret) |
| goto out; |
| } |
| |
| if (dio_bio_add_page(dio) != 0) { |
| dio_bio_submit(dio); |
| ret = dio_new_bio(dio, dio->cur_page_block); |
| if (ret == 0) { |
| ret = dio_bio_add_page(dio); |
| BUG_ON(ret != 0); |
| } |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * An autonomous function to put a chunk of a page under deferred IO. |
| * |
| * The caller doesn't actually know (or care) whether this piece of page is in |
| * a BIO, or is under IO or whatever. We just take care of all possible |
| * situations here. The separation between the logic of do_direct_IO() and |
| * that of submit_page_section() is important for clarity. Please don't break. |
| * |
| * The chunk of page starts on-disk at blocknr. |
| * |
| * We perform deferred IO, by recording the last-submitted page inside our |
| * private part of the dio structure. If possible, we just expand the IO |
| * across that page here. |
| * |
| * If that doesn't work out then we put the old page into the bio and add this |
| * page to the dio instead. |
| */ |
| static int |
| submit_page_section(struct dio *dio, struct page *page, |
| unsigned offset, unsigned len, sector_t blocknr) |
| { |
| int ret = 0; |
| |
| if (dio->rw & WRITE) { |
| /* |
| * Read accounting is performed in submit_bio() |
| */ |
| task_io_account_write(len); |
| } |
| |
| /* |
| * Can we just grow the current page's presence in the dio? |
| */ |
| if ( (dio->cur_page == page) && |
| (dio->cur_page_offset + dio->cur_page_len == offset) && |
| (dio->cur_page_block + |
| (dio->cur_page_len >> dio->blkbits) == blocknr)) { |
| dio->cur_page_len += len; |
| |
| /* |
| * If dio->boundary then we want to schedule the IO now to |
| * avoid metadata seeks. |
| */ |
| if (dio->boundary) { |
| ret = dio_send_cur_page(dio); |
| page_cache_release(dio->cur_page); |
| dio->cur_page = NULL; |
| } |
| goto out; |
| } |
| |
| /* |
| * If there's a deferred page already there then send it. |
| */ |
| if (dio->cur_page) { |
| ret = dio_send_cur_page(dio); |
| page_cache_release(dio->cur_page); |
| dio->cur_page = NULL; |
| if (ret) |
| goto out; |
| } |
| |
| page_cache_get(page); /* It is in dio */ |
| dio->cur_page = page; |
| dio->cur_page_offset = offset; |
| dio->cur_page_len = len; |
| dio->cur_page_block = blocknr; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Clean any dirty buffers in the blockdev mapping which alias newly-created |
| * file blocks. Only called for S_ISREG files - blockdevs do not set |
| * buffer_new |
| */ |
| static void clean_blockdev_aliases(struct dio *dio) |
| { |
| unsigned i; |
| unsigned nblocks; |
| |
| nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; |
| |
| for (i = 0; i < nblocks; i++) { |
| unmap_underlying_metadata(dio->map_bh.b_bdev, |
| dio->map_bh.b_blocknr + i); |
| } |
| } |
| |
| /* |
| * If we are not writing the entire block and get_block() allocated |
| * the block for us, we need to fill-in the unused portion of the |
| * block with zeros. This happens only if user-buffer, fileoffset or |
| * io length is not filesystem block-size multiple. |
| * |
| * `end' is zero if we're doing the start of the IO, 1 at the end of the |
| * IO. |
| */ |
| static void dio_zero_block(struct dio *dio, int end) |
| { |
| unsigned dio_blocks_per_fs_block; |
| unsigned this_chunk_blocks; /* In dio_blocks */ |
| unsigned this_chunk_bytes; |
| struct page *page; |
| |
| dio->start_zero_done = 1; |
| if (!dio->blkfactor || !buffer_new(&dio->map_bh)) |
| return; |
| |
| dio_blocks_per_fs_block = 1 << dio->blkfactor; |
| this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); |
| |
| if (!this_chunk_blocks) |
| return; |
| |
| /* |
| * We need to zero out part of an fs block. It is either at the |
| * beginning or the end of the fs block. |
| */ |
| if (end) |
| this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; |
| |
| this_chunk_bytes = this_chunk_blocks << dio->blkbits; |
| |
| page = ZERO_PAGE(dio->curr_user_address); |
| if (submit_page_section(dio, page, 0, this_chunk_bytes, |
| dio->next_block_for_io)) |
| return; |
| |
| dio->next_block_for_io += this_chunk_blocks; |
| } |
| |
| /* |
| * Walk the user pages, and the file, mapping blocks to disk and generating |
| * a sequence of (page,offset,len,block) mappings. These mappings are injected |
| * into submit_page_section(), which takes care of the next stage of submission |
| * |
| * Direct IO against a blockdev is different from a file. Because we can |
| * happily perform page-sized but 512-byte aligned IOs. It is important that |
| * blockdev IO be able to have fine alignment and large sizes. |
| * |
| * So what we do is to permit the ->get_block function to populate bh.b_size |
| * with the size of IO which is permitted at this offset and this i_blkbits. |
| * |
| * For best results, the blockdev should be set up with 512-byte i_blkbits and |
| * it should set b_size to PAGE_SIZE or more inside get_block(). This gives |
| * fine alignment but still allows this function to work in PAGE_SIZE units. |
| */ |
| static int do_direct_IO(struct dio *dio) |
| { |
| const unsigned blkbits = dio->blkbits; |
| const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
| struct page *page; |
| unsigned block_in_page; |
| struct buffer_head *map_bh = &dio->map_bh; |
| int ret = 0; |
| |
| /* The I/O can start at any block offset within the first page */ |
| block_in_page = dio->first_block_in_page; |
| |
| while (dio->block_in_file < dio->final_block_in_request) { |
| page = dio_get_page(dio); |
| if (IS_ERR(page)) { |
| ret = PTR_ERR(page); |
| goto out; |
| } |
| |
| while (block_in_page < blocks_per_page) { |
| unsigned offset_in_page = block_in_page << blkbits; |
| unsigned this_chunk_bytes; /* # of bytes mapped */ |
| unsigned this_chunk_blocks; /* # of blocks */ |
| unsigned u; |
| |
| if (dio->blocks_available == 0) { |
| /* |
| * Need to go and map some more disk |
| */ |
| unsigned long blkmask; |
| unsigned long dio_remainder; |
| |
| ret = get_more_blocks(dio); |
| if (ret) { |
| page_cache_release(page); |
| goto out; |
| } |
| if (!buffer_mapped(map_bh)) |
| goto do_holes; |
| |
| dio->blocks_available = |
| map_bh->b_size >> dio->blkbits; |
| dio->next_block_for_io = |
| map_bh->b_blocknr << dio->blkfactor; |
| if (buffer_new(map_bh)) |
| clean_blockdev_aliases(dio); |
| |
| if (!dio->blkfactor) |
| goto do_holes; |
| |
| blkmask = (1 << dio->blkfactor) - 1; |
| dio_remainder = (dio->block_in_file & blkmask); |
| |
| /* |
| * If we are at the start of IO and that IO |
| * starts partway into a fs-block, |
| * dio_remainder will be non-zero. If the IO |
| * is a read then we can simply advance the IO |
| * cursor to the first block which is to be |
| * read. But if the IO is a write and the |
| * block was newly allocated we cannot do that; |
| * the start of the fs block must be zeroed out |
| * on-disk |
| */ |
| if (!buffer_new(map_bh)) |
| dio->next_block_for_io += dio_remainder; |
| dio->blocks_available -= dio_remainder; |
| } |
| do_holes: |
| /* Handle holes */ |
| if (!buffer_mapped(map_bh)) { |
| char *kaddr; |
| loff_t i_size_aligned; |
| |
| /* AKPM: eargh, -ENOTBLK is a hack */ |
| if (dio->rw & WRITE) { |
| page_cache_release(page); |
| return -ENOTBLK; |
| } |
| |
| /* |
| * Be sure to account for a partial block as the |
| * last block in the file |
| */ |
| i_size_aligned = ALIGN(i_size_read(dio->inode), |
| 1 << blkbits); |
| if (dio->block_in_file >= |
| i_size_aligned >> blkbits) { |
| /* We hit eof */ |
| page_cache_release(page); |
| goto out; |
| } |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr + (block_in_page << blkbits), |
| 0, 1 << blkbits); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| dio->block_in_file++; |
| block_in_page++; |
| goto next_block; |
| } |
| |
| /* |
| * If we're performing IO which has an alignment which |
| * is finer than the underlying fs, go check to see if |
| * we must zero out the start of this block. |
| */ |
| if (unlikely(dio->blkfactor && !dio->start_zero_done)) |
| dio_zero_block(dio, 0); |
| |
| /* |
| * Work out, in this_chunk_blocks, how much disk we |
| * can add to this page |
| */ |
| this_chunk_blocks = dio->blocks_available; |
| u = (PAGE_SIZE - offset_in_page) >> blkbits; |
| if (this_chunk_blocks > u) |
| this_chunk_blocks = u; |
| u = dio->final_block_in_request - dio->block_in_file; |
| if (this_chunk_blocks > u) |
| this_chunk_blocks = u; |
| this_chunk_bytes = this_chunk_blocks << blkbits; |
| BUG_ON(this_chunk_bytes == 0); |
| |
| dio->boundary = buffer_boundary(map_bh); |
| ret = submit_page_section(dio, page, offset_in_page, |
| this_chunk_bytes, dio->next_block_for_io); |
| if (ret) { |
| page_cache_release(page); |
| goto out; |
| } |
| dio->next_block_for_io += this_chunk_blocks; |
| |
| dio->block_in_file += this_chunk_blocks; |
| block_in_page += this_chunk_blocks; |
| dio->blocks_available -= this_chunk_blocks; |
| next_block: |
| BUG_ON(dio->block_in_file > dio->final_block_in_request); |
| if (dio->block_in_file == dio->final_block_in_request) |
| break; |
| } |
| |
| /* Drop the ref which was taken in get_user_pages() */ |
| page_cache_release(page); |
| block_in_page = 0; |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Releases both i_mutex and i_alloc_sem |
| */ |
| static ssize_t |
| direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, |
| const struct iovec *iov, loff_t offset, unsigned long nr_segs, |
| unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, |
| struct dio *dio) |
| { |
| unsigned long user_addr; |
| unsigned long flags; |
| int seg; |
| ssize_t ret = 0; |
| ssize_t ret2; |
| size_t bytes; |
| |
| dio->bio = NULL; |
| dio->inode = inode; |
| dio->rw = rw; |
| dio->blkbits = blkbits; |
| dio->blkfactor = inode->i_blkbits - blkbits; |
| dio->start_zero_done = 0; |
| dio->size = 0; |
| dio->block_in_file = offset >> blkbits; |
| dio->blocks_available = 0; |
| dio->cur_page = NULL; |
| |
| dio->boundary = 0; |
| dio->reap_counter = 0; |
| dio->get_block = get_block; |
| dio->end_io = end_io; |
| dio->map_bh.b_private = NULL; |
| dio->final_block_in_bio = -1; |
| dio->next_block_for_io = -1; |
| |
| dio->page_errors = 0; |
| dio->io_error = 0; |
| dio->result = 0; |
| dio->iocb = iocb; |
| dio->i_size = i_size_read(inode); |
| |
| spin_lock_init(&dio->bio_lock); |
| dio->refcount = 1; |
| dio->bio_list = NULL; |
| dio->waiter = NULL; |
| |
| /* |
| * In case of non-aligned buffers, we may need 2 more |
| * pages since we need to zero out first and last block. |
| */ |
| if (unlikely(dio->blkfactor)) |
| dio->pages_in_io = 2; |
| else |
| dio->pages_in_io = 0; |
| |
| for (seg = 0; seg < nr_segs; seg++) { |
| user_addr = (unsigned long)iov[seg].iov_base; |
| dio->pages_in_io += |
| ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE |
| - user_addr/PAGE_SIZE); |
| } |
| |
| for (seg = 0; seg < nr_segs; seg++) { |
| user_addr = (unsigned long)iov[seg].iov_base; |
| dio->size += bytes = iov[seg].iov_len; |
| |
| /* Index into the first page of the first block */ |
| dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; |
| dio->final_block_in_request = dio->block_in_file + |
| (bytes >> blkbits); |
| /* Page fetching state */ |
| dio->head = 0; |
| dio->tail = 0; |
| dio->curr_page = 0; |
| |
| dio->total_pages = 0; |
| if (user_addr & (PAGE_SIZE-1)) { |
| dio->total_pages++; |
| bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); |
| } |
| dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; |
| dio->curr_user_address = user_addr; |
| |
| ret = do_direct_IO(dio); |
| |
| dio->result += iov[seg].iov_len - |
| ((dio->final_block_in_request - dio->block_in_file) << |
| blkbits); |
| |
| if (ret) { |
| dio_cleanup(dio); |
| break; |
| } |
| } /* end iovec loop */ |
| |
| if (ret == -ENOTBLK && (rw & WRITE)) { |
| /* |
| * The remaining part of the request will be |
| * be handled by buffered I/O when we return |
| */ |
| ret = 0; |
| } |
| /* |
| * There may be some unwritten disk at the end of a part-written |
| * fs-block-sized block. Go zero that now. |
| */ |
| dio_zero_block(dio, 1); |
| |
| if (dio->cur_page) { |
| ret2 = dio_send_cur_page(dio); |
| if (ret == 0) |
| ret = ret2; |
| page_cache_release(dio->cur_page); |
| dio->cur_page = NULL; |
| } |
| if (dio->bio) |
| dio_bio_submit(dio); |
| |
| /* All IO is now issued, send it on its way */ |
| blk_run_address_space(inode->i_mapping); |
| |
| /* |
| * It is possible that, we return short IO due to end of file. |
| * In that case, we need to release all the pages we got hold on. |
| */ |
| dio_cleanup(dio); |
| |
| /* |
| * All block lookups have been performed. For READ requests |
| * we can let i_mutex go now that its achieved its purpose |
| * of protecting us from looking up uninitialized blocks. |
| */ |
| if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) |
| mutex_unlock(&dio->inode->i_mutex); |
| |
| /* |
| * The only time we want to leave bios in flight is when a successful |
| * partial aio read or full aio write have been setup. In that case |
| * bio completion will call aio_complete. The only time it's safe to |
| * call aio_complete is when we return -EIOCBQUEUED, so we key on that. |
| * This had *better* be the only place that raises -EIOCBQUEUED. |
| */ |
| BUG_ON(ret == -EIOCBQUEUED); |
| if (dio->is_async && ret == 0 && dio->result && |
| ((rw & READ) || (dio->result == dio->size))) |
| ret = -EIOCBQUEUED; |
| |
| if (ret != -EIOCBQUEUED) |
| dio_await_completion(dio); |
| |
| /* |
| * Sync will always be dropping the final ref and completing the |
| * operation. AIO can if it was a broken operation described above or |
| * in fact if all the bios race to complete before we get here. In |
| * that case dio_complete() translates the EIOCBQUEUED into the proper |
| * return code that the caller will hand to aio_complete(). |
| * |
| * This is managed by the bio_lock instead of being an atomic_t so that |
| * completion paths can drop their ref and use the remaining count to |
| * decide to wake the submission path atomically. |
| */ |
| spin_lock_irqsave(&dio->bio_lock, flags); |
| ret2 = --dio->refcount; |
| spin_unlock_irqrestore(&dio->bio_lock, flags); |
| BUG_ON(!dio->is_async && ret2 != 0); |
| if (ret2 == 0) { |
| ret = dio_complete(dio, offset, ret); |
| kfree(dio); |
| } else |
| BUG_ON(ret != -EIOCBQUEUED); |
| |
| return ret; |
| } |
| |
| /* |
| * This is a library function for use by filesystem drivers. |
| * The locking rules are governed by the dio_lock_type parameter. |
| * |
| * DIO_NO_LOCKING (no locking, for raw block device access) |
| * For writes, i_mutex is not held on entry; it is never taken. |
| * |
| * DIO_LOCKING (simple locking for regular files) |
| * For writes we are called under i_mutex and return with i_mutex held, even |
| * though it is internally dropped. |
| * For reads, i_mutex is not held on entry, but it is taken and dropped before |
| * returning. |
| * |
| * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of |
| * uninitialised data, allowing parallel direct readers and writers) |
| * For writes we are called without i_mutex, return without it, never touch it. |
| * For reads we are called under i_mutex and return with i_mutex held, even |
| * though it may be internally dropped. |
| * |
| * Additional i_alloc_sem locking requirements described inline below. |
| */ |
| ssize_t |
| __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, |
| struct block_device *bdev, const struct iovec *iov, loff_t offset, |
| unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, |
| int dio_lock_type) |
| { |
| int seg; |
| size_t size; |
| unsigned long addr; |
| unsigned blkbits = inode->i_blkbits; |
| unsigned bdev_blkbits = 0; |
| unsigned blocksize_mask = (1 << blkbits) - 1; |
| ssize_t retval = -EINVAL; |
| loff_t end = offset; |
| struct dio *dio; |
| int release_i_mutex = 0; |
| int acquire_i_mutex = 0; |
| |
| if (rw & WRITE) |
| rw = WRITE_SYNC; |
| |
| if (bdev) |
| bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); |
| |
| if (offset & blocksize_mask) { |
| if (bdev) |
| blkbits = bdev_blkbits; |
| blocksize_mask = (1 << blkbits) - 1; |
| if (offset & blocksize_mask) |
| goto out; |
| } |
| |
| /* Check the memory alignment. Blocks cannot straddle pages */ |
| for (seg = 0; seg < nr_segs; seg++) { |
| addr = (unsigned long)iov[seg].iov_base; |
| size = iov[seg].iov_len; |
| end += size; |
| if ((addr & blocksize_mask) || (size & blocksize_mask)) { |
| if (bdev) |
| blkbits = bdev_blkbits; |
| blocksize_mask = (1 << blkbits) - 1; |
| if ((addr & blocksize_mask) || (size & blocksize_mask)) |
| goto out; |
| } |
| } |
| |
| dio = kmalloc(sizeof(*dio), GFP_KERNEL); |
| retval = -ENOMEM; |
| if (!dio) |
| goto out; |
| |
| /* |
| * For block device access DIO_NO_LOCKING is used, |
| * neither readers nor writers do any locking at all |
| * For regular files using DIO_LOCKING, |
| * readers need to grab i_mutex and i_alloc_sem |
| * writers need to grab i_alloc_sem only (i_mutex is already held) |
| * For regular files using DIO_OWN_LOCKING, |
| * neither readers nor writers take any locks here |
| */ |
| dio->lock_type = dio_lock_type; |
| if (dio_lock_type != DIO_NO_LOCKING) { |
| /* watch out for a 0 len io from a tricksy fs */ |
| if (rw == READ && end > offset) { |
| struct address_space *mapping; |
| |
| mapping = iocb->ki_filp->f_mapping; |
| if (dio_lock_type != DIO_OWN_LOCKING) { |
| mutex_lock(&inode->i_mutex); |
| release_i_mutex = 1; |
| } |
| |
| retval = filemap_write_and_wait_range(mapping, offset, |
| end - 1); |
| if (retval) { |
| kfree(dio); |
| goto out; |
| } |
| |
| if (dio_lock_type == DIO_OWN_LOCKING) { |
| mutex_unlock(&inode->i_mutex); |
| acquire_i_mutex = 1; |
| } |
| } |
| |
| if (dio_lock_type == DIO_LOCKING) |
| /* lockdep: not the owner will release it */ |
| down_read_non_owner(&inode->i_alloc_sem); |
| } |
| |
| /* |
| * For file extending writes updating i_size before data |
| * writeouts complete can expose uninitialized blocks. So |
| * even for AIO, we need to wait for i/o to complete before |
| * returning in this case. |
| */ |
| dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && |
| (end > i_size_read(inode))); |
| |
| retval = direct_io_worker(rw, iocb, inode, iov, offset, |
| nr_segs, blkbits, get_block, end_io, dio); |
| |
| if (rw == READ && dio_lock_type == DIO_LOCKING) |
| release_i_mutex = 0; |
| |
| out: |
| if (release_i_mutex) |
| mutex_unlock(&inode->i_mutex); |
| else if (acquire_i_mutex) |
| mutex_lock(&inode->i_mutex); |
| return retval; |
| } |
| EXPORT_SYMBOL(__blockdev_direct_IO); |