| /* |
| * linux/fs/ext4/crypto.c |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * |
| * This contains encryption functions for ext4 |
| * |
| * Written by Michael Halcrow, 2014. |
| * |
| * Filename encryption additions |
| * Uday Savagaonkar, 2014 |
| * Encryption policy handling additions |
| * Ildar Muslukhov, 2014 |
| * |
| * This has not yet undergone a rigorous security audit. |
| * |
| * The usage of AES-XTS should conform to recommendations in NIST |
| * Special Publication 800-38E and IEEE P1619/D16. |
| */ |
| |
| #include <crypto/hash.h> |
| #include <crypto/sha.h> |
| #include <keys/user-type.h> |
| #include <keys/encrypted-type.h> |
| #include <linux/crypto.h> |
| #include <linux/ecryptfs.h> |
| #include <linux/gfp.h> |
| #include <linux/kernel.h> |
| #include <linux/key.h> |
| #include <linux/list.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/random.h> |
| #include <linux/scatterlist.h> |
| #include <linux/spinlock_types.h> |
| |
| #include "ext4_extents.h" |
| #include "xattr.h" |
| |
| /* Encryption added and removed here! (L: */ |
| |
| static unsigned int num_prealloc_crypto_pages = 32; |
| static unsigned int num_prealloc_crypto_ctxs = 128; |
| |
| module_param(num_prealloc_crypto_pages, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| "Number of crypto pages to preallocate"); |
| module_param(num_prealloc_crypto_ctxs, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_ctxs, |
| "Number of crypto contexts to preallocate"); |
| |
| static mempool_t *ext4_bounce_page_pool; |
| |
| static LIST_HEAD(ext4_free_crypto_ctxs); |
| static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); |
| |
| /** |
| * ext4_release_crypto_ctx() - Releases an encryption context |
| * @ctx: The encryption context to release. |
| * |
| * If the encryption context was allocated from the pre-allocated pool, returns |
| * it to that pool. Else, frees it. |
| * |
| * If there's a bounce page in the context, this frees that. |
| */ |
| void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) |
| { |
| unsigned long flags; |
| |
| if (ctx->bounce_page) { |
| if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) |
| __free_page(ctx->bounce_page); |
| else |
| mempool_free(ctx->bounce_page, ext4_bounce_page_pool); |
| ctx->bounce_page = NULL; |
| } |
| ctx->control_page = NULL; |
| if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { |
| if (ctx->tfm) |
| crypto_free_tfm(ctx->tfm); |
| kfree(ctx); |
| } else { |
| spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); |
| list_add(&ctx->free_list, &ext4_free_crypto_ctxs); |
| spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); |
| } |
| } |
| |
| /** |
| * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context |
| * @mask: The allocation mask. |
| * |
| * Return: An allocated and initialized encryption context on success. An error |
| * value or NULL otherwise. |
| */ |
| static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask) |
| { |
| struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx), |
| mask); |
| |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| return ctx; |
| } |
| |
| /** |
| * ext4_get_crypto_ctx() - Gets an encryption context |
| * @inode: The inode for which we are doing the crypto |
| * |
| * Allocates and initializes an encryption context. |
| * |
| * Return: An allocated and initialized encryption context on success; error |
| * value or NULL otherwise. |
| */ |
| struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) |
| { |
| struct ext4_crypto_ctx *ctx = NULL; |
| int res = 0; |
| unsigned long flags; |
| struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key; |
| |
| if (!ext4_read_workqueue) |
| ext4_init_crypto(); |
| |
| /* |
| * We first try getting the ctx from a free list because in |
| * the common case the ctx will have an allocated and |
| * initialized crypto tfm, so it's probably a worthwhile |
| * optimization. For the bounce page, we first try getting it |
| * from the kernel allocator because that's just about as fast |
| * as getting it from a list and because a cache of free pages |
| * should generally be a "last resort" option for a filesystem |
| * to be able to do its job. |
| */ |
| spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); |
| ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, |
| struct ext4_crypto_ctx, free_list); |
| if (ctx) |
| list_del(&ctx->free_list); |
| spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); |
| if (!ctx) { |
| ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS); |
| if (IS_ERR(ctx)) { |
| res = PTR_ERR(ctx); |
| goto out; |
| } |
| ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } else { |
| ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } |
| |
| /* Allocate a new Crypto API context if we don't already have |
| * one or if it isn't the right mode. */ |
| BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID); |
| if (ctx->tfm && (ctx->mode != key->mode)) { |
| crypto_free_tfm(ctx->tfm); |
| ctx->tfm = NULL; |
| ctx->mode = EXT4_ENCRYPTION_MODE_INVALID; |
| } |
| if (!ctx->tfm) { |
| switch (key->mode) { |
| case EXT4_ENCRYPTION_MODE_AES_256_XTS: |
| ctx->tfm = crypto_ablkcipher_tfm( |
| crypto_alloc_ablkcipher("xts(aes)", 0, 0)); |
| break; |
| case EXT4_ENCRYPTION_MODE_AES_256_GCM: |
| /* TODO(mhalcrow): AEAD w/ gcm(aes); |
| * crypto_aead_setauthsize() */ |
| ctx->tfm = ERR_PTR(-ENOTSUPP); |
| break; |
| default: |
| BUG(); |
| } |
| if (IS_ERR_OR_NULL(ctx->tfm)) { |
| res = PTR_ERR(ctx->tfm); |
| ctx->tfm = NULL; |
| goto out; |
| } |
| ctx->mode = key->mode; |
| } |
| BUG_ON(key->size != ext4_encryption_key_size(key->mode)); |
| |
| /* There shouldn't be a bounce page attached to the crypto |
| * context at this point. */ |
| BUG_ON(ctx->bounce_page); |
| |
| out: |
| if (res) { |
| if (!IS_ERR_OR_NULL(ctx)) |
| ext4_release_crypto_ctx(ctx); |
| ctx = ERR_PTR(res); |
| } |
| return ctx; |
| } |
| |
| struct workqueue_struct *ext4_read_workqueue; |
| static DEFINE_MUTEX(crypto_init); |
| |
| /** |
| * ext4_exit_crypto() - Shutdown the ext4 encryption system |
| */ |
| void ext4_exit_crypto(void) |
| { |
| struct ext4_crypto_ctx *pos, *n; |
| |
| list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) { |
| if (pos->bounce_page) { |
| if (pos->flags & |
| EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) { |
| __free_page(pos->bounce_page); |
| } else { |
| mempool_free(pos->bounce_page, |
| ext4_bounce_page_pool); |
| } |
| } |
| if (pos->tfm) |
| crypto_free_tfm(pos->tfm); |
| kfree(pos); |
| } |
| INIT_LIST_HEAD(&ext4_free_crypto_ctxs); |
| if (ext4_bounce_page_pool) |
| mempool_destroy(ext4_bounce_page_pool); |
| ext4_bounce_page_pool = NULL; |
| if (ext4_read_workqueue) |
| destroy_workqueue(ext4_read_workqueue); |
| ext4_read_workqueue = NULL; |
| } |
| |
| /** |
| * ext4_init_crypto() - Set up for ext4 encryption. |
| * |
| * We only call this when we start accessing encrypted files, since it |
| * results in memory getting allocated that wouldn't otherwise be used. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int ext4_init_crypto(void) |
| { |
| int i, res; |
| |
| mutex_lock(&crypto_init); |
| if (ext4_read_workqueue) |
| goto already_initialized; |
| ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); |
| if (!ext4_read_workqueue) { |
| res = -ENOMEM; |
| goto fail; |
| } |
| |
| for (i = 0; i < num_prealloc_crypto_ctxs; i++) { |
| struct ext4_crypto_ctx *ctx; |
| |
| ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL); |
| if (IS_ERR(ctx)) { |
| res = PTR_ERR(ctx); |
| goto fail; |
| } |
| list_add(&ctx->free_list, &ext4_free_crypto_ctxs); |
| } |
| |
| ext4_bounce_page_pool = |
| mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| if (!ext4_bounce_page_pool) { |
| res = -ENOMEM; |
| goto fail; |
| } |
| already_initialized: |
| mutex_unlock(&crypto_init); |
| return 0; |
| fail: |
| ext4_exit_crypto(); |
| mutex_unlock(&crypto_init); |
| return res; |
| } |
| |
| void ext4_restore_control_page(struct page *data_page) |
| { |
| struct ext4_crypto_ctx *ctx = |
| (struct ext4_crypto_ctx *)page_private(data_page); |
| |
| set_page_private(data_page, (unsigned long)NULL); |
| ClearPagePrivate(data_page); |
| unlock_page(data_page); |
| ext4_release_crypto_ctx(ctx); |
| } |
| |
| /** |
| * ext4_crypt_complete() - The completion callback for page encryption |
| * @req: The asynchronous encryption request context |
| * @res: The result of the encryption operation |
| */ |
| static void ext4_crypt_complete(struct crypto_async_request *req, int res) |
| { |
| struct ext4_completion_result *ecr = req->data; |
| |
| if (res == -EINPROGRESS) |
| return; |
| ecr->res = res; |
| complete(&ecr->completion); |
| } |
| |
| typedef enum { |
| EXT4_DECRYPT = 0, |
| EXT4_ENCRYPT, |
| } ext4_direction_t; |
| |
| static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, |
| struct inode *inode, |
| ext4_direction_t rw, |
| pgoff_t index, |
| struct page *src_page, |
| struct page *dest_page) |
| |
| { |
| u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; |
| struct ablkcipher_request *req = NULL; |
| DECLARE_EXT4_COMPLETION_RESULT(ecr); |
| struct scatterlist dst, src; |
| struct ext4_inode_info *ei = EXT4_I(inode); |
| struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm); |
| int res = 0; |
| |
| BUG_ON(!ctx->tfm); |
| BUG_ON(ctx->mode != ei->i_encryption_key.mode); |
| |
| if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) { |
| printk_ratelimited(KERN_ERR |
| "%s: unsupported crypto algorithm: %d\n", |
| __func__, ctx->mode); |
| return -ENOTSUPP; |
| } |
| |
| crypto_ablkcipher_clear_flags(atfm, ~0); |
| crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| |
| res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw, |
| ei->i_encryption_key.size); |
| if (res) { |
| printk_ratelimited(KERN_ERR |
| "%s: crypto_ablkcipher_setkey() failed\n", |
| __func__); |
| return res; |
| } |
| req = ablkcipher_request_alloc(atfm, GFP_NOFS); |
| if (!req) { |
| printk_ratelimited(KERN_ERR |
| "%s: crypto_request_alloc() failed\n", |
| __func__); |
| return -ENOMEM; |
| } |
| ablkcipher_request_set_callback( |
| req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| ext4_crypt_complete, &ecr); |
| |
| BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); |
| memcpy(xts_tweak, &index, sizeof(index)); |
| memset(&xts_tweak[sizeof(index)], 0, |
| EXT4_XTS_TWEAK_SIZE - sizeof(index)); |
| |
| sg_init_table(&dst, 1); |
| sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); |
| sg_init_table(&src, 1); |
| sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); |
| ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, |
| xts_tweak); |
| if (rw == EXT4_DECRYPT) |
| res = crypto_ablkcipher_decrypt(req); |
| else |
| res = crypto_ablkcipher_encrypt(req); |
| if (res == -EINPROGRESS || res == -EBUSY) { |
| BUG_ON(req->base.data != &ecr); |
| wait_for_completion(&ecr.completion); |
| res = ecr.res; |
| } |
| ablkcipher_request_free(req); |
| if (res) { |
| printk_ratelimited( |
| KERN_ERR |
| "%s: crypto_ablkcipher_encrypt() returned %d\n", |
| __func__, res); |
| return res; |
| } |
| return 0; |
| } |
| |
| /** |
| * ext4_encrypt() - Encrypts a page |
| * @inode: The inode for which the encryption should take place |
| * @plaintext_page: The page to encrypt. Must be locked. |
| * |
| * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx |
| * encryption context. |
| * |
| * Called on the page write path. The caller must call |
| * ext4_restore_control_page() on the returned ciphertext page to |
| * release the bounce buffer and the encryption context. |
| * |
| * Return: An allocated page with the encrypted content on success. Else, an |
| * error value or NULL. |
| */ |
| struct page *ext4_encrypt(struct inode *inode, |
| struct page *plaintext_page) |
| { |
| struct ext4_crypto_ctx *ctx; |
| struct page *ciphertext_page = NULL; |
| int err; |
| |
| BUG_ON(!PageLocked(plaintext_page)); |
| |
| ctx = ext4_get_crypto_ctx(inode); |
| if (IS_ERR(ctx)) |
| return (struct page *) ctx; |
| |
| /* The encryption operation will require a bounce page. */ |
| ciphertext_page = alloc_page(GFP_NOFS); |
| if (!ciphertext_page) { |
| /* This is a potential bottleneck, but at least we'll have |
| * forward progress. */ |
| ciphertext_page = mempool_alloc(ext4_bounce_page_pool, |
| GFP_NOFS); |
| if (WARN_ON_ONCE(!ciphertext_page)) { |
| ciphertext_page = mempool_alloc(ext4_bounce_page_pool, |
| GFP_NOFS | __GFP_WAIT); |
| } |
| ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; |
| } else { |
| ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; |
| } |
| ctx->bounce_page = ciphertext_page; |
| ctx->control_page = plaintext_page; |
| err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, |
| plaintext_page, ciphertext_page); |
| if (err) { |
| ext4_release_crypto_ctx(ctx); |
| return ERR_PTR(err); |
| } |
| SetPagePrivate(ciphertext_page); |
| set_page_private(ciphertext_page, (unsigned long)ctx); |
| lock_page(ciphertext_page); |
| return ciphertext_page; |
| } |
| |
| /** |
| * ext4_decrypt() - Decrypts a page in-place |
| * @ctx: The encryption context. |
| * @page: The page to decrypt. Must be locked. |
| * |
| * Decrypts page in-place using the ctx encryption context. |
| * |
| * Called from the read completion callback. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) |
| { |
| BUG_ON(!PageLocked(page)); |
| |
| return ext4_page_crypto(ctx, page->mapping->host, |
| EXT4_DECRYPT, page->index, page, page); |
| } |
| |
| /* |
| * Convenience function which takes care of allocating and |
| * deallocating the encryption context |
| */ |
| int ext4_decrypt_one(struct inode *inode, struct page *page) |
| { |
| int ret; |
| |
| struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); |
| |
| if (!ctx) |
| return -ENOMEM; |
| ret = ext4_decrypt(ctx, page); |
| ext4_release_crypto_ctx(ctx); |
| return ret; |
| } |
| |
| int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) |
| { |
| struct ext4_crypto_ctx *ctx; |
| struct page *ciphertext_page = NULL; |
| struct bio *bio; |
| ext4_lblk_t lblk = ex->ee_block; |
| ext4_fsblk_t pblk = ext4_ext_pblock(ex); |
| unsigned int len = ext4_ext_get_actual_len(ex); |
| int err = 0; |
| |
| BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); |
| |
| ctx = ext4_get_crypto_ctx(inode); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| ciphertext_page = alloc_page(GFP_NOFS); |
| if (!ciphertext_page) { |
| /* This is a potential bottleneck, but at least we'll have |
| * forward progress. */ |
| ciphertext_page = mempool_alloc(ext4_bounce_page_pool, |
| GFP_NOFS); |
| if (WARN_ON_ONCE(!ciphertext_page)) { |
| ciphertext_page = mempool_alloc(ext4_bounce_page_pool, |
| GFP_NOFS | __GFP_WAIT); |
| } |
| ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; |
| } else { |
| ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; |
| } |
| ctx->bounce_page = ciphertext_page; |
| |
| while (len--) { |
| err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, |
| ZERO_PAGE(0), ciphertext_page); |
| if (err) |
| goto errout; |
| |
| bio = bio_alloc(GFP_KERNEL, 1); |
| if (!bio) { |
| err = -ENOMEM; |
| goto errout; |
| } |
| bio->bi_bdev = inode->i_sb->s_bdev; |
| bio->bi_iter.bi_sector = pblk; |
| err = bio_add_page(bio, ciphertext_page, |
| inode->i_sb->s_blocksize, 0); |
| if (err) { |
| bio_put(bio); |
| goto errout; |
| } |
| err = submit_bio_wait(WRITE, bio); |
| if (err) |
| goto errout; |
| } |
| err = 0; |
| errout: |
| ext4_release_crypto_ctx(ctx); |
| return err; |
| } |
| |
| bool ext4_valid_contents_enc_mode(uint32_t mode) |
| { |
| return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); |
| } |
| |
| /** |
| * ext4_validate_encryption_key_size() - Validate the encryption key size |
| * @mode: The key mode. |
| * @size: The key size to validate. |
| * |
| * Return: The validated key size for @mode. Zero if invalid. |
| */ |
| uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) |
| { |
| if (size == ext4_encryption_key_size(mode)) |
| return size; |
| return 0; |
| } |