| /* |
| * Copyright (C) 2012 Red Hat, Inc. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-array.h" |
| #include "dm-space-map.h" |
| #include "dm-transaction-manager.h" |
| |
| #include <linux/export.h> |
| #include <linux/device-mapper.h> |
| |
| #define DM_MSG_PREFIX "array" |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * The array is implemented as a fully populated btree, which points to |
| * blocks that contain the packed values. This is more space efficient |
| * than just using a btree since we don't store 1 key per value. |
| */ |
| struct array_block { |
| __le32 csum; |
| __le32 max_entries; |
| __le32 nr_entries; |
| __le32 value_size; |
| __le64 blocknr; /* Block this node is supposed to live in. */ |
| } __packed; |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Validator methods. As usual we calculate a checksum, and also write the |
| * block location into the header (paranoia about ssds remapping areas by |
| * mistake). |
| */ |
| #define CSUM_XOR 595846735 |
| |
| static void array_block_prepare_for_write(struct dm_block_validator *v, |
| struct dm_block *b, |
| size_t size_of_block) |
| { |
| struct array_block *bh_le = dm_block_data(b); |
| |
| bh_le->blocknr = cpu_to_le64(dm_block_location(b)); |
| bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, |
| size_of_block - sizeof(__le32), |
| CSUM_XOR)); |
| } |
| |
| static int array_block_check(struct dm_block_validator *v, |
| struct dm_block *b, |
| size_t size_of_block) |
| { |
| struct array_block *bh_le = dm_block_data(b); |
| __le32 csum_disk; |
| |
| if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) { |
| DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu", |
| (unsigned long long) le64_to_cpu(bh_le->blocknr), |
| (unsigned long long) dm_block_location(b)); |
| return -ENOTBLK; |
| } |
| |
| csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, |
| size_of_block - sizeof(__le32), |
| CSUM_XOR)); |
| if (csum_disk != bh_le->csum) { |
| DMERR_LIMIT("array_block_check failed: csum %u != wanted %u", |
| (unsigned) le32_to_cpu(csum_disk), |
| (unsigned) le32_to_cpu(bh_le->csum)); |
| return -EILSEQ; |
| } |
| |
| return 0; |
| } |
| |
| static struct dm_block_validator array_validator = { |
| .name = "array", |
| .prepare_for_write = array_block_prepare_for_write, |
| .check = array_block_check |
| }; |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Functions for manipulating the array blocks. |
| */ |
| |
| /* |
| * Returns a pointer to a value within an array block. |
| * |
| * index - The index into _this_ specific block. |
| */ |
| static void *element_at(struct dm_array_info *info, struct array_block *ab, |
| unsigned index) |
| { |
| unsigned char *entry = (unsigned char *) (ab + 1); |
| |
| entry += index * info->value_type.size; |
| |
| return entry; |
| } |
| |
| /* |
| * Utility function that calls one of the value_type methods on every value |
| * in an array block. |
| */ |
| static void on_entries(struct dm_array_info *info, struct array_block *ab, |
| void (*fn)(void *, const void *)) |
| { |
| unsigned i, nr_entries = le32_to_cpu(ab->nr_entries); |
| |
| for (i = 0; i < nr_entries; i++) |
| fn(info->value_type.context, element_at(info, ab, i)); |
| } |
| |
| /* |
| * Increment every value in an array block. |
| */ |
| static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab) |
| { |
| struct dm_btree_value_type *vt = &info->value_type; |
| |
| if (vt->inc) |
| on_entries(info, ab, vt->inc); |
| } |
| |
| /* |
| * Decrement every value in an array block. |
| */ |
| static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab) |
| { |
| struct dm_btree_value_type *vt = &info->value_type; |
| |
| if (vt->dec) |
| on_entries(info, ab, vt->dec); |
| } |
| |
| /* |
| * Each array block can hold this many values. |
| */ |
| static uint32_t calc_max_entries(size_t value_size, size_t size_of_block) |
| { |
| return (size_of_block - sizeof(struct array_block)) / value_size; |
| } |
| |
| /* |
| * Allocate a new array block. The caller will need to unlock block. |
| */ |
| static int alloc_ablock(struct dm_array_info *info, size_t size_of_block, |
| uint32_t max_entries, |
| struct dm_block **block, struct array_block **ab) |
| { |
| int r; |
| |
| r = dm_tm_new_block(info->btree_info.tm, &array_validator, block); |
| if (r) |
| return r; |
| |
| (*ab) = dm_block_data(*block); |
| (*ab)->max_entries = cpu_to_le32(max_entries); |
| (*ab)->nr_entries = cpu_to_le32(0); |
| (*ab)->value_size = cpu_to_le32(info->value_type.size); |
| |
| return 0; |
| } |
| |
| /* |
| * Pad an array block out with a particular value. Every instance will |
| * cause an increment of the value_type. new_nr must always be more than |
| * the current number of entries. |
| */ |
| static void fill_ablock(struct dm_array_info *info, struct array_block *ab, |
| const void *value, unsigned new_nr) |
| { |
| unsigned i; |
| uint32_t nr_entries; |
| struct dm_btree_value_type *vt = &info->value_type; |
| |
| BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); |
| BUG_ON(new_nr < le32_to_cpu(ab->nr_entries)); |
| |
| nr_entries = le32_to_cpu(ab->nr_entries); |
| for (i = nr_entries; i < new_nr; i++) { |
| if (vt->inc) |
| vt->inc(vt->context, value); |
| memcpy(element_at(info, ab, i), value, vt->size); |
| } |
| ab->nr_entries = cpu_to_le32(new_nr); |
| } |
| |
| /* |
| * Remove some entries from the back of an array block. Every value |
| * removed will be decremented. new_nr must be <= the current number of |
| * entries. |
| */ |
| static void trim_ablock(struct dm_array_info *info, struct array_block *ab, |
| unsigned new_nr) |
| { |
| unsigned i; |
| uint32_t nr_entries; |
| struct dm_btree_value_type *vt = &info->value_type; |
| |
| BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); |
| BUG_ON(new_nr > le32_to_cpu(ab->nr_entries)); |
| |
| nr_entries = le32_to_cpu(ab->nr_entries); |
| for (i = nr_entries; i > new_nr; i--) |
| if (vt->dec) |
| vt->dec(vt->context, element_at(info, ab, i - 1)); |
| ab->nr_entries = cpu_to_le32(new_nr); |
| } |
| |
| /* |
| * Read locks a block, and coerces it to an array block. The caller must |
| * unlock 'block' when finished. |
| */ |
| static int get_ablock(struct dm_array_info *info, dm_block_t b, |
| struct dm_block **block, struct array_block **ab) |
| { |
| int r; |
| |
| r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block); |
| if (r) |
| return r; |
| |
| *ab = dm_block_data(*block); |
| return 0; |
| } |
| |
| /* |
| * Unlocks an array block. |
| */ |
| static int unlock_ablock(struct dm_array_info *info, struct dm_block *block) |
| { |
| return dm_tm_unlock(info->btree_info.tm, block); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Btree manipulation. |
| */ |
| |
| /* |
| * Looks up an array block in the btree, and then read locks it. |
| * |
| * index is the index of the index of the array_block, (ie. the array index |
| * / max_entries). |
| */ |
| static int lookup_ablock(struct dm_array_info *info, dm_block_t root, |
| unsigned index, struct dm_block **block, |
| struct array_block **ab) |
| { |
| int r; |
| uint64_t key = index; |
| __le64 block_le; |
| |
| r = dm_btree_lookup(&info->btree_info, root, &key, &block_le); |
| if (r) |
| return r; |
| |
| return get_ablock(info, le64_to_cpu(block_le), block, ab); |
| } |
| |
| /* |
| * Insert an array block into the btree. The block is _not_ unlocked. |
| */ |
| static int insert_ablock(struct dm_array_info *info, uint64_t index, |
| struct dm_block *block, dm_block_t *root) |
| { |
| __le64 block_le = cpu_to_le64(dm_block_location(block)); |
| |
| __dm_bless_for_disk(block_le); |
| return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root); |
| } |
| |
| /* |
| * Looks up an array block in the btree. Then shadows it, and updates the |
| * btree to point to this new shadow. 'root' is an input/output parameter |
| * for both the current root block, and the new one. |
| */ |
| static int shadow_ablock(struct dm_array_info *info, dm_block_t *root, |
| unsigned index, struct dm_block **block, |
| struct array_block **ab) |
| { |
| int r, inc; |
| uint64_t key = index; |
| dm_block_t b; |
| __le64 block_le; |
| |
| /* |
| * lookup |
| */ |
| r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le); |
| if (r) |
| return r; |
| b = le64_to_cpu(block_le); |
| |
| /* |
| * shadow |
| */ |
| r = dm_tm_shadow_block(info->btree_info.tm, b, |
| &array_validator, block, &inc); |
| if (r) |
| return r; |
| |
| *ab = dm_block_data(*block); |
| if (inc) |
| inc_ablock_entries(info, *ab); |
| |
| /* |
| * Reinsert. |
| * |
| * The shadow op will often be a noop. Only insert if it really |
| * copied data. |
| */ |
| if (dm_block_location(*block) != b) |
| r = insert_ablock(info, index, *block, root); |
| |
| return r; |
| } |
| |
| /* |
| * Allocate an new array block, and fill it with some values. |
| */ |
| static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block, |
| uint32_t max_entries, |
| unsigned block_index, uint32_t nr, |
| const void *value, dm_block_t *root) |
| { |
| int r; |
| struct dm_block *block; |
| struct array_block *ab; |
| |
| r = alloc_ablock(info, size_of_block, max_entries, &block, &ab); |
| if (r) |
| return r; |
| |
| fill_ablock(info, ab, value, nr); |
| r = insert_ablock(info, block_index, block, root); |
| unlock_ablock(info, block); |
| |
| return r; |
| } |
| |
| static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block, |
| unsigned begin_block, unsigned end_block, |
| unsigned max_entries, const void *value, |
| dm_block_t *root) |
| { |
| int r = 0; |
| |
| for (; !r && begin_block != end_block; begin_block++) |
| r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root); |
| |
| return r; |
| } |
| |
| /* |
| * There are a bunch of functions involved with resizing an array. This |
| * structure holds information that commonly needed by them. Purely here |
| * to reduce parameter count. |
| */ |
| struct resize { |
| /* |
| * Describes the array. |
| */ |
| struct dm_array_info *info; |
| |
| /* |
| * The current root of the array. This gets updated. |
| */ |
| dm_block_t root; |
| |
| /* |
| * Metadata block size. Used to calculate the nr entries in an |
| * array block. |
| */ |
| size_t size_of_block; |
| |
| /* |
| * Maximum nr entries in an array block. |
| */ |
| unsigned max_entries; |
| |
| /* |
| * nr of completely full blocks in the array. |
| * |
| * 'old' refers to before the resize, 'new' after. |
| */ |
| unsigned old_nr_full_blocks, new_nr_full_blocks; |
| |
| /* |
| * Number of entries in the final block. 0 iff only full blocks in |
| * the array. |
| */ |
| unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block; |
| |
| /* |
| * The default value used when growing the array. |
| */ |
| const void *value; |
| }; |
| |
| /* |
| * Removes a consecutive set of array blocks from the btree. The values |
| * in block are decremented as a side effect of the btree remove. |
| * |
| * begin_index - the index of the first array block to remove. |
| * end_index - the one-past-the-end value. ie. this block is not removed. |
| */ |
| static int drop_blocks(struct resize *resize, unsigned begin_index, |
| unsigned end_index) |
| { |
| int r; |
| |
| while (begin_index != end_index) { |
| uint64_t key = begin_index++; |
| r = dm_btree_remove(&resize->info->btree_info, resize->root, |
| &key, &resize->root); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Calculates how many blocks are needed for the array. |
| */ |
| static unsigned total_nr_blocks_needed(unsigned nr_full_blocks, |
| unsigned nr_entries_in_last_block) |
| { |
| return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0); |
| } |
| |
| /* |
| * Shrink an array. |
| */ |
| static int shrink(struct resize *resize) |
| { |
| int r; |
| unsigned begin, end; |
| struct dm_block *block; |
| struct array_block *ab; |
| |
| /* |
| * Lose some blocks from the back? |
| */ |
| if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) { |
| begin = total_nr_blocks_needed(resize->new_nr_full_blocks, |
| resize->new_nr_entries_in_last_block); |
| end = total_nr_blocks_needed(resize->old_nr_full_blocks, |
| resize->old_nr_entries_in_last_block); |
| |
| r = drop_blocks(resize, begin, end); |
| if (r) |
| return r; |
| } |
| |
| /* |
| * Trim the new tail block |
| */ |
| if (resize->new_nr_entries_in_last_block) { |
| r = shadow_ablock(resize->info, &resize->root, |
| resize->new_nr_full_blocks, &block, &ab); |
| if (r) |
| return r; |
| |
| trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block); |
| unlock_ablock(resize->info, block); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Grow an array. |
| */ |
| static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries) |
| { |
| int r; |
| struct dm_block *block; |
| struct array_block *ab; |
| |
| r = shadow_ablock(resize->info, &resize->root, |
| resize->old_nr_full_blocks, &block, &ab); |
| if (r) |
| return r; |
| |
| fill_ablock(resize->info, ab, resize->value, new_nr_entries); |
| unlock_ablock(resize->info, block); |
| |
| return r; |
| } |
| |
| static int grow_add_tail_block(struct resize *resize) |
| { |
| return insert_new_ablock(resize->info, resize->size_of_block, |
| resize->max_entries, |
| resize->new_nr_full_blocks, |
| resize->new_nr_entries_in_last_block, |
| resize->value, &resize->root); |
| } |
| |
| static int grow_needs_more_blocks(struct resize *resize) |
| { |
| int r; |
| unsigned old_nr_blocks = resize->old_nr_full_blocks; |
| |
| if (resize->old_nr_entries_in_last_block > 0) { |
| old_nr_blocks++; |
| |
| r = grow_extend_tail_block(resize, resize->max_entries); |
| if (r) |
| return r; |
| } |
| |
| r = insert_full_ablocks(resize->info, resize->size_of_block, |
| old_nr_blocks, |
| resize->new_nr_full_blocks, |
| resize->max_entries, resize->value, |
| &resize->root); |
| if (r) |
| return r; |
| |
| if (resize->new_nr_entries_in_last_block) |
| r = grow_add_tail_block(resize); |
| |
| return r; |
| } |
| |
| static int grow(struct resize *resize) |
| { |
| if (resize->new_nr_full_blocks > resize->old_nr_full_blocks) |
| return grow_needs_more_blocks(resize); |
| |
| else if (resize->old_nr_entries_in_last_block) |
| return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block); |
| |
| else |
| return grow_add_tail_block(resize); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * These are the value_type functions for the btree elements, which point |
| * to array blocks. |
| */ |
| static void block_inc(void *context, const void *value) |
| { |
| __le64 block_le; |
| struct dm_array_info *info = context; |
| |
| memcpy(&block_le, value, sizeof(block_le)); |
| dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le)); |
| } |
| |
| static void block_dec(void *context, const void *value) |
| { |
| int r; |
| uint64_t b; |
| __le64 block_le; |
| uint32_t ref_count; |
| struct dm_block *block; |
| struct array_block *ab; |
| struct dm_array_info *info = context; |
| |
| memcpy(&block_le, value, sizeof(block_le)); |
| b = le64_to_cpu(block_le); |
| |
| r = dm_tm_ref(info->btree_info.tm, b, &ref_count); |
| if (r) { |
| DMERR_LIMIT("couldn't get reference count for block %llu", |
| (unsigned long long) b); |
| return; |
| } |
| |
| if (ref_count == 1) { |
| /* |
| * We're about to drop the last reference to this ablock. |
| * So we need to decrement the ref count of the contents. |
| */ |
| r = get_ablock(info, b, &block, &ab); |
| if (r) { |
| DMERR_LIMIT("couldn't get array block %llu", |
| (unsigned long long) b); |
| return; |
| } |
| |
| dec_ablock_entries(info, ab); |
| unlock_ablock(info, block); |
| } |
| |
| dm_tm_dec(info->btree_info.tm, b); |
| } |
| |
| static int block_equal(void *context, const void *value1, const void *value2) |
| { |
| return !memcmp(value1, value2, sizeof(__le64)); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| void dm_array_info_init(struct dm_array_info *info, |
| struct dm_transaction_manager *tm, |
| struct dm_btree_value_type *vt) |
| { |
| struct dm_btree_value_type *bvt = &info->btree_info.value_type; |
| |
| memcpy(&info->value_type, vt, sizeof(info->value_type)); |
| info->btree_info.tm = tm; |
| info->btree_info.levels = 1; |
| |
| bvt->context = info; |
| bvt->size = sizeof(__le64); |
| bvt->inc = block_inc; |
| bvt->dec = block_dec; |
| bvt->equal = block_equal; |
| } |
| EXPORT_SYMBOL_GPL(dm_array_info_init); |
| |
| int dm_array_empty(struct dm_array_info *info, dm_block_t *root) |
| { |
| return dm_btree_empty(&info->btree_info, root); |
| } |
| EXPORT_SYMBOL_GPL(dm_array_empty); |
| |
| static int array_resize(struct dm_array_info *info, dm_block_t root, |
| uint32_t old_size, uint32_t new_size, |
| const void *value, dm_block_t *new_root) |
| { |
| int r; |
| struct resize resize; |
| |
| if (old_size == new_size) |
| return 0; |
| |
| resize.info = info; |
| resize.root = root; |
| resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); |
| resize.max_entries = calc_max_entries(info->value_type.size, |
| resize.size_of_block); |
| |
| resize.old_nr_full_blocks = old_size / resize.max_entries; |
| resize.old_nr_entries_in_last_block = old_size % resize.max_entries; |
| resize.new_nr_full_blocks = new_size / resize.max_entries; |
| resize.new_nr_entries_in_last_block = new_size % resize.max_entries; |
| resize.value = value; |
| |
| r = ((new_size > old_size) ? grow : shrink)(&resize); |
| if (r) |
| return r; |
| |
| *new_root = resize.root; |
| return 0; |
| } |
| |
| int dm_array_resize(struct dm_array_info *info, dm_block_t root, |
| uint32_t old_size, uint32_t new_size, |
| const void *value, dm_block_t *new_root) |
| __dm_written_to_disk(value) |
| { |
| int r = array_resize(info, root, old_size, new_size, value, new_root); |
| __dm_unbless_for_disk(value); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(dm_array_resize); |
| |
| int dm_array_del(struct dm_array_info *info, dm_block_t root) |
| { |
| return dm_btree_del(&info->btree_info, root); |
| } |
| EXPORT_SYMBOL_GPL(dm_array_del); |
| |
| int dm_array_get_value(struct dm_array_info *info, dm_block_t root, |
| uint32_t index, void *value_le) |
| { |
| int r; |
| struct dm_block *block; |
| struct array_block *ab; |
| size_t size_of_block; |
| unsigned entry, max_entries; |
| |
| size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); |
| max_entries = calc_max_entries(info->value_type.size, size_of_block); |
| |
| r = lookup_ablock(info, root, index / max_entries, &block, &ab); |
| if (r) |
| return r; |
| |
| entry = index % max_entries; |
| if (entry >= le32_to_cpu(ab->nr_entries)) |
| r = -ENODATA; |
| else |
| memcpy(value_le, element_at(info, ab, entry), |
| info->value_type.size); |
| |
| unlock_ablock(info, block); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(dm_array_get_value); |
| |
| static int array_set_value(struct dm_array_info *info, dm_block_t root, |
| uint32_t index, const void *value, dm_block_t *new_root) |
| { |
| int r; |
| struct dm_block *block; |
| struct array_block *ab; |
| size_t size_of_block; |
| unsigned max_entries; |
| unsigned entry; |
| void *old_value; |
| struct dm_btree_value_type *vt = &info->value_type; |
| |
| size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); |
| max_entries = calc_max_entries(info->value_type.size, size_of_block); |
| |
| r = shadow_ablock(info, &root, index / max_entries, &block, &ab); |
| if (r) |
| return r; |
| *new_root = root; |
| |
| entry = index % max_entries; |
| if (entry >= le32_to_cpu(ab->nr_entries)) { |
| r = -ENODATA; |
| goto out; |
| } |
| |
| old_value = element_at(info, ab, entry); |
| if (vt->dec && |
| (!vt->equal || !vt->equal(vt->context, old_value, value))) { |
| vt->dec(vt->context, old_value); |
| if (vt->inc) |
| vt->inc(vt->context, value); |
| } |
| |
| memcpy(old_value, value, info->value_type.size); |
| |
| out: |
| unlock_ablock(info, block); |
| return r; |
| } |
| |
| int dm_array_set_value(struct dm_array_info *info, dm_block_t root, |
| uint32_t index, const void *value, dm_block_t *new_root) |
| __dm_written_to_disk(value) |
| { |
| int r; |
| |
| r = array_set_value(info, root, index, value, new_root); |
| __dm_unbless_for_disk(value); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(dm_array_set_value); |
| |
| struct walk_info { |
| struct dm_array_info *info; |
| int (*fn)(void *context, uint64_t key, void *leaf); |
| void *context; |
| }; |
| |
| static int walk_ablock(void *context, uint64_t *keys, void *leaf) |
| { |
| struct walk_info *wi = context; |
| |
| int r; |
| unsigned i; |
| __le64 block_le; |
| unsigned nr_entries, max_entries; |
| struct dm_block *block; |
| struct array_block *ab; |
| |
| memcpy(&block_le, leaf, sizeof(block_le)); |
| r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab); |
| if (r) |
| return r; |
| |
| max_entries = le32_to_cpu(ab->max_entries); |
| nr_entries = le32_to_cpu(ab->nr_entries); |
| for (i = 0; i < nr_entries; i++) { |
| r = wi->fn(wi->context, keys[0] * max_entries + i, |
| element_at(wi->info, ab, i)); |
| |
| if (r) |
| break; |
| } |
| |
| unlock_ablock(wi->info, block); |
| return r; |
| } |
| |
| int dm_array_walk(struct dm_array_info *info, dm_block_t root, |
| int (*fn)(void *, uint64_t key, void *leaf), |
| void *context) |
| { |
| struct walk_info wi; |
| |
| wi.info = info; |
| wi.fn = fn; |
| wi.context = context; |
| |
| return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi); |
| } |
| EXPORT_SYMBOL_GPL(dm_array_walk); |
| |
| /*----------------------------------------------------------------*/ |