| /* |
| * Copyright (C) 2011 STRATO. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/rbtree.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include "ctree.h" |
| #include "volumes.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "dev-replace.h" |
| |
| #undef DEBUG |
| |
| /* |
| * This is the implementation for the generic read ahead framework. |
| * |
| * To trigger a readahead, btrfs_reada_add must be called. It will start |
| * a read ahead for the given range [start, end) on tree root. The returned |
| * handle can either be used to wait on the readahead to finish |
| * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). |
| * |
| * The read ahead works as follows: |
| * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. |
| * reada_start_machine will then search for extents to prefetch and trigger |
| * some reads. When a read finishes for a node, all contained node/leaf |
| * pointers that lie in the given range will also be enqueued. The reads will |
| * be triggered in sequential order, thus giving a big win over a naive |
| * enumeration. It will also make use of multi-device layouts. Each disk |
| * will have its on read pointer and all disks will by utilized in parallel. |
| * Also will no two disks read both sides of a mirror simultaneously, as this |
| * would waste seeking capacity. Instead both disks will read different parts |
| * of the filesystem. |
| * Any number of readaheads can be started in parallel. The read order will be |
| * determined globally, i.e. 2 parallel readaheads will normally finish faster |
| * than the 2 started one after another. |
| */ |
| |
| #define MAX_IN_FLIGHT 6 |
| |
| struct reada_extctl { |
| struct list_head list; |
| struct reada_control *rc; |
| u64 generation; |
| }; |
| |
| struct reada_extent { |
| u64 logical; |
| struct btrfs_key top; |
| int err; |
| struct list_head extctl; |
| int refcnt; |
| spinlock_t lock; |
| struct reada_zone *zones[BTRFS_MAX_MIRRORS]; |
| int nzones; |
| int scheduled; |
| }; |
| |
| struct reada_zone { |
| u64 start; |
| u64 end; |
| u64 elems; |
| struct list_head list; |
| spinlock_t lock; |
| int locked; |
| struct btrfs_device *device; |
| struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl |
| * self */ |
| int ndevs; |
| struct kref refcnt; |
| }; |
| |
| struct reada_machine_work { |
| struct btrfs_work work; |
| struct btrfs_fs_info *fs_info; |
| }; |
| |
| static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); |
| static void reada_control_release(struct kref *kref); |
| static void reada_zone_release(struct kref *kref); |
| static void reada_start_machine(struct btrfs_fs_info *fs_info); |
| static void __reada_start_machine(struct btrfs_fs_info *fs_info); |
| |
| static int reada_add_block(struct reada_control *rc, u64 logical, |
| struct btrfs_key *top, u64 generation); |
| |
| /* recurses */ |
| /* in case of err, eb might be NULL */ |
| static void __readahead_hook(struct btrfs_fs_info *fs_info, |
| struct reada_extent *re, struct extent_buffer *eb, |
| u64 start, int err) |
| { |
| int level = 0; |
| int nritems; |
| int i; |
| u64 bytenr; |
| u64 generation; |
| struct list_head list; |
| |
| if (eb) |
| level = btrfs_header_level(eb); |
| |
| spin_lock(&re->lock); |
| /* |
| * just take the full list from the extent. afterwards we |
| * don't need the lock anymore |
| */ |
| list_replace_init(&re->extctl, &list); |
| re->scheduled = 0; |
| spin_unlock(&re->lock); |
| |
| /* |
| * this is the error case, the extent buffer has not been |
| * read correctly. We won't access anything from it and |
| * just cleanup our data structures. Effectively this will |
| * cut the branch below this node from read ahead. |
| */ |
| if (err) |
| goto cleanup; |
| |
| /* |
| * FIXME: currently we just set nritems to 0 if this is a leaf, |
| * effectively ignoring the content. In a next step we could |
| * trigger more readahead depending from the content, e.g. |
| * fetch the checksums for the extents in the leaf. |
| */ |
| if (!level) |
| goto cleanup; |
| |
| nritems = btrfs_header_nritems(eb); |
| generation = btrfs_header_generation(eb); |
| for (i = 0; i < nritems; i++) { |
| struct reada_extctl *rec; |
| u64 n_gen; |
| struct btrfs_key key; |
| struct btrfs_key next_key; |
| |
| btrfs_node_key_to_cpu(eb, &key, i); |
| if (i + 1 < nritems) |
| btrfs_node_key_to_cpu(eb, &next_key, i + 1); |
| else |
| next_key = re->top; |
| bytenr = btrfs_node_blockptr(eb, i); |
| n_gen = btrfs_node_ptr_generation(eb, i); |
| |
| list_for_each_entry(rec, &list, list) { |
| struct reada_control *rc = rec->rc; |
| |
| /* |
| * if the generation doesn't match, just ignore this |
| * extctl. This will probably cut off a branch from |
| * prefetch. Alternatively one could start a new (sub-) |
| * prefetch for this branch, starting again from root. |
| * FIXME: move the generation check out of this loop |
| */ |
| #ifdef DEBUG |
| if (rec->generation != generation) { |
| btrfs_debug(fs_info, |
| "generation mismatch for (%llu,%d,%llu) %llu != %llu", |
| key.objectid, key.type, key.offset, |
| rec->generation, generation); |
| } |
| #endif |
| if (rec->generation == generation && |
| btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && |
| btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) |
| reada_add_block(rc, bytenr, &next_key, n_gen); |
| } |
| } |
| |
| cleanup: |
| /* |
| * free extctl records |
| */ |
| while (!list_empty(&list)) { |
| struct reada_control *rc; |
| struct reada_extctl *rec; |
| |
| rec = list_first_entry(&list, struct reada_extctl, list); |
| list_del(&rec->list); |
| rc = rec->rc; |
| kfree(rec); |
| |
| kref_get(&rc->refcnt); |
| if (atomic_dec_and_test(&rc->elems)) { |
| kref_put(&rc->refcnt, reada_control_release); |
| wake_up(&rc->wait); |
| } |
| kref_put(&rc->refcnt, reada_control_release); |
| |
| reada_extent_put(fs_info, re); /* one ref for each entry */ |
| } |
| |
| return; |
| } |
| |
| /* |
| * start is passed separately in case eb in NULL, which may be the case with |
| * failed I/O |
| */ |
| int btree_readahead_hook(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *eb, u64 start, int err) |
| { |
| int ret = 0; |
| struct reada_extent *re; |
| |
| /* find extent */ |
| spin_lock(&fs_info->reada_lock); |
| re = radix_tree_lookup(&fs_info->reada_tree, |
| start >> PAGE_SHIFT); |
| if (re) |
| re->refcnt++; |
| spin_unlock(&fs_info->reada_lock); |
| if (!re) { |
| ret = -1; |
| goto start_machine; |
| } |
| |
| __readahead_hook(fs_info, re, eb, start, err); |
| reada_extent_put(fs_info, re); /* our ref */ |
| |
| start_machine: |
| reada_start_machine(fs_info); |
| return ret; |
| } |
| |
| static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *dev, u64 logical, |
| struct btrfs_bio *bbio) |
| { |
| int ret; |
| struct reada_zone *zone; |
| struct btrfs_block_group_cache *cache = NULL; |
| u64 start; |
| u64 end; |
| int i; |
| |
| zone = NULL; |
| spin_lock(&fs_info->reada_lock); |
| ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, |
| logical >> PAGE_SHIFT, 1); |
| if (ret == 1 && logical >= zone->start && logical <= zone->end) { |
| kref_get(&zone->refcnt); |
| spin_unlock(&fs_info->reada_lock); |
| return zone; |
| } |
| |
| spin_unlock(&fs_info->reada_lock); |
| |
| cache = btrfs_lookup_block_group(fs_info, logical); |
| if (!cache) |
| return NULL; |
| |
| start = cache->key.objectid; |
| end = start + cache->key.offset - 1; |
| btrfs_put_block_group(cache); |
| |
| zone = kzalloc(sizeof(*zone), GFP_KERNEL); |
| if (!zone) |
| return NULL; |
| |
| zone->start = start; |
| zone->end = end; |
| INIT_LIST_HEAD(&zone->list); |
| spin_lock_init(&zone->lock); |
| zone->locked = 0; |
| kref_init(&zone->refcnt); |
| zone->elems = 0; |
| zone->device = dev; /* our device always sits at index 0 */ |
| for (i = 0; i < bbio->num_stripes; ++i) { |
| /* bounds have already been checked */ |
| zone->devs[i] = bbio->stripes[i].dev; |
| } |
| zone->ndevs = bbio->num_stripes; |
| |
| spin_lock(&fs_info->reada_lock); |
| ret = radix_tree_insert(&dev->reada_zones, |
| (unsigned long)(zone->end >> PAGE_SHIFT), |
| zone); |
| |
| if (ret == -EEXIST) { |
| kfree(zone); |
| ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, |
| logical >> PAGE_SHIFT, 1); |
| if (ret == 1 && logical >= zone->start && logical <= zone->end) |
| kref_get(&zone->refcnt); |
| else |
| zone = NULL; |
| } |
| spin_unlock(&fs_info->reada_lock); |
| |
| return zone; |
| } |
| |
| static struct reada_extent *reada_find_extent(struct btrfs_root *root, |
| u64 logical, |
| struct btrfs_key *top) |
| { |
| int ret; |
| struct reada_extent *re = NULL; |
| struct reada_extent *re_exist = NULL; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_bio *bbio = NULL; |
| struct btrfs_device *dev; |
| struct btrfs_device *prev_dev; |
| u32 blocksize; |
| u64 length; |
| int real_stripes; |
| int nzones = 0; |
| unsigned long index = logical >> PAGE_SHIFT; |
| int dev_replace_is_ongoing; |
| int have_zone = 0; |
| |
| spin_lock(&fs_info->reada_lock); |
| re = radix_tree_lookup(&fs_info->reada_tree, index); |
| if (re) |
| re->refcnt++; |
| spin_unlock(&fs_info->reada_lock); |
| |
| if (re) |
| return re; |
| |
| re = kzalloc(sizeof(*re), GFP_KERNEL); |
| if (!re) |
| return NULL; |
| |
| blocksize = root->nodesize; |
| re->logical = logical; |
| re->top = *top; |
| INIT_LIST_HEAD(&re->extctl); |
| spin_lock_init(&re->lock); |
| re->refcnt = 1; |
| |
| /* |
| * map block |
| */ |
| length = blocksize; |
| ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length, |
| &bbio, 0); |
| if (ret || !bbio || length < blocksize) |
| goto error; |
| |
| if (bbio->num_stripes > BTRFS_MAX_MIRRORS) { |
| btrfs_err(root->fs_info, |
| "readahead: more than %d copies not supported", |
| BTRFS_MAX_MIRRORS); |
| goto error; |
| } |
| |
| real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
| for (nzones = 0; nzones < real_stripes; ++nzones) { |
| struct reada_zone *zone; |
| |
| dev = bbio->stripes[nzones].dev; |
| |
| /* cannot read ahead on missing device. */ |
| if (!dev->bdev) |
| continue; |
| |
| zone = reada_find_zone(fs_info, dev, logical, bbio); |
| if (!zone) |
| continue; |
| |
| re->zones[re->nzones++] = zone; |
| spin_lock(&zone->lock); |
| if (!zone->elems) |
| kref_get(&zone->refcnt); |
| ++zone->elems; |
| spin_unlock(&zone->lock); |
| spin_lock(&fs_info->reada_lock); |
| kref_put(&zone->refcnt, reada_zone_release); |
| spin_unlock(&fs_info->reada_lock); |
| } |
| if (re->nzones == 0) { |
| /* not a single zone found, error and out */ |
| goto error; |
| } |
| |
| /* insert extent in reada_tree + all per-device trees, all or nothing */ |
| btrfs_dev_replace_lock(&fs_info->dev_replace, 0); |
| spin_lock(&fs_info->reada_lock); |
| ret = radix_tree_insert(&fs_info->reada_tree, index, re); |
| if (ret == -EEXIST) { |
| re_exist = radix_tree_lookup(&fs_info->reada_tree, index); |
| BUG_ON(!re_exist); |
| re_exist->refcnt++; |
| spin_unlock(&fs_info->reada_lock); |
| btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); |
| goto error; |
| } |
| if (ret) { |
| spin_unlock(&fs_info->reada_lock); |
| btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); |
| goto error; |
| } |
| prev_dev = NULL; |
| dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing( |
| &fs_info->dev_replace); |
| for (nzones = 0; nzones < re->nzones; ++nzones) { |
| dev = re->zones[nzones]->device; |
| |
| if (dev == prev_dev) { |
| /* |
| * in case of DUP, just add the first zone. As both |
| * are on the same device, there's nothing to gain |
| * from adding both. |
| * Also, it wouldn't work, as the tree is per device |
| * and adding would fail with EEXIST |
| */ |
| continue; |
| } |
| if (!dev->bdev) |
| continue; |
| |
| if (dev_replace_is_ongoing && |
| dev == fs_info->dev_replace.tgtdev) { |
| /* |
| * as this device is selected for reading only as |
| * a last resort, skip it for read ahead. |
| */ |
| continue; |
| } |
| prev_dev = dev; |
| ret = radix_tree_insert(&dev->reada_extents, index, re); |
| if (ret) { |
| while (--nzones >= 0) { |
| dev = re->zones[nzones]->device; |
| BUG_ON(dev == NULL); |
| /* ignore whether the entry was inserted */ |
| radix_tree_delete(&dev->reada_extents, index); |
| } |
| BUG_ON(fs_info == NULL); |
| radix_tree_delete(&fs_info->reada_tree, index); |
| spin_unlock(&fs_info->reada_lock); |
| btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); |
| goto error; |
| } |
| have_zone = 1; |
| } |
| spin_unlock(&fs_info->reada_lock); |
| btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); |
| |
| if (!have_zone) |
| goto error; |
| |
| btrfs_put_bbio(bbio); |
| return re; |
| |
| error: |
| for (nzones = 0; nzones < re->nzones; ++nzones) { |
| struct reada_zone *zone; |
| |
| zone = re->zones[nzones]; |
| kref_get(&zone->refcnt); |
| spin_lock(&zone->lock); |
| --zone->elems; |
| if (zone->elems == 0) { |
| /* |
| * no fs_info->reada_lock needed, as this can't be |
| * the last ref |
| */ |
| kref_put(&zone->refcnt, reada_zone_release); |
| } |
| spin_unlock(&zone->lock); |
| |
| spin_lock(&fs_info->reada_lock); |
| kref_put(&zone->refcnt, reada_zone_release); |
| spin_unlock(&fs_info->reada_lock); |
| } |
| btrfs_put_bbio(bbio); |
| kfree(re); |
| return re_exist; |
| } |
| |
| static void reada_extent_put(struct btrfs_fs_info *fs_info, |
| struct reada_extent *re) |
| { |
| int i; |
| unsigned long index = re->logical >> PAGE_SHIFT; |
| |
| spin_lock(&fs_info->reada_lock); |
| if (--re->refcnt) { |
| spin_unlock(&fs_info->reada_lock); |
| return; |
| } |
| |
| radix_tree_delete(&fs_info->reada_tree, index); |
| for (i = 0; i < re->nzones; ++i) { |
| struct reada_zone *zone = re->zones[i]; |
| |
| radix_tree_delete(&zone->device->reada_extents, index); |
| } |
| |
| spin_unlock(&fs_info->reada_lock); |
| |
| for (i = 0; i < re->nzones; ++i) { |
| struct reada_zone *zone = re->zones[i]; |
| |
| kref_get(&zone->refcnt); |
| spin_lock(&zone->lock); |
| --zone->elems; |
| if (zone->elems == 0) { |
| /* no fs_info->reada_lock needed, as this can't be |
| * the last ref */ |
| kref_put(&zone->refcnt, reada_zone_release); |
| } |
| spin_unlock(&zone->lock); |
| |
| spin_lock(&fs_info->reada_lock); |
| kref_put(&zone->refcnt, reada_zone_release); |
| spin_unlock(&fs_info->reada_lock); |
| } |
| |
| kfree(re); |
| } |
| |
| static void reada_zone_release(struct kref *kref) |
| { |
| struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); |
| |
| radix_tree_delete(&zone->device->reada_zones, |
| zone->end >> PAGE_SHIFT); |
| |
| kfree(zone); |
| } |
| |
| static void reada_control_release(struct kref *kref) |
| { |
| struct reada_control *rc = container_of(kref, struct reada_control, |
| refcnt); |
| |
| kfree(rc); |
| } |
| |
| static int reada_add_block(struct reada_control *rc, u64 logical, |
| struct btrfs_key *top, u64 generation) |
| { |
| struct btrfs_root *root = rc->root; |
| struct reada_extent *re; |
| struct reada_extctl *rec; |
| |
| re = reada_find_extent(root, logical, top); /* takes one ref */ |
| if (!re) |
| return -1; |
| |
| rec = kzalloc(sizeof(*rec), GFP_KERNEL); |
| if (!rec) { |
| reada_extent_put(root->fs_info, re); |
| return -ENOMEM; |
| } |
| |
| rec->rc = rc; |
| rec->generation = generation; |
| atomic_inc(&rc->elems); |
| |
| spin_lock(&re->lock); |
| list_add_tail(&rec->list, &re->extctl); |
| spin_unlock(&re->lock); |
| |
| /* leave the ref on the extent */ |
| |
| return 0; |
| } |
| |
| /* |
| * called with fs_info->reada_lock held |
| */ |
| static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) |
| { |
| int i; |
| unsigned long index = zone->end >> PAGE_SHIFT; |
| |
| for (i = 0; i < zone->ndevs; ++i) { |
| struct reada_zone *peer; |
| peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); |
| if (peer && peer->device != zone->device) |
| peer->locked = lock; |
| } |
| } |
| |
| /* |
| * called with fs_info->reada_lock held |
| */ |
| static int reada_pick_zone(struct btrfs_device *dev) |
| { |
| struct reada_zone *top_zone = NULL; |
| struct reada_zone *top_locked_zone = NULL; |
| u64 top_elems = 0; |
| u64 top_locked_elems = 0; |
| unsigned long index = 0; |
| int ret; |
| |
| if (dev->reada_curr_zone) { |
| reada_peer_zones_set_lock(dev->reada_curr_zone, 0); |
| kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); |
| dev->reada_curr_zone = NULL; |
| } |
| /* pick the zone with the most elements */ |
| while (1) { |
| struct reada_zone *zone; |
| |
| ret = radix_tree_gang_lookup(&dev->reada_zones, |
| (void **)&zone, index, 1); |
| if (ret == 0) |
| break; |
| index = (zone->end >> PAGE_SHIFT) + 1; |
| if (zone->locked) { |
| if (zone->elems > top_locked_elems) { |
| top_locked_elems = zone->elems; |
| top_locked_zone = zone; |
| } |
| } else { |
| if (zone->elems > top_elems) { |
| top_elems = zone->elems; |
| top_zone = zone; |
| } |
| } |
| } |
| if (top_zone) |
| dev->reada_curr_zone = top_zone; |
| else if (top_locked_zone) |
| dev->reada_curr_zone = top_locked_zone; |
| else |
| return 0; |
| |
| dev->reada_next = dev->reada_curr_zone->start; |
| kref_get(&dev->reada_curr_zone->refcnt); |
| reada_peer_zones_set_lock(dev->reada_curr_zone, 1); |
| |
| return 1; |
| } |
| |
| static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *dev) |
| { |
| struct reada_extent *re = NULL; |
| int mirror_num = 0; |
| struct extent_buffer *eb = NULL; |
| u64 logical; |
| int ret; |
| int i; |
| |
| spin_lock(&fs_info->reada_lock); |
| if (dev->reada_curr_zone == NULL) { |
| ret = reada_pick_zone(dev); |
| if (!ret) { |
| spin_unlock(&fs_info->reada_lock); |
| return 0; |
| } |
| } |
| /* |
| * FIXME currently we issue the reads one extent at a time. If we have |
| * a contiguous block of extents, we could also coagulate them or use |
| * plugging to speed things up |
| */ |
| ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, |
| dev->reada_next >> PAGE_SHIFT, 1); |
| if (ret == 0 || re->logical > dev->reada_curr_zone->end) { |
| ret = reada_pick_zone(dev); |
| if (!ret) { |
| spin_unlock(&fs_info->reada_lock); |
| return 0; |
| } |
| re = NULL; |
| ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, |
| dev->reada_next >> PAGE_SHIFT, 1); |
| } |
| if (ret == 0) { |
| spin_unlock(&fs_info->reada_lock); |
| return 0; |
| } |
| dev->reada_next = re->logical + fs_info->tree_root->nodesize; |
| re->refcnt++; |
| |
| spin_unlock(&fs_info->reada_lock); |
| |
| spin_lock(&re->lock); |
| if (re->scheduled || list_empty(&re->extctl)) { |
| spin_unlock(&re->lock); |
| reada_extent_put(fs_info, re); |
| return 0; |
| } |
| re->scheduled = 1; |
| spin_unlock(&re->lock); |
| |
| /* |
| * find mirror num |
| */ |
| for (i = 0; i < re->nzones; ++i) { |
| if (re->zones[i]->device == dev) { |
| mirror_num = i + 1; |
| break; |
| } |
| } |
| logical = re->logical; |
| |
| atomic_inc(&dev->reada_in_flight); |
| ret = reada_tree_block_flagged(fs_info->extent_root, logical, |
| mirror_num, &eb); |
| if (ret) |
| __readahead_hook(fs_info, re, NULL, logical, ret); |
| else if (eb) |
| __readahead_hook(fs_info, re, eb, eb->start, ret); |
| |
| if (eb) |
| free_extent_buffer(eb); |
| |
| atomic_dec(&dev->reada_in_flight); |
| reada_extent_put(fs_info, re); |
| |
| return 1; |
| |
| } |
| |
| static void reada_start_machine_worker(struct btrfs_work *work) |
| { |
| struct reada_machine_work *rmw; |
| struct btrfs_fs_info *fs_info; |
| int old_ioprio; |
| |
| rmw = container_of(work, struct reada_machine_work, work); |
| fs_info = rmw->fs_info; |
| |
| kfree(rmw); |
| |
| old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current), |
| task_nice_ioprio(current)); |
| set_task_ioprio(current, BTRFS_IOPRIO_READA); |
| __reada_start_machine(fs_info); |
| set_task_ioprio(current, old_ioprio); |
| |
| atomic_dec(&fs_info->reada_works_cnt); |
| } |
| |
| static void __reada_start_machine(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 enqueued; |
| u64 total = 0; |
| int i; |
| |
| again: |
| do { |
| enqueued = 0; |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (atomic_read(&device->reada_in_flight) < |
| MAX_IN_FLIGHT) |
| enqueued += reada_start_machine_dev(fs_info, |
| device); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| total += enqueued; |
| } while (enqueued && total < 10000); |
| if (fs_devices->seed) { |
| fs_devices = fs_devices->seed; |
| goto again; |
| } |
| |
| if (enqueued == 0) |
| return; |
| |
| /* |
| * If everything is already in the cache, this is effectively single |
| * threaded. To a) not hold the caller for too long and b) to utilize |
| * more cores, we broke the loop above after 10000 iterations and now |
| * enqueue to workers to finish it. This will distribute the load to |
| * the cores. |
| */ |
| for (i = 0; i < 2; ++i) { |
| reada_start_machine(fs_info); |
| if (atomic_read(&fs_info->reada_works_cnt) > |
| BTRFS_MAX_MIRRORS * 2) |
| break; |
| } |
| } |
| |
| static void reada_start_machine(struct btrfs_fs_info *fs_info) |
| { |
| struct reada_machine_work *rmw; |
| |
| rmw = kzalloc(sizeof(*rmw), GFP_KERNEL); |
| if (!rmw) { |
| /* FIXME we cannot handle this properly right now */ |
| BUG(); |
| } |
| btrfs_init_work(&rmw->work, btrfs_readahead_helper, |
| reada_start_machine_worker, NULL, NULL); |
| rmw->fs_info = fs_info; |
| |
| btrfs_queue_work(fs_info->readahead_workers, &rmw->work); |
| atomic_inc(&fs_info->reada_works_cnt); |
| } |
| |
| #ifdef DEBUG |
| static void dump_devs(struct btrfs_fs_info *fs_info, int all) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| unsigned long index; |
| int ret; |
| int i; |
| int j; |
| int cnt; |
| |
| spin_lock(&fs_info->reada_lock); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid, |
| atomic_read(&device->reada_in_flight)); |
| index = 0; |
| while (1) { |
| struct reada_zone *zone; |
| ret = radix_tree_gang_lookup(&device->reada_zones, |
| (void **)&zone, index, 1); |
| if (ret == 0) |
| break; |
| pr_debug(" zone %llu-%llu elems %llu locked %d devs", |
| zone->start, zone->end, zone->elems, |
| zone->locked); |
| for (j = 0; j < zone->ndevs; ++j) { |
| pr_cont(" %lld", |
| zone->devs[j]->devid); |
| } |
| if (device->reada_curr_zone == zone) |
| pr_cont(" curr off %llu", |
| device->reada_next - zone->start); |
| pr_cont("\n"); |
| index = (zone->end >> PAGE_SHIFT) + 1; |
| } |
| cnt = 0; |
| index = 0; |
| while (all) { |
| struct reada_extent *re = NULL; |
| |
| ret = radix_tree_gang_lookup(&device->reada_extents, |
| (void **)&re, index, 1); |
| if (ret == 0) |
| break; |
| pr_debug(" re: logical %llu size %u empty %d scheduled %d", |
| re->logical, fs_info->tree_root->nodesize, |
| list_empty(&re->extctl), re->scheduled); |
| |
| for (i = 0; i < re->nzones; ++i) { |
| pr_cont(" zone %llu-%llu devs", |
| re->zones[i]->start, |
| re->zones[i]->end); |
| for (j = 0; j < re->zones[i]->ndevs; ++j) { |
| pr_cont(" %lld", |
| re->zones[i]->devs[j]->devid); |
| } |
| } |
| pr_cont("\n"); |
| index = (re->logical >> PAGE_SHIFT) + 1; |
| if (++cnt > 15) |
| break; |
| } |
| } |
| |
| index = 0; |
| cnt = 0; |
| while (all) { |
| struct reada_extent *re = NULL; |
| |
| ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, |
| index, 1); |
| if (ret == 0) |
| break; |
| if (!re->scheduled) { |
| index = (re->logical >> PAGE_SHIFT) + 1; |
| continue; |
| } |
| pr_debug("re: logical %llu size %u list empty %d scheduled %d", |
| re->logical, fs_info->tree_root->nodesize, |
| list_empty(&re->extctl), re->scheduled); |
| for (i = 0; i < re->nzones; ++i) { |
| pr_cont(" zone %llu-%llu devs", |
| re->zones[i]->start, |
| re->zones[i]->end); |
| for (j = 0; j < re->zones[i]->ndevs; ++j) { |
| pr_cont(" %lld", |
| re->zones[i]->devs[j]->devid); |
| } |
| } |
| pr_cont("\n"); |
| index = (re->logical >> PAGE_SHIFT) + 1; |
| } |
| spin_unlock(&fs_info->reada_lock); |
| } |
| #endif |
| |
| /* |
| * interface |
| */ |
| struct reada_control *btrfs_reada_add(struct btrfs_root *root, |
| struct btrfs_key *key_start, struct btrfs_key *key_end) |
| { |
| struct reada_control *rc; |
| u64 start; |
| u64 generation; |
| int ret; |
| struct extent_buffer *node; |
| static struct btrfs_key max_key = { |
| .objectid = (u64)-1, |
| .type = (u8)-1, |
| .offset = (u64)-1 |
| }; |
| |
| rc = kzalloc(sizeof(*rc), GFP_KERNEL); |
| if (!rc) |
| return ERR_PTR(-ENOMEM); |
| |
| rc->root = root; |
| rc->key_start = *key_start; |
| rc->key_end = *key_end; |
| atomic_set(&rc->elems, 0); |
| init_waitqueue_head(&rc->wait); |
| kref_init(&rc->refcnt); |
| kref_get(&rc->refcnt); /* one ref for having elements */ |
| |
| node = btrfs_root_node(root); |
| start = node->start; |
| generation = btrfs_header_generation(node); |
| free_extent_buffer(node); |
| |
| ret = reada_add_block(rc, start, &max_key, generation); |
| if (ret) { |
| kfree(rc); |
| return ERR_PTR(ret); |
| } |
| |
| reada_start_machine(root->fs_info); |
| |
| return rc; |
| } |
| |
| #ifdef DEBUG |
| int btrfs_reada_wait(void *handle) |
| { |
| struct reada_control *rc = handle; |
| struct btrfs_fs_info *fs_info = rc->root->fs_info; |
| |
| while (atomic_read(&rc->elems)) { |
| if (!atomic_read(&fs_info->reada_works_cnt)) |
| reada_start_machine(fs_info); |
| wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, |
| 5 * HZ); |
| dump_devs(rc->root->fs_info, |
| atomic_read(&rc->elems) < 10 ? 1 : 0); |
| } |
| |
| dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0); |
| |
| kref_put(&rc->refcnt, reada_control_release); |
| |
| return 0; |
| } |
| #else |
| int btrfs_reada_wait(void *handle) |
| { |
| struct reada_control *rc = handle; |
| struct btrfs_fs_info *fs_info = rc->root->fs_info; |
| |
| while (atomic_read(&rc->elems)) { |
| if (!atomic_read(&fs_info->reada_works_cnt)) |
| reada_start_machine(fs_info); |
| wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, |
| (HZ + 9) / 10); |
| } |
| |
| kref_put(&rc->refcnt, reada_control_release); |
| |
| return 0; |
| } |
| #endif |
| |
| void btrfs_reada_detach(void *handle) |
| { |
| struct reada_control *rc = handle; |
| |
| kref_put(&rc->refcnt, reada_control_release); |
| } |