| /* bnx2x_init_ops.h: Broadcom Everest network driver. |
| * Static functions needed during the initialization. |
| * This file is "included" in bnx2x_main.c. |
| * |
| * Copyright (c) 2007-2009 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Vladislav Zolotarov <vladz@broadcom.com> |
| */ |
| #ifndef BNX2X_INIT_OPS_H |
| #define BNX2X_INIT_OPS_H |
| |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); |
| static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); |
| |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u16 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR_IND(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) |
| { |
| int offset = 0; |
| |
| if (bp->dmae_ready) { |
| while (len > DMAE_LEN32_WR_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_WR_MAX); |
| offset += DMAE_LEN32_WR_MAX * 4; |
| len -= DMAE_LEN32_WR_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, len); |
| } else |
| bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); |
| } |
| |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) |
| { |
| u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4)); |
| u32 buf_len32 = buf_len / 4; |
| int i; |
| |
| memset(bp->gunzip_buf, fill, buf_len); |
| |
| for (i = 0; i < len; i += buf_len32) { |
| u32 cur_len = min(buf_len32, len - i); |
| |
| bnx2x_write_big_buf(bp, addr + i * 4, cur_len); |
| } |
| } |
| |
| static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len64) |
| { |
| u32 buf_len32 = FW_BUF_SIZE / 4; |
| u32 len = len64 * 2; |
| u64 data64 = 0; |
| int i; |
| |
| /* 64 bit value is in a blob: first low DWORD, then high DWORD */ |
| data64 = HILO_U64((*(data + 1)), (*data)); |
| len64 = min((u32)(FW_BUF_SIZE/8), len64); |
| for (i = 0; i < len64; i++) { |
| u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; |
| |
| *pdata = data64; |
| } |
| |
| for (i = 0; i < len; i += buf_len32) { |
| u32 cur_len = min(buf_len32, len - i); |
| |
| bnx2x_write_big_buf(bp, addr + i * 4, cur_len); |
| } |
| } |
| |
| /********************************************************* |
| There are different blobs for each PRAM section. |
| In addition, each blob write operation is divided into a few operations |
| in order to decrease the amount of phys. contiguous buffer needed. |
| Thus, when we select a blob the address may be with some offset |
| from the beginning of PRAM section. |
| The same holds for the INT_TABLE sections. |
| **********************************************************/ |
| #define IF_IS_INT_TABLE_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) |
| |
| #define IF_IS_PRAM_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) |
| |
| static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) |
| { |
| IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) |
| data = bp->tsem_int_table_data; |
| else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) |
| data = bp->csem_int_table_data; |
| else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) |
| data = bp->usem_int_table_data; |
| else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) |
| data = bp->xsem_int_table_data; |
| else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) |
| data = bp->tsem_pram_data; |
| else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) |
| data = bp->csem_pram_data; |
| else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) |
| data = bp->usem_pram_data; |
| else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) |
| data = bp->xsem_pram_data; |
| |
| return data; |
| } |
| |
| static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) |
| { |
| int offset = 0; |
| |
| if (bp->dmae_ready) { |
| while (len > DMAE_LEN32_WR_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_WR_MAX); |
| offset += DMAE_LEN32_WR_MAX * 4; |
| len -= DMAE_LEN32_WR_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, len); |
| } else |
| bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len); |
| } |
| |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len) |
| { |
| /* This is needed for NO_ZIP mode, currently supported |
| in little endian mode only */ |
| data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data); |
| |
| if ((len * 4) > FW_BUF_SIZE) { |
| BNX2X_ERR("LARGE DMAE OPERATION ! " |
| "addr 0x%x len 0x%x\n", addr, len*4); |
| return; |
| } |
| memcpy(bp->gunzip_buf, data, len * 4); |
| |
| bnx2x_write_big_buf_wb(bp, addr, len); |
| } |
| |
| static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, |
| u32 len, u32 blob_off) |
| { |
| int rc, i; |
| const u8 *data = NULL; |
| |
| data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off; |
| |
| if (data == NULL) { |
| panic("Blob not found for addr 0x%x\n", addr); |
| return; |
| } |
| |
| rc = bnx2x_gunzip(bp, data, len); |
| if (rc) { |
| BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc); |
| BNX2X_ERR("blob_offset=0x%x\n", blob_off); |
| return; |
| } |
| |
| /* gunzip_outlen is in dwords */ |
| len = bp->gunzip_outlen; |
| for (i = 0; i < len; i++) |
| ((u32 *)bp->gunzip_buf)[i] = |
| cpu_to_le32(((u32 *)bp->gunzip_buf)[i]); |
| |
| bnx2x_write_big_buf_wb(bp, addr, len); |
| } |
| |
| static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) |
| { |
| int hw_wr, i; |
| u16 op_start = |
| bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)]; |
| u16 op_end = |
| bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)]; |
| union init_op *op; |
| u32 op_type, addr, len; |
| const u32 *data, *data_base; |
| |
| /* If empty block */ |
| if (op_start == op_end) |
| return; |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| hw_wr = OP_WR_FPGA; |
| else if (CHIP_REV_IS_EMUL(bp)) |
| hw_wr = OP_WR_EMUL; |
| else |
| hw_wr = OP_WR_ASIC; |
| |
| data_base = bp->init_data; |
| |
| for (i = op_start; i < op_end; i++) { |
| |
| op = (union init_op *)&(bp->init_ops[i]); |
| |
| op_type = op->str_wr.op; |
| addr = op->str_wr.offset; |
| len = op->str_wr.data_len; |
| data = data_base + op->str_wr.data_off; |
| |
| /* HW/EMUL specific */ |
| if (unlikely((op_type > OP_WB) && (op_type == hw_wr))) |
| op_type = OP_WR; |
| |
| switch (op_type) { |
| case OP_RD: |
| REG_RD(bp, addr); |
| break; |
| case OP_WR: |
| REG_WR(bp, addr, op->write.val); |
| break; |
| case OP_SW: |
| bnx2x_init_str_wr(bp, addr, data, len); |
| break; |
| case OP_WB: |
| bnx2x_init_wr_wb(bp, addr, data, len); |
| break; |
| case OP_SI: |
| bnx2x_init_ind_wr(bp, addr, data, len); |
| break; |
| case OP_ZR: |
| bnx2x_init_fill(bp, addr, 0, op->zero.len); |
| break; |
| case OP_ZP: |
| bnx2x_init_wr_zp(bp, addr, len, |
| op->str_wr.data_off); |
| break; |
| case OP_WR_64: |
| bnx2x_init_wr_64(bp, addr, data, len); |
| break; |
| default: |
| /* happens whenever an op is of a diff HW */ |
| #if 0 |
| DP(NETIF_MSG_HW, "skipping init operation " |
| "index %d[%d:%d]: type %d addr 0x%x " |
| "len %d(0x%x)\n", |
| i, op_start, op_end, op_type, addr, len, len); |
| #endif |
| break; |
| } |
| } |
| } |
| |
| /* PXP */ |
| static void bnx2x_init_pxp(struct bnx2x *bp) |
| { |
| u16 devctl; |
| int r_order, w_order; |
| u32 val, i; |
| |
| pci_read_config_word(bp->pdev, |
| bp->pcie_cap + PCI_EXP_DEVCTL, &devctl); |
| DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); |
| w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| if (bp->mrrs == -1) |
| r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| else { |
| DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); |
| r_order = bp->mrrs; |
| } |
| |
| if (r_order > MAX_RD_ORD) { |
| DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", |
| r_order, MAX_RD_ORD); |
| r_order = MAX_RD_ORD; |
| } |
| if (w_order > MAX_WR_ORD) { |
| DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", |
| w_order, MAX_WR_ORD); |
| w_order = MAX_WR_ORD; |
| } |
| if (CHIP_REV_IS_FPGA(bp)) { |
| DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); |
| w_order = 0; |
| } |
| DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); |
| |
| for (i = 0; i < NUM_RD_Q-1; i++) { |
| REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); |
| REG_WR(bp, read_arb_addr[i].add, |
| read_arb_data[i][r_order].add); |
| REG_WR(bp, read_arb_addr[i].ubound, |
| read_arb_data[i][r_order].ubound); |
| } |
| |
| for (i = 0; i < NUM_WR_Q-1; i++) { |
| if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || |
| (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { |
| |
| REG_WR(bp, write_arb_addr[i].l, |
| write_arb_data[i][w_order].l); |
| |
| REG_WR(bp, write_arb_addr[i].add, |
| write_arb_data[i][w_order].add); |
| |
| REG_WR(bp, write_arb_addr[i].ubound, |
| write_arb_data[i][w_order].ubound); |
| } else { |
| |
| val = REG_RD(bp, write_arb_addr[i].l); |
| REG_WR(bp, write_arb_addr[i].l, |
| val | (write_arb_data[i][w_order].l << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].add); |
| REG_WR(bp, write_arb_addr[i].add, |
| val | (write_arb_data[i][w_order].add << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].ubound); |
| REG_WR(bp, write_arb_addr[i].ubound, |
| val | (write_arb_data[i][w_order].ubound << 7)); |
| } |
| } |
| |
| val = write_arb_data[NUM_WR_Q-1][w_order].add; |
| val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; |
| val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); |
| |
| val = read_arb_data[NUM_RD_Q-1][r_order].add; |
| val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; |
| val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); |
| |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); |
| |
| if (r_order == MAX_RD_ORD) |
| REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); |
| |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); |
| |
| if (CHIP_IS_E1H(bp)) { |
| val = ((w_order == 0) ? 2 : 3); |
| REG_WR(bp, PXP2_REG_WR_HC_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_QM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_TM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ |
| REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); |
| } |
| } |
| |
| /***************************************************************************** |
| * Description: |
| * Calculates crc 8 on a word value: polynomial 0-1-2-8 |
| * Code was translated from Verilog. |
| ****************************************************************************/ |
| static u8 calc_crc8(u32 data, u8 crc) |
| { |
| u8 D[32]; |
| u8 NewCRC[8]; |
| u8 C[8]; |
| u8 crc_res; |
| u8 i; |
| |
| /* split the data into 31 bits */ |
| for (i = 0; i < 32; i++) { |
| D[i] = data & 1; |
| data = data >> 1; |
| } |
| |
| /* split the crc into 8 bits */ |
| for (i = 0; i < 8; i++) { |
| C[i] = crc & 1; |
| crc = crc >> 1; |
| } |
| |
| NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ |
| D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ |
| C[6] ^ C[7]; |
| NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ |
| D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ |
| D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; |
| NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ |
| D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ |
| C[0] ^ C[1] ^ C[4] ^ C[5]; |
| NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ |
| D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ |
| C[1] ^ C[2] ^ C[5] ^ C[6]; |
| NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ |
| D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ |
| C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; |
| NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ |
| C[3] ^ C[4] ^ C[7]; |
| NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ |
| D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ |
| C[5]; |
| NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ |
| C[6]; |
| |
| crc_res = 0; |
| for (i = 0; i < 8; i++) |
| crc_res |= (NewCRC[i] << i); |
| |
| return crc_res; |
| } |
| |
| #endif /* BNX2X_INIT_OPS_H */ |