| /* |
| * net/sched/sch_qfq.c Quick Fair Queueing Scheduler. |
| * |
| * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/netdevice.h> |
| #include <linux/pkt_sched.h> |
| #include <net/sch_generic.h> |
| #include <net/pkt_sched.h> |
| #include <net/pkt_cls.h> |
| |
| |
| /* Quick Fair Queueing |
| =================== |
| |
| Sources: |
| |
| Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient |
| Packet Scheduling with Tight Bandwidth Distribution Guarantees." |
| |
| See also: |
| http://retis.sssup.it/~fabio/linux/qfq/ |
| */ |
| |
| /* |
| |
| Virtual time computations. |
| |
| S, F and V are all computed in fixed point arithmetic with |
| FRAC_BITS decimal bits. |
| |
| QFQ_MAX_INDEX is the maximum index allowed for a group. We need |
| one bit per index. |
| QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. |
| |
| The layout of the bits is as below: |
| |
| [ MTU_SHIFT ][ FRAC_BITS ] |
| [ MAX_INDEX ][ MIN_SLOT_SHIFT ] |
| ^.__grp->index = 0 |
| *.__grp->slot_shift |
| |
| where MIN_SLOT_SHIFT is derived by difference from the others. |
| |
| The max group index corresponds to Lmax/w_min, where |
| Lmax=1<<MTU_SHIFT, w_min = 1 . |
| From this, and knowing how many groups (MAX_INDEX) we want, |
| we can derive the shift corresponding to each group. |
| |
| Because we often need to compute |
| F = S + len/w_i and V = V + len/wsum |
| instead of storing w_i store the value |
| inv_w = (1<<FRAC_BITS)/w_i |
| so we can do F = S + len * inv_w * wsum. |
| We use W_TOT in the formulas so we can easily move between |
| static and adaptive weight sum. |
| |
| The per-scheduler-instance data contain all the data structures |
| for the scheduler: bitmaps and bucket lists. |
| |
| */ |
| |
| /* |
| * Maximum number of consecutive slots occupied by backlogged classes |
| * inside a group. |
| */ |
| #define QFQ_MAX_SLOTS 32 |
| |
| /* |
| * Shifts used for class<->group mapping. We allow class weights that are |
| * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the |
| * group with the smallest index that can support the L_i / r_i configured |
| * for the class. |
| * |
| * grp->index is the index of the group; and grp->slot_shift |
| * is the shift for the corresponding (scaled) sigma_i. |
| */ |
| #define QFQ_MAX_INDEX 19 |
| #define QFQ_MAX_WSHIFT 16 |
| |
| #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) |
| #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) |
| |
| #define FRAC_BITS 30 /* fixed point arithmetic */ |
| #define ONE_FP (1UL << FRAC_BITS) |
| #define IWSUM (ONE_FP/QFQ_MAX_WSUM) |
| |
| #define QFQ_MTU_SHIFT 11 |
| #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) |
| |
| /* |
| * Possible group states. These values are used as indexes for the bitmaps |
| * array of struct qfq_queue. |
| */ |
| enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; |
| |
| struct qfq_group; |
| |
| struct qfq_class { |
| struct Qdisc_class_common common; |
| |
| unsigned int refcnt; |
| unsigned int filter_cnt; |
| |
| struct gnet_stats_basic_packed bstats; |
| struct gnet_stats_queue qstats; |
| struct gnet_stats_rate_est rate_est; |
| struct Qdisc *qdisc; |
| |
| struct hlist_node next; /* Link for the slot list. */ |
| u64 S, F; /* flow timestamps (exact) */ |
| |
| /* group we belong to. In principle we would need the index, |
| * which is log_2(lmax/weight), but we never reference it |
| * directly, only the group. |
| */ |
| struct qfq_group *grp; |
| |
| /* these are copied from the flowset. */ |
| u32 inv_w; /* ONE_FP/weight */ |
| u32 lmax; /* Max packet size for this flow. */ |
| }; |
| |
| struct qfq_group { |
| u64 S, F; /* group timestamps (approx). */ |
| unsigned int slot_shift; /* Slot shift. */ |
| unsigned int index; /* Group index. */ |
| unsigned int front; /* Index of the front slot. */ |
| unsigned long full_slots; /* non-empty slots */ |
| |
| /* Array of RR lists of active classes. */ |
| struct hlist_head slots[QFQ_MAX_SLOTS]; |
| }; |
| |
| struct qfq_sched { |
| struct tcf_proto *filter_list; |
| struct Qdisc_class_hash clhash; |
| |
| u64 V; /* Precise virtual time. */ |
| u32 wsum; /* weight sum */ |
| |
| unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ |
| struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ |
| }; |
| |
| static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct Qdisc_class_common *clc; |
| |
| clc = qdisc_class_find(&q->clhash, classid); |
| if (clc == NULL) |
| return NULL; |
| return container_of(clc, struct qfq_class, common); |
| } |
| |
| static void qfq_purge_queue(struct qfq_class *cl) |
| { |
| unsigned int len = cl->qdisc->q.qlen; |
| |
| qdisc_reset(cl->qdisc); |
| qdisc_tree_decrease_qlen(cl->qdisc, len); |
| } |
| |
| static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { |
| [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, |
| [TCA_QFQ_LMAX] = { .type = NLA_U32 }, |
| }; |
| |
| /* |
| * Calculate a flow index, given its weight and maximum packet length. |
| * index = log_2(maxlen/weight) but we need to apply the scaling. |
| * This is used only once at flow creation. |
| */ |
| static int qfq_calc_index(u32 inv_w, unsigned int maxlen) |
| { |
| u64 slot_size = (u64)maxlen * inv_w; |
| unsigned long size_map; |
| int index = 0; |
| |
| size_map = slot_size >> QFQ_MIN_SLOT_SHIFT; |
| if (!size_map) |
| goto out; |
| |
| index = __fls(size_map) + 1; /* basically a log_2 */ |
| index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); |
| |
| if (index < 0) |
| index = 0; |
| out: |
| pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", |
| (unsigned long) ONE_FP/inv_w, maxlen, index); |
| |
| return index; |
| } |
| |
| static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, |
| struct nlattr **tca, unsigned long *arg) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl = (struct qfq_class *)*arg; |
| struct nlattr *tb[TCA_QFQ_MAX + 1]; |
| u32 weight, lmax, inv_w; |
| int i, err; |
| |
| if (tca[TCA_OPTIONS] == NULL) { |
| pr_notice("qfq: no options\n"); |
| return -EINVAL; |
| } |
| |
| err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); |
| if (err < 0) |
| return err; |
| |
| if (tb[TCA_QFQ_WEIGHT]) { |
| weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); |
| if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { |
| pr_notice("qfq: invalid weight %u\n", weight); |
| return -EINVAL; |
| } |
| } else |
| weight = 1; |
| |
| inv_w = ONE_FP / weight; |
| weight = ONE_FP / inv_w; |
| if (q->wsum + weight > QFQ_MAX_WSUM) { |
| pr_notice("qfq: total weight out of range (%u + %u)\n", |
| weight, q->wsum); |
| return -EINVAL; |
| } |
| |
| if (tb[TCA_QFQ_LMAX]) { |
| lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); |
| if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) { |
| pr_notice("qfq: invalid max length %u\n", lmax); |
| return -EINVAL; |
| } |
| } else |
| lmax = 1UL << QFQ_MTU_SHIFT; |
| |
| if (cl != NULL) { |
| if (tca[TCA_RATE]) { |
| err = gen_replace_estimator(&cl->bstats, &cl->rate_est, |
| qdisc_root_sleeping_lock(sch), |
| tca[TCA_RATE]); |
| if (err) |
| return err; |
| } |
| |
| sch_tree_lock(sch); |
| if (tb[TCA_QFQ_WEIGHT]) { |
| q->wsum = weight - ONE_FP / cl->inv_w; |
| cl->inv_w = inv_w; |
| } |
| sch_tree_unlock(sch); |
| |
| return 0; |
| } |
| |
| cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); |
| if (cl == NULL) |
| return -ENOBUFS; |
| |
| cl->refcnt = 1; |
| cl->common.classid = classid; |
| cl->lmax = lmax; |
| cl->inv_w = inv_w; |
| i = qfq_calc_index(cl->inv_w, cl->lmax); |
| |
| cl->grp = &q->groups[i]; |
| q->wsum += weight; |
| |
| cl->qdisc = qdisc_create_dflt(sch->dev_queue, |
| &pfifo_qdisc_ops, classid); |
| if (cl->qdisc == NULL) |
| cl->qdisc = &noop_qdisc; |
| |
| if (tca[TCA_RATE]) { |
| err = gen_new_estimator(&cl->bstats, &cl->rate_est, |
| qdisc_root_sleeping_lock(sch), |
| tca[TCA_RATE]); |
| if (err) { |
| qdisc_destroy(cl->qdisc); |
| kfree(cl); |
| return err; |
| } |
| } |
| |
| sch_tree_lock(sch); |
| qdisc_class_hash_insert(&q->clhash, &cl->common); |
| sch_tree_unlock(sch); |
| |
| qdisc_class_hash_grow(sch, &q->clhash); |
| |
| *arg = (unsigned long)cl; |
| return 0; |
| } |
| |
| static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| |
| if (cl->inv_w) { |
| q->wsum -= ONE_FP / cl->inv_w; |
| cl->inv_w = 0; |
| } |
| |
| gen_kill_estimator(&cl->bstats, &cl->rate_est); |
| qdisc_destroy(cl->qdisc); |
| kfree(cl); |
| } |
| |
| static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| if (cl->filter_cnt > 0) |
| return -EBUSY; |
| |
| sch_tree_lock(sch); |
| |
| qfq_purge_queue(cl); |
| qdisc_class_hash_remove(&q->clhash, &cl->common); |
| |
| BUG_ON(--cl->refcnt == 0); |
| /* |
| * This shouldn't happen: we "hold" one cops->get() when called |
| * from tc_ctl_tclass; the destroy method is done from cops->put(). |
| */ |
| |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) |
| { |
| struct qfq_class *cl = qfq_find_class(sch, classid); |
| |
| if (cl != NULL) |
| cl->refcnt++; |
| |
| return (unsigned long)cl; |
| } |
| |
| static void qfq_put_class(struct Qdisc *sch, unsigned long arg) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| if (--cl->refcnt == 0) |
| qfq_destroy_class(sch, cl); |
| } |
| |
| static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| |
| if (cl) |
| return NULL; |
| |
| return &q->filter_list; |
| } |
| |
| static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, |
| u32 classid) |
| { |
| struct qfq_class *cl = qfq_find_class(sch, classid); |
| |
| if (cl != NULL) |
| cl->filter_cnt++; |
| |
| return (unsigned long)cl; |
| } |
| |
| static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| cl->filter_cnt--; |
| } |
| |
| static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, |
| struct Qdisc *new, struct Qdisc **old) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| if (new == NULL) { |
| new = qdisc_create_dflt(sch->dev_queue, |
| &pfifo_qdisc_ops, cl->common.classid); |
| if (new == NULL) |
| new = &noop_qdisc; |
| } |
| |
| sch_tree_lock(sch); |
| qfq_purge_queue(cl); |
| *old = cl->qdisc; |
| cl->qdisc = new; |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| return cl->qdisc; |
| } |
| |
| static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| struct nlattr *nest; |
| |
| tcm->tcm_parent = TC_H_ROOT; |
| tcm->tcm_handle = cl->common.classid; |
| tcm->tcm_info = cl->qdisc->handle; |
| |
| nest = nla_nest_start(skb, TCA_OPTIONS); |
| if (nest == NULL) |
| goto nla_put_failure; |
| NLA_PUT_U32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w); |
| NLA_PUT_U32(skb, TCA_QFQ_LMAX, cl->lmax); |
| return nla_nest_end(skb, nest); |
| |
| nla_put_failure: |
| nla_nest_cancel(skb, nest); |
| return -EMSGSIZE; |
| } |
| |
| static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, |
| struct gnet_dump *d) |
| { |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| struct tc_qfq_stats xstats; |
| |
| memset(&xstats, 0, sizeof(xstats)); |
| cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; |
| |
| xstats.weight = ONE_FP/cl->inv_w; |
| xstats.lmax = cl->lmax; |
| |
| if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || |
| gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || |
| gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) |
| return -1; |
| |
| return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); |
| } |
| |
| static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl; |
| struct hlist_node *n; |
| unsigned int i; |
| |
| if (arg->stop) |
| return; |
| |
| for (i = 0; i < q->clhash.hashsize; i++) { |
| hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { |
| if (arg->count < arg->skip) { |
| arg->count++; |
| continue; |
| } |
| if (arg->fn(sch, (unsigned long)cl, arg) < 0) { |
| arg->stop = 1; |
| return; |
| } |
| arg->count++; |
| } |
| } |
| } |
| |
| static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, |
| int *qerr) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl; |
| struct tcf_result res; |
| int result; |
| |
| if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { |
| pr_debug("qfq_classify: found %d\n", skb->priority); |
| cl = qfq_find_class(sch, skb->priority); |
| if (cl != NULL) |
| return cl; |
| } |
| |
| *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| result = tc_classify(skb, q->filter_list, &res); |
| if (result >= 0) { |
| #ifdef CONFIG_NET_CLS_ACT |
| switch (result) { |
| case TC_ACT_QUEUED: |
| case TC_ACT_STOLEN: |
| *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; |
| case TC_ACT_SHOT: |
| return NULL; |
| } |
| #endif |
| cl = (struct qfq_class *)res.class; |
| if (cl == NULL) |
| cl = qfq_find_class(sch, res.classid); |
| return cl; |
| } |
| |
| return NULL; |
| } |
| |
| /* Generic comparison function, handling wraparound. */ |
| static inline int qfq_gt(u64 a, u64 b) |
| { |
| return (s64)(a - b) > 0; |
| } |
| |
| /* Round a precise timestamp to its slotted value. */ |
| static inline u64 qfq_round_down(u64 ts, unsigned int shift) |
| { |
| return ts & ~((1ULL << shift) - 1); |
| } |
| |
| /* return the pointer to the group with lowest index in the bitmap */ |
| static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, |
| unsigned long bitmap) |
| { |
| int index = __ffs(bitmap); |
| return &q->groups[index]; |
| } |
| /* Calculate a mask to mimic what would be ffs_from(). */ |
| static inline unsigned long mask_from(unsigned long bitmap, int from) |
| { |
| return bitmap & ~((1UL << from) - 1); |
| } |
| |
| /* |
| * The state computation relies on ER=0, IR=1, EB=2, IB=3 |
| * First compute eligibility comparing grp->S, q->V, |
| * then check if someone is blocking us and possibly add EB |
| */ |
| static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) |
| { |
| /* if S > V we are not eligible */ |
| unsigned int state = qfq_gt(grp->S, q->V); |
| unsigned long mask = mask_from(q->bitmaps[ER], grp->index); |
| struct qfq_group *next; |
| |
| if (mask) { |
| next = qfq_ffs(q, mask); |
| if (qfq_gt(grp->F, next->F)) |
| state |= EB; |
| } |
| |
| return state; |
| } |
| |
| |
| /* |
| * In principle |
| * q->bitmaps[dst] |= q->bitmaps[src] & mask; |
| * q->bitmaps[src] &= ~mask; |
| * but we should make sure that src != dst |
| */ |
| static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, |
| int src, int dst) |
| { |
| q->bitmaps[dst] |= q->bitmaps[src] & mask; |
| q->bitmaps[src] &= ~mask; |
| } |
| |
| static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) |
| { |
| unsigned long mask = mask_from(q->bitmaps[ER], index + 1); |
| struct qfq_group *next; |
| |
| if (mask) { |
| next = qfq_ffs(q, mask); |
| if (!qfq_gt(next->F, old_F)) |
| return; |
| } |
| |
| mask = (1UL << index) - 1; |
| qfq_move_groups(q, mask, EB, ER); |
| qfq_move_groups(q, mask, IB, IR); |
| } |
| |
| /* |
| * perhaps |
| * |
| old_V ^= q->V; |
| old_V >>= QFQ_MIN_SLOT_SHIFT; |
| if (old_V) { |
| ... |
| } |
| * |
| */ |
| static void qfq_make_eligible(struct qfq_sched *q, u64 old_V) |
| { |
| unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT; |
| unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; |
| |
| if (vslot != old_vslot) { |
| unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1; |
| qfq_move_groups(q, mask, IR, ER); |
| qfq_move_groups(q, mask, IB, EB); |
| } |
| } |
| |
| |
| /* |
| * XXX we should make sure that slot becomes less than 32. |
| * This is guaranteed by the input values. |
| * roundedS is always cl->S rounded on grp->slot_shift bits. |
| */ |
| static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, |
| u64 roundedS) |
| { |
| u64 slot = (roundedS - grp->S) >> grp->slot_shift; |
| unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; |
| |
| hlist_add_head(&cl->next, &grp->slots[i]); |
| __set_bit(slot, &grp->full_slots); |
| } |
| |
| /* Maybe introduce hlist_first_entry?? */ |
| static struct qfq_class *qfq_slot_head(struct qfq_group *grp) |
| { |
| return hlist_entry(grp->slots[grp->front].first, |
| struct qfq_class, next); |
| } |
| |
| /* |
| * remove the entry from the slot |
| */ |
| static void qfq_front_slot_remove(struct qfq_group *grp) |
| { |
| struct qfq_class *cl = qfq_slot_head(grp); |
| |
| BUG_ON(!cl); |
| hlist_del(&cl->next); |
| if (hlist_empty(&grp->slots[grp->front])) |
| __clear_bit(0, &grp->full_slots); |
| } |
| |
| /* |
| * Returns the first full queue in a group. As a side effect, |
| * adjust the bucket list so the first non-empty bucket is at |
| * position 0 in full_slots. |
| */ |
| static struct qfq_class *qfq_slot_scan(struct qfq_group *grp) |
| { |
| unsigned int i; |
| |
| pr_debug("qfq slot_scan: grp %u full %#lx\n", |
| grp->index, grp->full_slots); |
| |
| if (grp->full_slots == 0) |
| return NULL; |
| |
| i = __ffs(grp->full_slots); /* zero based */ |
| if (i > 0) { |
| grp->front = (grp->front + i) % QFQ_MAX_SLOTS; |
| grp->full_slots >>= i; |
| } |
| |
| return qfq_slot_head(grp); |
| } |
| |
| /* |
| * adjust the bucket list. When the start time of a group decreases, |
| * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to |
| * move the objects. The mask of occupied slots must be shifted |
| * because we use ffs() to find the first non-empty slot. |
| * This covers decreases in the group's start time, but what about |
| * increases of the start time ? |
| * Here too we should make sure that i is less than 32 |
| */ |
| static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) |
| { |
| unsigned int i = (grp->S - roundedS) >> grp->slot_shift; |
| |
| grp->full_slots <<= i; |
| grp->front = (grp->front - i) % QFQ_MAX_SLOTS; |
| } |
| |
| static void qfq_update_eligible(struct qfq_sched *q, u64 old_V) |
| { |
| struct qfq_group *grp; |
| unsigned long ineligible; |
| |
| ineligible = q->bitmaps[IR] | q->bitmaps[IB]; |
| if (ineligible) { |
| if (!q->bitmaps[ER]) { |
| grp = qfq_ffs(q, ineligible); |
| if (qfq_gt(grp->S, q->V)) |
| q->V = grp->S; |
| } |
| qfq_make_eligible(q, old_V); |
| } |
| } |
| |
| /* What is length of next packet in queue (0 if queue is empty) */ |
| static unsigned int qdisc_peek_len(struct Qdisc *sch) |
| { |
| struct sk_buff *skb; |
| |
| skb = sch->ops->peek(sch); |
| return skb ? qdisc_pkt_len(skb) : 0; |
| } |
| |
| /* |
| * Updates the class, returns true if also the group needs to be updated. |
| */ |
| static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl) |
| { |
| unsigned int len = qdisc_peek_len(cl->qdisc); |
| |
| cl->S = cl->F; |
| if (!len) |
| qfq_front_slot_remove(grp); /* queue is empty */ |
| else { |
| u64 roundedS; |
| |
| cl->F = cl->S + (u64)len * cl->inv_w; |
| roundedS = qfq_round_down(cl->S, grp->slot_shift); |
| if (roundedS == grp->S) |
| return false; |
| |
| qfq_front_slot_remove(grp); |
| qfq_slot_insert(grp, cl, roundedS); |
| } |
| |
| return true; |
| } |
| |
| static struct sk_buff *qfq_dequeue(struct Qdisc *sch) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_group *grp; |
| struct qfq_class *cl; |
| struct sk_buff *skb; |
| unsigned int len; |
| u64 old_V; |
| |
| if (!q->bitmaps[ER]) |
| return NULL; |
| |
| grp = qfq_ffs(q, q->bitmaps[ER]); |
| |
| cl = qfq_slot_head(grp); |
| skb = qdisc_dequeue_peeked(cl->qdisc); |
| if (!skb) { |
| WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); |
| return NULL; |
| } |
| |
| sch->q.qlen--; |
| qdisc_bstats_update(sch, skb); |
| |
| old_V = q->V; |
| len = qdisc_pkt_len(skb); |
| q->V += (u64)len * IWSUM; |
| pr_debug("qfq dequeue: len %u F %lld now %lld\n", |
| len, (unsigned long long) cl->F, (unsigned long long) q->V); |
| |
| if (qfq_update_class(grp, cl)) { |
| u64 old_F = grp->F; |
| |
| cl = qfq_slot_scan(grp); |
| if (!cl) |
| __clear_bit(grp->index, &q->bitmaps[ER]); |
| else { |
| u64 roundedS = qfq_round_down(cl->S, grp->slot_shift); |
| unsigned int s; |
| |
| if (grp->S == roundedS) |
| goto skip_unblock; |
| grp->S = roundedS; |
| grp->F = roundedS + (2ULL << grp->slot_shift); |
| __clear_bit(grp->index, &q->bitmaps[ER]); |
| s = qfq_calc_state(q, grp); |
| __set_bit(grp->index, &q->bitmaps[s]); |
| } |
| |
| qfq_unblock_groups(q, grp->index, old_F); |
| } |
| |
| skip_unblock: |
| qfq_update_eligible(q, old_V); |
| |
| return skb; |
| } |
| |
| /* |
| * Assign a reasonable start time for a new flow k in group i. |
| * Admissible values for \hat(F) are multiples of \sigma_i |
| * no greater than V+\sigma_i . Larger values mean that |
| * we had a wraparound so we consider the timestamp to be stale. |
| * |
| * If F is not stale and F >= V then we set S = F. |
| * Otherwise we should assign S = V, but this may violate |
| * the ordering in ER. So, if we have groups in ER, set S to |
| * the F_j of the first group j which would be blocking us. |
| * We are guaranteed not to move S backward because |
| * otherwise our group i would still be blocked. |
| */ |
| static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) |
| { |
| unsigned long mask; |
| uint32_t limit, roundedF; |
| int slot_shift = cl->grp->slot_shift; |
| |
| roundedF = qfq_round_down(cl->F, slot_shift); |
| limit = qfq_round_down(q->V, slot_shift) + (1UL << slot_shift); |
| |
| if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { |
| /* timestamp was stale */ |
| mask = mask_from(q->bitmaps[ER], cl->grp->index); |
| if (mask) { |
| struct qfq_group *next = qfq_ffs(q, mask); |
| if (qfq_gt(roundedF, next->F)) { |
| cl->S = next->F; |
| return; |
| } |
| } |
| cl->S = q->V; |
| } else /* timestamp is not stale */ |
| cl->S = cl->F; |
| } |
| |
| static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_group *grp; |
| struct qfq_class *cl; |
| int err; |
| u64 roundedS; |
| int s; |
| |
| cl = qfq_classify(skb, sch, &err); |
| if (cl == NULL) { |
| if (err & __NET_XMIT_BYPASS) |
| sch->qstats.drops++; |
| kfree_skb(skb); |
| return err; |
| } |
| pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); |
| |
| err = qdisc_enqueue(skb, cl->qdisc); |
| if (unlikely(err != NET_XMIT_SUCCESS)) { |
| pr_debug("qfq_enqueue: enqueue failed %d\n", err); |
| if (net_xmit_drop_count(err)) { |
| cl->qstats.drops++; |
| sch->qstats.drops++; |
| } |
| return err; |
| } |
| |
| bstats_update(&cl->bstats, skb); |
| ++sch->q.qlen; |
| |
| /* If the new skb is not the head of queue, then done here. */ |
| if (cl->qdisc->q.qlen != 1) |
| return err; |
| |
| /* If reach this point, queue q was idle */ |
| grp = cl->grp; |
| qfq_update_start(q, cl); |
| |
| /* compute new finish time and rounded start. */ |
| cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w; |
| roundedS = qfq_round_down(cl->S, grp->slot_shift); |
| |
| /* |
| * insert cl in the correct bucket. |
| * If cl->S >= grp->S we don't need to adjust the |
| * bucket list and simply go to the insertion phase. |
| * Otherwise grp->S is decreasing, we must make room |
| * in the bucket list, and also recompute the group state. |
| * Finally, if there were no flows in this group and nobody |
| * was in ER make sure to adjust V. |
| */ |
| if (grp->full_slots) { |
| if (!qfq_gt(grp->S, cl->S)) |
| goto skip_update; |
| |
| /* create a slot for this cl->S */ |
| qfq_slot_rotate(grp, roundedS); |
| /* group was surely ineligible, remove */ |
| __clear_bit(grp->index, &q->bitmaps[IR]); |
| __clear_bit(grp->index, &q->bitmaps[IB]); |
| } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) |
| q->V = roundedS; |
| |
| grp->S = roundedS; |
| grp->F = roundedS + (2ULL << grp->slot_shift); |
| s = qfq_calc_state(q, grp); |
| __set_bit(grp->index, &q->bitmaps[s]); |
| |
| pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", |
| s, q->bitmaps[s], |
| (unsigned long long) cl->S, |
| (unsigned long long) cl->F, |
| (unsigned long long) q->V); |
| |
| skip_update: |
| qfq_slot_insert(grp, cl, roundedS); |
| |
| return err; |
| } |
| |
| |
| static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, |
| struct qfq_class *cl) |
| { |
| unsigned int i, offset; |
| u64 roundedS; |
| |
| roundedS = qfq_round_down(cl->S, grp->slot_shift); |
| offset = (roundedS - grp->S) >> grp->slot_shift; |
| i = (grp->front + offset) % QFQ_MAX_SLOTS; |
| |
| hlist_del(&cl->next); |
| if (hlist_empty(&grp->slots[i])) |
| __clear_bit(offset, &grp->full_slots); |
| } |
| |
| /* |
| * called to forcibly destroy a queue. |
| * If the queue is not in the front bucket, or if it has |
| * other queues in the front bucket, we can simply remove |
| * the queue with no other side effects. |
| * Otherwise we must propagate the event up. |
| */ |
| static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) |
| { |
| struct qfq_group *grp = cl->grp; |
| unsigned long mask; |
| u64 roundedS; |
| int s; |
| |
| cl->F = cl->S; |
| qfq_slot_remove(q, grp, cl); |
| |
| if (!grp->full_slots) { |
| __clear_bit(grp->index, &q->bitmaps[IR]); |
| __clear_bit(grp->index, &q->bitmaps[EB]); |
| __clear_bit(grp->index, &q->bitmaps[IB]); |
| |
| if (test_bit(grp->index, &q->bitmaps[ER]) && |
| !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { |
| mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); |
| if (mask) |
| mask = ~((1UL << __fls(mask)) - 1); |
| else |
| mask = ~0UL; |
| qfq_move_groups(q, mask, EB, ER); |
| qfq_move_groups(q, mask, IB, IR); |
| } |
| __clear_bit(grp->index, &q->bitmaps[ER]); |
| } else if (hlist_empty(&grp->slots[grp->front])) { |
| cl = qfq_slot_scan(grp); |
| roundedS = qfq_round_down(cl->S, grp->slot_shift); |
| if (grp->S != roundedS) { |
| __clear_bit(grp->index, &q->bitmaps[ER]); |
| __clear_bit(grp->index, &q->bitmaps[IR]); |
| __clear_bit(grp->index, &q->bitmaps[EB]); |
| __clear_bit(grp->index, &q->bitmaps[IB]); |
| grp->S = roundedS; |
| grp->F = roundedS + (2ULL << grp->slot_shift); |
| s = qfq_calc_state(q, grp); |
| __set_bit(grp->index, &q->bitmaps[s]); |
| } |
| } |
| |
| qfq_update_eligible(q, q->V); |
| } |
| |
| static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl = (struct qfq_class *)arg; |
| |
| if (cl->qdisc->q.qlen == 0) |
| qfq_deactivate_class(q, cl); |
| } |
| |
| static unsigned int qfq_drop(struct Qdisc *sch) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_group *grp; |
| unsigned int i, j, len; |
| |
| for (i = 0; i <= QFQ_MAX_INDEX; i++) { |
| grp = &q->groups[i]; |
| for (j = 0; j < QFQ_MAX_SLOTS; j++) { |
| struct qfq_class *cl; |
| struct hlist_node *n; |
| |
| hlist_for_each_entry(cl, n, &grp->slots[j], next) { |
| |
| if (!cl->qdisc->ops->drop) |
| continue; |
| |
| len = cl->qdisc->ops->drop(cl->qdisc); |
| if (len > 0) { |
| sch->q.qlen--; |
| if (!cl->qdisc->q.qlen) |
| qfq_deactivate_class(q, cl); |
| |
| return len; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_group *grp; |
| int i, j, err; |
| |
| err = qdisc_class_hash_init(&q->clhash); |
| if (err < 0) |
| return err; |
| |
| for (i = 0; i <= QFQ_MAX_INDEX; i++) { |
| grp = &q->groups[i]; |
| grp->index = i; |
| grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS |
| - (QFQ_MAX_INDEX - i); |
| for (j = 0; j < QFQ_MAX_SLOTS; j++) |
| INIT_HLIST_HEAD(&grp->slots[j]); |
| } |
| |
| return 0; |
| } |
| |
| static void qfq_reset_qdisc(struct Qdisc *sch) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_group *grp; |
| struct qfq_class *cl; |
| struct hlist_node *n, *tmp; |
| unsigned int i, j; |
| |
| for (i = 0; i <= QFQ_MAX_INDEX; i++) { |
| grp = &q->groups[i]; |
| for (j = 0; j < QFQ_MAX_SLOTS; j++) { |
| hlist_for_each_entry_safe(cl, n, tmp, |
| &grp->slots[j], next) { |
| qfq_deactivate_class(q, cl); |
| } |
| } |
| } |
| |
| for (i = 0; i < q->clhash.hashsize; i++) { |
| hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) |
| qdisc_reset(cl->qdisc); |
| } |
| sch->q.qlen = 0; |
| } |
| |
| static void qfq_destroy_qdisc(struct Qdisc *sch) |
| { |
| struct qfq_sched *q = qdisc_priv(sch); |
| struct qfq_class *cl; |
| struct hlist_node *n, *next; |
| unsigned int i; |
| |
| tcf_destroy_chain(&q->filter_list); |
| |
| for (i = 0; i < q->clhash.hashsize; i++) { |
| hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], |
| common.hnode) { |
| qfq_destroy_class(sch, cl); |
| } |
| } |
| qdisc_class_hash_destroy(&q->clhash); |
| } |
| |
| static const struct Qdisc_class_ops qfq_class_ops = { |
| .change = qfq_change_class, |
| .delete = qfq_delete_class, |
| .get = qfq_get_class, |
| .put = qfq_put_class, |
| .tcf_chain = qfq_tcf_chain, |
| .bind_tcf = qfq_bind_tcf, |
| .unbind_tcf = qfq_unbind_tcf, |
| .graft = qfq_graft_class, |
| .leaf = qfq_class_leaf, |
| .qlen_notify = qfq_qlen_notify, |
| .dump = qfq_dump_class, |
| .dump_stats = qfq_dump_class_stats, |
| .walk = qfq_walk, |
| }; |
| |
| static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { |
| .cl_ops = &qfq_class_ops, |
| .id = "qfq", |
| .priv_size = sizeof(struct qfq_sched), |
| .enqueue = qfq_enqueue, |
| .dequeue = qfq_dequeue, |
| .peek = qdisc_peek_dequeued, |
| .drop = qfq_drop, |
| .init = qfq_init_qdisc, |
| .reset = qfq_reset_qdisc, |
| .destroy = qfq_destroy_qdisc, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init qfq_init(void) |
| { |
| return register_qdisc(&qfq_qdisc_ops); |
| } |
| |
| static void __exit qfq_exit(void) |
| { |
| unregister_qdisc(&qfq_qdisc_ops); |
| } |
| |
| module_init(qfq_init); |
| module_exit(qfq_exit); |
| MODULE_LICENSE("GPL"); |