blob: c9e6e5fe7f615b3ca2f46eaf3ab5520dbdcb2bf7 [file] [log] [blame]
/* Copyright (c) 2017-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/irqflags.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/debugfs.h>
#include "cam_sync_util.h"
#include "cam_debug_util.h"
#include "cam_common_util.h"
struct sync_device *sync_dev;
/*
* Flag to determine whether to enqueue cb of a
* signaled fence onto the workq or invoke it
* directly in the same context
*/
static bool trigger_cb_without_switch;
int cam_sync_create(int32_t *sync_obj, const char *name)
{
int rc;
long idx;
bool bit;
do {
idx = find_first_zero_bit(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
if (idx >= CAM_SYNC_MAX_OBJS)
return -ENOMEM;
CAM_DBG(CAM_SYNC, "Index location available at idx: %ld", idx);
bit = test_and_set_bit(idx, sync_dev->bitmap);
} while (bit);
spin_lock_bh(&sync_dev->row_spinlocks[idx]);
rc = cam_sync_init_row(sync_dev->sync_table, idx, name,
CAM_SYNC_TYPE_INDV);
if (rc) {
CAM_ERR(CAM_SYNC, "Error: Unable to init row at idx = %ld",
idx);
clear_bit(idx, sync_dev->bitmap);
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return -EINVAL;
}
*sync_obj = idx;
CAM_DBG(CAM_SYNC, "sync_obj: %i", *sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return rc;
}
int cam_sync_register_callback(sync_callback cb_func,
void *userdata, int32_t sync_obj)
{
struct sync_callback_info *sync_cb;
struct sync_callback_info *cb_info;
struct sync_table_row *row = NULL;
int status = 0;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0 || !cb_func)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj %d",
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
/* Don't register if callback was registered earlier */
list_for_each_entry(cb_info, &row->callback_list, list) {
if (cb_info->callback_func == cb_func &&
cb_info->cb_data == userdata) {
CAM_ERR(CAM_SYNC, "Duplicate register for sync_obj %d",
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EALREADY;
}
}
sync_cb = kzalloc(sizeof(*sync_cb), GFP_ATOMIC);
if (!sync_cb) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -ENOMEM;
}
/* Trigger callback if sync object is already in SIGNALED state */
if ((row->state == CAM_SYNC_STATE_SIGNALED_SUCCESS ||
row->state == CAM_SYNC_STATE_SIGNALED_ERROR) &&
(!row->remaining)) {
if (trigger_cb_without_switch) {
CAM_DBG(CAM_SYNC, "Invoke callback for sync object:%d",
sync_obj);
status = row->state;
kfree(sync_cb);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
cb_func(sync_obj, status, userdata);
} else {
sync_cb->callback_func = cb_func;
sync_cb->cb_data = userdata;
sync_cb->sync_obj = sync_obj;
INIT_WORK(&sync_cb->cb_dispatch_work,
cam_sync_util_cb_dispatch);
sync_cb->status = row->state;
CAM_DBG(CAM_SYNC, "Enqueue callback for sync object:%d",
sync_cb->sync_obj);
queue_work(sync_dev->work_queue,
&sync_cb->cb_dispatch_work);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
}
return 0;
}
sync_cb->callback_func = cb_func;
sync_cb->cb_data = userdata;
sync_cb->sync_obj = sync_obj;
INIT_WORK(&sync_cb->cb_dispatch_work, cam_sync_util_cb_dispatch);
list_add_tail(&sync_cb->list, &row->callback_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
int cam_sync_deregister_callback(sync_callback cb_func,
void *userdata, int32_t sync_obj)
{
struct sync_table_row *row = NULL;
struct sync_callback_info *sync_cb, *temp;
bool found = false;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
CAM_DBG(CAM_SYNC, "deregistered callback for sync object:%d",
sync_obj);
list_for_each_entry_safe(sync_cb, temp, &row->callback_list, list) {
if (sync_cb->callback_func == cb_func &&
sync_cb->cb_data == userdata) {
list_del_init(&sync_cb->list);
kfree(sync_cb);
found = true;
}
}
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return found ? 0 : -ENOENT;
}
int cam_sync_signal(int32_t sync_obj, uint32_t status)
{
struct sync_table_row *row = NULL;
struct sync_table_row *parent_row = NULL;
struct sync_parent_info *parent_info, *temp_parent_info;
struct list_head parents_list;
int rc = 0;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0) {
CAM_ERR(CAM_SYNC, "Error: Out of range sync obj (0 <= %d < %d)",
sync_obj, CAM_SYNC_MAX_OBJS);
return -EINVAL;
}
row = sync_dev->sync_table + sync_obj;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
if (row->state == CAM_SYNC_STATE_INVALID) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
return -EINVAL;
}
if (row->type == CAM_SYNC_TYPE_GROUP) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: Signaling a GROUP sync object = %d",
sync_obj);
return -EINVAL;
}
if (row->state != CAM_SYNC_STATE_ACTIVE) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: Sync object already signaled sync_obj = %d",
sync_obj);
return -EALREADY;
}
if (status != CAM_SYNC_STATE_SIGNALED_SUCCESS &&
status != CAM_SYNC_STATE_SIGNALED_ERROR) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: signaling with undefined status = %d",
status);
return -EINVAL;
}
if (!atomic_dec_and_test(&row->ref_cnt)) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
row->state = status;
cam_sync_util_dispatch_signaled_cb(sync_obj, status);
/* copy parent list to local and release child lock */
INIT_LIST_HEAD(&parents_list);
list_splice_init(&row->parents_list, &parents_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
if (list_empty(&parents_list))
return 0;
/*
* Now iterate over all parents of this object and if they too need to
* be signaled dispatch cb's
*/
list_for_each_entry_safe(parent_info,
temp_parent_info,
&parents_list,
list) {
parent_row = sync_dev->sync_table + parent_info->sync_id;
spin_lock_bh(&sync_dev->row_spinlocks[parent_info->sync_id]);
parent_row->remaining--;
rc = cam_sync_util_update_parent_state(
parent_row,
status);
if (rc) {
CAM_ERR(CAM_SYNC, "Invalid parent state %d",
parent_row->state);
spin_unlock_bh(
&sync_dev->row_spinlocks[parent_info->sync_id]);
kfree(parent_info);
continue;
}
if (!parent_row->remaining)
cam_sync_util_dispatch_signaled_cb(
parent_info->sync_id, parent_row->state);
spin_unlock_bh(&sync_dev->row_spinlocks[parent_info->sync_id]);
list_del_init(&parent_info->list);
kfree(parent_info);
}
return 0;
}
int cam_sync_merge(int32_t *sync_obj, uint32_t num_objs, int32_t *merged_obj)
{
int rc;
long idx = 0;
bool bit;
if (!sync_obj || !merged_obj) {
CAM_ERR(CAM_SYNC, "Invalid pointer(s)");
return -EINVAL;
}
if (num_objs <= 1) {
CAM_ERR(CAM_SYNC, "Single object merge is not allowed");
return -EINVAL;
}
if (cam_common_util_remove_duplicate_arr(sync_obj, num_objs)
!= num_objs) {
CAM_ERR(CAM_SYNC, "The obj list has duplicate fence");
return -EINVAL;
}
do {
idx = find_first_zero_bit(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
if (idx >= CAM_SYNC_MAX_OBJS)
return -ENOMEM;
bit = test_and_set_bit(idx, sync_dev->bitmap);
} while (bit);
spin_lock_bh(&sync_dev->row_spinlocks[idx]);
rc = cam_sync_init_group_object(sync_dev->sync_table,
idx, sync_obj,
num_objs);
if (rc < 0) {
CAM_ERR(CAM_SYNC, "Error: Unable to init row at idx = %ld",
idx);
clear_bit(idx, sync_dev->bitmap);
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return -EINVAL;
}
CAM_DBG(CAM_SYNC, "Init row at idx:%ld to merge objects", idx);
*merged_obj = idx;
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return 0;
}
int cam_sync_get_obj_ref(int32_t sync_obj)
{
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
spin_lock(&sync_dev->row_spinlocks[sync_obj]);
if (row->state != CAM_SYNC_STATE_ACTIVE) {
spin_unlock(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
return -EINVAL;
}
atomic_inc(&row->ref_cnt);
spin_unlock(&sync_dev->row_spinlocks[sync_obj]);
CAM_DBG(CAM_SYNC, "get ref for obj %d", sync_obj);
return 0;
}
int cam_sync_put_obj_ref(int32_t sync_obj)
{
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
atomic_dec(&row->ref_cnt);
CAM_DBG(CAM_SYNC, "put ref for obj %d", sync_obj);
return 0;
}
int cam_sync_destroy(int32_t sync_obj)
{
CAM_DBG(CAM_SYNC, "sync_obj: %i", sync_obj);
return cam_sync_deinit_object(sync_dev->sync_table, sync_obj);
}
int cam_sync_wait(int32_t sync_obj, uint64_t timeout_ms)
{
unsigned long timeleft;
int rc = -EINVAL;
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
return -EINVAL;
}
timeleft = wait_for_completion_timeout(&row->signaled,
msecs_to_jiffies(timeout_ms));
if (!timeleft) {
CAM_ERR(CAM_SYNC,
"Error: timed out for sync obj = %d", sync_obj);
rc = -ETIMEDOUT;
} else {
switch (row->state) {
case CAM_SYNC_STATE_INVALID:
case CAM_SYNC_STATE_ACTIVE:
case CAM_SYNC_STATE_SIGNALED_ERROR:
CAM_ERR(CAM_SYNC,
"Error: Wait on invalid state = %d, obj = %d",
row->state, sync_obj);
rc = -EINVAL;
break;
case CAM_SYNC_STATE_SIGNALED_SUCCESS:
rc = 0;
break;
default:
rc = -EINVAL;
break;
}
}
return rc;
}
static int cam_sync_handle_create(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_info sync_create;
int result;
if (k_ioctl->size != sizeof(struct cam_sync_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_create,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
result = cam_sync_create(&sync_create.sync_obj,
sync_create.name);
if (!result)
if (copy_to_user(
u64_to_user_ptr(k_ioctl->ioctl_ptr),
&sync_create,
k_ioctl->size))
return -EFAULT;
return result;
}
static int cam_sync_handle_signal(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_signal sync_signal;
if (k_ioctl->size != sizeof(struct cam_sync_signal))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_signal,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
/* need to get ref for UMD signaled fences */
cam_sync_get_obj_ref(sync_signal.sync_obj);
return cam_sync_signal(sync_signal.sync_obj,
sync_signal.sync_state);
}
static int cam_sync_handle_merge(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_merge sync_merge;
uint32_t *sync_objs;
uint32_t num_objs;
uint32_t size;
int result;
if (k_ioctl->size != sizeof(struct cam_sync_merge))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_merge,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
if (sync_merge.num_objs >= CAM_SYNC_MAX_OBJS)
return -EINVAL;
size = sizeof(uint32_t) * sync_merge.num_objs;
sync_objs = kzalloc(size, GFP_ATOMIC);
if (!sync_objs)
return -ENOMEM;
if (copy_from_user(sync_objs,
u64_to_user_ptr(sync_merge.sync_objs),
sizeof(uint32_t) * sync_merge.num_objs)) {
kfree(sync_objs);
return -EFAULT;
}
num_objs = sync_merge.num_objs;
result = cam_sync_merge(sync_objs,
num_objs,
&sync_merge.merged);
if (!result)
if (copy_to_user(
u64_to_user_ptr(k_ioctl->ioctl_ptr),
&sync_merge,
k_ioctl->size)) {
kfree(sync_objs);
return -EFAULT;
}
kfree(sync_objs);
return result;
}
static int cam_sync_handle_wait(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_wait sync_wait;
if (k_ioctl->size != sizeof(struct cam_sync_wait))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_wait,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
k_ioctl->result = cam_sync_wait(sync_wait.sync_obj,
sync_wait.timeout_ms);
return 0;
}
static int cam_sync_handle_destroy(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_info sync_create;
if (k_ioctl->size != sizeof(struct cam_sync_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_create,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
return cam_sync_destroy(sync_create.sync_obj);
}
static int cam_sync_handle_register_user_payload(
struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_userpayload_info userpayload_info;
struct sync_user_payload *user_payload_kernel;
struct sync_user_payload *user_payload_iter;
struct sync_user_payload *temp_upayload_kernel;
uint32_t sync_obj;
struct sync_table_row *row = NULL;
if (k_ioctl->size != sizeof(struct cam_sync_userpayload_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&userpayload_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
sync_obj = userpayload_info.sync_obj;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
user_payload_kernel = kzalloc(sizeof(*user_payload_kernel), GFP_KERNEL);
if (!user_payload_kernel)
return -ENOMEM;
memcpy(user_payload_kernel->payload_data,
userpayload_info.payload,
CAM_SYNC_PAYLOAD_WORDS * sizeof(__u64));
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return -EINVAL;
}
if (row->state == CAM_SYNC_STATE_SIGNALED_SUCCESS ||
row->state == CAM_SYNC_STATE_SIGNALED_ERROR) {
cam_sync_util_send_v4l2_event(CAM_SYNC_V4L_EVENT_ID_CB_TRIG,
sync_obj,
row->state,
user_payload_kernel->payload_data,
CAM_SYNC_USER_PAYLOAD_SIZE * sizeof(__u64));
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return 0;
}
list_for_each_entry_safe(user_payload_iter,
temp_upayload_kernel,
&row->user_payload_list,
list) {
if (user_payload_iter->payload_data[0] ==
user_payload_kernel->payload_data[0] &&
user_payload_iter->payload_data[1] ==
user_payload_kernel->payload_data[1]) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return -EALREADY;
}
}
list_add_tail(&user_payload_kernel->list, &row->user_payload_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
static int cam_sync_handle_deregister_user_payload(
struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_userpayload_info userpayload_info;
struct sync_user_payload *user_payload_kernel, *temp;
uint32_t sync_obj;
struct sync_table_row *row = NULL;
if (k_ioctl->size != sizeof(struct cam_sync_userpayload_info)) {
CAM_ERR(CAM_SYNC, "Incorrect ioctl size");
return -EINVAL;
}
if (!k_ioctl->ioctl_ptr) {
CAM_ERR(CAM_SYNC, "Invalid embedded ioctl ptr");
return -EINVAL;
}
if (copy_from_user(&userpayload_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
sync_obj = userpayload_info.sync_obj;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %d",
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
list_for_each_entry_safe(user_payload_kernel, temp,
&row->user_payload_list, list) {
if (user_payload_kernel->payload_data[0] ==
userpayload_info.payload[0] &&
user_payload_kernel->payload_data[1] ==
userpayload_info.payload[1]) {
list_del_init(&user_payload_kernel->list);
kfree(user_payload_kernel);
}
}
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
static long cam_sync_dev_ioctl(struct file *filep, void *fh,
bool valid_prio, unsigned int cmd, void *arg)
{
int32_t rc;
struct sync_device *sync_dev = video_drvdata(filep);
struct cam_private_ioctl_arg k_ioctl;
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "sync_dev NULL");
return -EINVAL;
}
if (!arg)
return -EINVAL;
if (cmd != CAM_PRIVATE_IOCTL_CMD)
return -ENOIOCTLCMD;
k_ioctl = *(struct cam_private_ioctl_arg *)arg;
switch (k_ioctl.id) {
case CAM_SYNC_CREATE:
rc = cam_sync_handle_create(&k_ioctl);
break;
case CAM_SYNC_DESTROY:
rc = cam_sync_handle_destroy(&k_ioctl);
break;
case CAM_SYNC_REGISTER_PAYLOAD:
rc = cam_sync_handle_register_user_payload(
&k_ioctl);
break;
case CAM_SYNC_DEREGISTER_PAYLOAD:
rc = cam_sync_handle_deregister_user_payload(
&k_ioctl);
break;
case CAM_SYNC_SIGNAL:
rc = cam_sync_handle_signal(&k_ioctl);
break;
case CAM_SYNC_MERGE:
rc = cam_sync_handle_merge(&k_ioctl);
break;
case CAM_SYNC_WAIT:
rc = cam_sync_handle_wait(&k_ioctl);
((struct cam_private_ioctl_arg *)arg)->result =
k_ioctl.result;
break;
default:
rc = -ENOIOCTLCMD;
}
return rc;
}
static unsigned int cam_sync_poll(struct file *f,
struct poll_table_struct *pll_table)
{
int rc = 0;
struct v4l2_fh *eventq = f->private_data;
if (!eventq)
return -EINVAL;
poll_wait(f, &eventq->wait, pll_table);
if (v4l2_event_pending(eventq))
rc = POLLPRI;
return rc;
}
static int cam_sync_open(struct file *filep)
{
int rc;
struct sync_device *sync_dev = video_drvdata(filep);
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "Sync device NULL");
return -ENODEV;
}
mutex_lock(&sync_dev->table_lock);
if (sync_dev->open_cnt >= 1) {
mutex_unlock(&sync_dev->table_lock);
return -EALREADY;
}
rc = v4l2_fh_open(filep);
if (!rc) {
sync_dev->open_cnt++;
spin_lock_bh(&sync_dev->cam_sync_eventq_lock);
sync_dev->cam_sync_eventq = filep->private_data;
spin_unlock_bh(&sync_dev->cam_sync_eventq_lock);
} else {
CAM_ERR(CAM_SYNC, "v4l2_fh_open failed : %d", rc);
}
mutex_unlock(&sync_dev->table_lock);
return rc;
}
static int cam_sync_close(struct file *filep)
{
int rc = 0;
int i;
struct sync_device *sync_dev = video_drvdata(filep);
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "Sync device NULL");
rc = -ENODEV;
return rc;
}
mutex_lock(&sync_dev->table_lock);
sync_dev->open_cnt--;
if (!sync_dev->open_cnt) {
for (i = 1; i < CAM_SYNC_MAX_OBJS; i++) {
struct sync_table_row *row =
sync_dev->sync_table + i;
/*
* Signal all ACTIVE objects as ERR, but we don't
* care about the return status here apart from logging
* it.
*/
if (row->state == CAM_SYNC_STATE_ACTIVE) {
rc = cam_sync_signal(i,
CAM_SYNC_STATE_SIGNALED_ERROR);
if (rc < 0)
CAM_ERR(CAM_SYNC,
"Cleanup signal fail idx:%d\n",
i);
}
}
/*
* Flush the work queue to wait for pending signal callbacks to
* finish
*/
flush_workqueue(sync_dev->work_queue);
/*
* Now that all callbacks worker threads have finished,
* destroy the sync objects
*/
for (i = 1; i < CAM_SYNC_MAX_OBJS; i++) {
struct sync_table_row *row =
sync_dev->sync_table + i;
if (row->state != CAM_SYNC_STATE_INVALID) {
rc = cam_sync_destroy(i);
if (rc < 0)
CAM_ERR(CAM_SYNC,
"Cleanup destroy fail:idx:%d\n",
i);
}
}
}
mutex_unlock(&sync_dev->table_lock);
spin_lock_bh(&sync_dev->cam_sync_eventq_lock);
sync_dev->cam_sync_eventq = NULL;
spin_unlock_bh(&sync_dev->cam_sync_eventq_lock);
v4l2_fh_release(filep);
return rc;
}
int cam_sync_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
return v4l2_event_subscribe(fh, sub, CAM_SYNC_MAX_V4L2_EVENTS, NULL);
}
int cam_sync_unsubscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
return v4l2_event_unsubscribe(fh, sub);
}
static const struct v4l2_ioctl_ops g_cam_sync_ioctl_ops = {
.vidioc_subscribe_event = cam_sync_subscribe_event,
.vidioc_unsubscribe_event = cam_sync_unsubscribe_event,
.vidioc_default = cam_sync_dev_ioctl,
};
static struct v4l2_file_operations cam_sync_v4l2_fops = {
.owner = THIS_MODULE,
.open = cam_sync_open,
.release = cam_sync_close,
.poll = cam_sync_poll,
.unlocked_ioctl = video_ioctl2,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = video_ioctl2,
#endif
};
#if defined(CONFIG_MEDIA_CONTROLLER)
static int cam_sync_media_controller_init(struct sync_device *sync_dev,
struct platform_device *pdev)
{
int rc;
sync_dev->v4l2_dev.mdev = kzalloc(sizeof(struct media_device),
GFP_KERNEL);
if (!sync_dev->v4l2_dev.mdev)
return -ENOMEM;
media_device_init(sync_dev->v4l2_dev.mdev);
strlcpy(sync_dev->v4l2_dev.mdev->model, CAM_SYNC_DEVICE_NAME,
sizeof(sync_dev->v4l2_dev.mdev->model));
sync_dev->v4l2_dev.mdev->dev = &(pdev->dev);
rc = media_device_register(sync_dev->v4l2_dev.mdev);
if (rc < 0)
goto register_fail;
rc = media_entity_pads_init(&sync_dev->vdev->entity, 0, NULL);
if (rc < 0)
goto entity_fail;
return 0;
entity_fail:
media_device_unregister(sync_dev->v4l2_dev.mdev);
register_fail:
media_device_cleanup(sync_dev->v4l2_dev.mdev);
return rc;
}
static void cam_sync_media_controller_cleanup(struct sync_device *sync_dev)
{
media_entity_cleanup(&sync_dev->vdev->entity);
media_device_unregister(sync_dev->v4l2_dev.mdev);
media_device_cleanup(sync_dev->v4l2_dev.mdev);
kfree(sync_dev->v4l2_dev.mdev);
}
static void cam_sync_init_entity(struct sync_device *sync_dev)
{
sync_dev->vdev->entity.function = CAM_SYNC_DEVICE_TYPE;
sync_dev->vdev->entity.name =
video_device_node_name(sync_dev->vdev);
}
#else
static int cam_sync_media_controller_init(struct sync_device *sync_dev,
struct platform_device *pdev)
{
return 0;
}
static void cam_sync_media_controller_cleanup(struct sync_device *sync_dev)
{
}
static void cam_sync_init_entity(struct sync_device *sync_dev)
{
}
#endif
static int cam_sync_create_debugfs(void)
{
sync_dev->dentry = debugfs_create_dir("camera_sync", NULL);
if (!sync_dev->dentry) {
CAM_ERR(CAM_SYNC, "Failed to create sync dir");
return -ENOMEM;
}
if (!debugfs_create_bool("trigger_cb_without_switch",
0644, sync_dev->dentry,
&trigger_cb_without_switch)) {
CAM_ERR(CAM_SYNC,
"failed to create trigger_cb_without_switch entry");
return -ENOMEM;
}
return 0;
}
static int cam_sync_probe(struct platform_device *pdev)
{
int rc;
int idx;
sync_dev = kzalloc(sizeof(*sync_dev), GFP_KERNEL);
if (!sync_dev)
return -ENOMEM;
mutex_init(&sync_dev->table_lock);
spin_lock_init(&sync_dev->cam_sync_eventq_lock);
for (idx = 0; idx < CAM_SYNC_MAX_OBJS; idx++)
spin_lock_init(&sync_dev->row_spinlocks[idx]);
sync_dev->vdev = video_device_alloc();
if (!sync_dev->vdev) {
rc = -ENOMEM;
goto vdev_fail;
}
rc = cam_sync_media_controller_init(sync_dev, pdev);
if (rc < 0)
goto mcinit_fail;
sync_dev->vdev->v4l2_dev = &sync_dev->v4l2_dev;
rc = v4l2_device_register(&(pdev->dev), sync_dev->vdev->v4l2_dev);
if (rc < 0)
goto register_fail;
strlcpy(sync_dev->vdev->name, CAM_SYNC_NAME,
sizeof(sync_dev->vdev->name));
sync_dev->vdev->release = video_device_release;
sync_dev->vdev->fops = &cam_sync_v4l2_fops;
sync_dev->vdev->ioctl_ops = &g_cam_sync_ioctl_ops;
sync_dev->vdev->minor = -1;
sync_dev->vdev->vfl_type = VFL_TYPE_GRABBER;
rc = video_register_device(sync_dev->vdev,
VFL_TYPE_GRABBER, -1);
if (rc < 0)
goto v4l2_fail;
cam_sync_init_entity(sync_dev);
video_set_drvdata(sync_dev->vdev, sync_dev);
memset(&sync_dev->sync_table, 0, sizeof(sync_dev->sync_table));
memset(&sync_dev->bitmap, 0, sizeof(sync_dev->bitmap));
bitmap_zero(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
/*
* We treat zero as invalid handle, so we will keep the 0th bit set
* always
*/
set_bit(0, sync_dev->bitmap);
sync_dev->work_queue = alloc_workqueue(CAM_SYNC_WORKQUEUE_NAME,
WQ_HIGHPRI | WQ_UNBOUND, 1);
if (!sync_dev->work_queue) {
CAM_ERR(CAM_SYNC,
"Error: high priority work queue creation failed");
rc = -ENOMEM;
goto v4l2_fail;
}
trigger_cb_without_switch = false;
cam_sync_create_debugfs();
return rc;
v4l2_fail:
v4l2_device_unregister(sync_dev->vdev->v4l2_dev);
register_fail:
cam_sync_media_controller_cleanup(sync_dev);
mcinit_fail:
video_device_release(sync_dev->vdev);
vdev_fail:
mutex_destroy(&sync_dev->table_lock);
kfree(sync_dev);
return rc;
}
static int cam_sync_remove(struct platform_device *pdev)
{
v4l2_device_unregister(sync_dev->vdev->v4l2_dev);
cam_sync_media_controller_cleanup(sync_dev);
video_device_release(sync_dev->vdev);
debugfs_remove_recursive(sync_dev->dentry);
sync_dev->dentry = NULL;
kfree(sync_dev);
sync_dev = NULL;
return 0;
}
static struct platform_device cam_sync_device = {
.name = "cam_sync",
.id = -1,
};
static struct platform_driver cam_sync_driver = {
.probe = cam_sync_probe,
.remove = cam_sync_remove,
.driver = {
.name = "cam_sync",
.owner = THIS_MODULE,
.suppress_bind_attrs = true,
},
};
static int __init cam_sync_init(void)
{
int rc;
rc = platform_device_register(&cam_sync_device);
if (rc)
return -ENODEV;
return platform_driver_register(&cam_sync_driver);
}
static void __exit cam_sync_exit(void)
{
int idx;
for (idx = 0; idx < CAM_SYNC_MAX_OBJS; idx++)
spin_lock_init(&sync_dev->row_spinlocks[idx]);
platform_driver_unregister(&cam_sync_driver);
platform_device_unregister(&cam_sync_device);
kfree(sync_dev);
}
module_init(cam_sync_init);
module_exit(cam_sync_exit);
MODULE_DESCRIPTION("Camera sync driver");
MODULE_LICENSE("GPL v2");