| #ifndef _ASM_X86_PARAVIRT_H |
| #define _ASM_X86_PARAVIRT_H |
| /* Various instructions on x86 need to be replaced for |
| * para-virtualization: those hooks are defined here. */ |
| |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/page.h> |
| #include <asm/asm.h> |
| |
| /* Bitmask of what can be clobbered: usually at least eax. */ |
| #define CLBR_NONE 0 |
| #define CLBR_EAX (1 << 0) |
| #define CLBR_ECX (1 << 1) |
| #define CLBR_EDX (1 << 2) |
| |
| #ifdef CONFIG_X86_64 |
| #define CLBR_RSI (1 << 3) |
| #define CLBR_RDI (1 << 4) |
| #define CLBR_R8 (1 << 5) |
| #define CLBR_R9 (1 << 6) |
| #define CLBR_R10 (1 << 7) |
| #define CLBR_R11 (1 << 8) |
| #define CLBR_ANY ((1 << 9) - 1) |
| #include <asm/desc_defs.h> |
| #else |
| /* CLBR_ANY should match all regs platform has. For i386, that's just it */ |
| #define CLBR_ANY ((1 << 3) - 1) |
| #endif /* X86_64 */ |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/types.h> |
| #include <linux/cpumask.h> |
| #include <asm/kmap_types.h> |
| #include <asm/desc_defs.h> |
| |
| struct page; |
| struct thread_struct; |
| struct desc_ptr; |
| struct tss_struct; |
| struct mm_struct; |
| struct desc_struct; |
| |
| /* general info */ |
| struct pv_info { |
| unsigned int kernel_rpl; |
| int shared_kernel_pmd; |
| int paravirt_enabled; |
| const char *name; |
| }; |
| |
| struct pv_init_ops { |
| /* |
| * Patch may replace one of the defined code sequences with |
| * arbitrary code, subject to the same register constraints. |
| * This generally means the code is not free to clobber any |
| * registers other than EAX. The patch function should return |
| * the number of bytes of code generated, as we nop pad the |
| * rest in generic code. |
| */ |
| unsigned (*patch)(u8 type, u16 clobber, void *insnbuf, |
| unsigned long addr, unsigned len); |
| |
| /* Basic arch-specific setup */ |
| void (*arch_setup)(void); |
| char *(*memory_setup)(void); |
| void (*post_allocator_init)(void); |
| |
| /* Print a banner to identify the environment */ |
| void (*banner)(void); |
| }; |
| |
| |
| struct pv_lazy_ops { |
| /* Set deferred update mode, used for batching operations. */ |
| void (*enter)(void); |
| void (*leave)(void); |
| }; |
| |
| struct pv_time_ops { |
| void (*time_init)(void); |
| |
| /* Set and set time of day */ |
| unsigned long (*get_wallclock)(void); |
| int (*set_wallclock)(unsigned long); |
| |
| unsigned long long (*sched_clock)(void); |
| unsigned long (*get_tsc_khz)(void); |
| }; |
| |
| struct pv_cpu_ops { |
| /* hooks for various privileged instructions */ |
| unsigned long (*get_debugreg)(int regno); |
| void (*set_debugreg)(int regno, unsigned long value); |
| |
| void (*clts)(void); |
| |
| unsigned long (*read_cr0)(void); |
| void (*write_cr0)(unsigned long); |
| |
| unsigned long (*read_cr4_safe)(void); |
| unsigned long (*read_cr4)(void); |
| void (*write_cr4)(unsigned long); |
| |
| #ifdef CONFIG_X86_64 |
| unsigned long (*read_cr8)(void); |
| void (*write_cr8)(unsigned long); |
| #endif |
| |
| /* Segment descriptor handling */ |
| void (*load_tr_desc)(void); |
| void (*load_gdt)(const struct desc_ptr *); |
| void (*load_idt)(const struct desc_ptr *); |
| void (*store_gdt)(struct desc_ptr *); |
| void (*store_idt)(struct desc_ptr *); |
| void (*set_ldt)(const void *desc, unsigned entries); |
| unsigned long (*store_tr)(void); |
| void (*load_tls)(struct thread_struct *t, unsigned int cpu); |
| #ifdef CONFIG_X86_64 |
| void (*load_gs_index)(unsigned int idx); |
| #endif |
| void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum, |
| const void *desc); |
| void (*write_gdt_entry)(struct desc_struct *, |
| int entrynum, const void *desc, int size); |
| void (*write_idt_entry)(gate_desc *, |
| int entrynum, const gate_desc *gate); |
| void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries); |
| void (*free_ldt)(struct desc_struct *ldt, unsigned entries); |
| |
| void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t); |
| |
| void (*set_iopl_mask)(unsigned mask); |
| |
| void (*wbinvd)(void); |
| void (*io_delay)(void); |
| |
| /* cpuid emulation, mostly so that caps bits can be disabled */ |
| void (*cpuid)(unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx); |
| |
| /* MSR, PMC and TSR operations. |
| err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */ |
| u64 (*read_msr_amd)(unsigned int msr, int *err); |
| u64 (*read_msr)(unsigned int msr, int *err); |
| int (*write_msr)(unsigned int msr, unsigned low, unsigned high); |
| |
| u64 (*read_tsc)(void); |
| u64 (*read_pmc)(int counter); |
| unsigned long long (*read_tscp)(unsigned int *aux); |
| |
| /* |
| * Atomically enable interrupts and return to userspace. This |
| * is only ever used to return to 32-bit processes; in a |
| * 64-bit kernel, it's used for 32-on-64 compat processes, but |
| * never native 64-bit processes. (Jump, not call.) |
| */ |
| void (*irq_enable_sysexit)(void); |
| |
| /* |
| * Switch to usermode gs and return to 64-bit usermode using |
| * sysret. Only used in 64-bit kernels to return to 64-bit |
| * processes. Usermode register state, including %rsp, must |
| * already be restored. |
| */ |
| void (*usergs_sysret64)(void); |
| |
| /* |
| * Switch to usermode gs and return to 32-bit usermode using |
| * sysret. Used to return to 32-on-64 compat processes. |
| * Other usermode register state, including %esp, must already |
| * be restored. |
| */ |
| void (*usergs_sysret32)(void); |
| |
| /* Normal iret. Jump to this with the standard iret stack |
| frame set up. */ |
| void (*iret)(void); |
| |
| void (*swapgs)(void); |
| |
| struct pv_lazy_ops lazy_mode; |
| }; |
| |
| struct pv_irq_ops { |
| void (*init_IRQ)(void); |
| |
| /* |
| * Get/set interrupt state. save_fl and restore_fl are only |
| * expected to use X86_EFLAGS_IF; all other bits |
| * returned from save_fl are undefined, and may be ignored by |
| * restore_fl. |
| */ |
| unsigned long (*save_fl)(void); |
| void (*restore_fl)(unsigned long); |
| void (*irq_disable)(void); |
| void (*irq_enable)(void); |
| void (*safe_halt)(void); |
| void (*halt)(void); |
| |
| #ifdef CONFIG_X86_64 |
| void (*adjust_exception_frame)(void); |
| #endif |
| }; |
| |
| struct pv_apic_ops { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| void (*setup_boot_clock)(void); |
| void (*setup_secondary_clock)(void); |
| |
| void (*startup_ipi_hook)(int phys_apicid, |
| unsigned long start_eip, |
| unsigned long start_esp); |
| #endif |
| }; |
| |
| struct pv_mmu_ops { |
| /* |
| * Called before/after init_mm pagetable setup. setup_start |
| * may reset %cr3, and may pre-install parts of the pagetable; |
| * pagetable setup is expected to preserve any existing |
| * mapping. |
| */ |
| void (*pagetable_setup_start)(pgd_t *pgd_base); |
| void (*pagetable_setup_done)(pgd_t *pgd_base); |
| |
| unsigned long (*read_cr2)(void); |
| void (*write_cr2)(unsigned long); |
| |
| unsigned long (*read_cr3)(void); |
| void (*write_cr3)(unsigned long); |
| |
| /* |
| * Hooks for intercepting the creation/use/destruction of an |
| * mm_struct. |
| */ |
| void (*activate_mm)(struct mm_struct *prev, |
| struct mm_struct *next); |
| void (*dup_mmap)(struct mm_struct *oldmm, |
| struct mm_struct *mm); |
| void (*exit_mmap)(struct mm_struct *mm); |
| |
| |
| /* TLB operations */ |
| void (*flush_tlb_user)(void); |
| void (*flush_tlb_kernel)(void); |
| void (*flush_tlb_single)(unsigned long addr); |
| void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm, |
| unsigned long va); |
| |
| /* Hooks for allocating and freeing a pagetable top-level */ |
| int (*pgd_alloc)(struct mm_struct *mm); |
| void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd); |
| |
| /* |
| * Hooks for allocating/releasing pagetable pages when they're |
| * attached to a pagetable |
| */ |
| void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn); |
| void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn); |
| void (*alloc_pmd_clone)(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count); |
| void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn); |
| void (*release_pte)(unsigned long pfn); |
| void (*release_pmd)(unsigned long pfn); |
| void (*release_pud)(unsigned long pfn); |
| |
| /* Pagetable manipulation functions */ |
| void (*set_pte)(pte_t *ptep, pte_t pteval); |
| void (*set_pte_at)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pteval); |
| void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval); |
| void (*pte_update)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep); |
| void (*pte_update_defer)(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep); |
| |
| pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep); |
| void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte); |
| |
| pteval_t (*pte_val)(pte_t); |
| pteval_t (*pte_flags)(pte_t); |
| pte_t (*make_pte)(pteval_t pte); |
| |
| pgdval_t (*pgd_val)(pgd_t); |
| pgd_t (*make_pgd)(pgdval_t pgd); |
| |
| #if PAGETABLE_LEVELS >= 3 |
| #ifdef CONFIG_X86_PAE |
| void (*set_pte_atomic)(pte_t *ptep, pte_t pteval); |
| void (*set_pte_present)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte); |
| void (*pte_clear)(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep); |
| void (*pmd_clear)(pmd_t *pmdp); |
| |
| #endif /* CONFIG_X86_PAE */ |
| |
| void (*set_pud)(pud_t *pudp, pud_t pudval); |
| |
| pmdval_t (*pmd_val)(pmd_t); |
| pmd_t (*make_pmd)(pmdval_t pmd); |
| |
| #if PAGETABLE_LEVELS == 4 |
| pudval_t (*pud_val)(pud_t); |
| pud_t (*make_pud)(pudval_t pud); |
| |
| void (*set_pgd)(pgd_t *pudp, pgd_t pgdval); |
| #endif /* PAGETABLE_LEVELS == 4 */ |
| #endif /* PAGETABLE_LEVELS >= 3 */ |
| |
| #ifdef CONFIG_HIGHPTE |
| void *(*kmap_atomic_pte)(struct page *page, enum km_type type); |
| #endif |
| |
| struct pv_lazy_ops lazy_mode; |
| |
| /* dom0 ops */ |
| |
| /* Sometimes the physical address is a pfn, and sometimes its |
| an mfn. We can tell which is which from the index. */ |
| void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx, |
| unsigned long phys, pgprot_t flags); |
| }; |
| |
| struct raw_spinlock; |
| struct pv_lock_ops { |
| int (*spin_is_locked)(struct raw_spinlock *lock); |
| int (*spin_is_contended)(struct raw_spinlock *lock); |
| void (*spin_lock)(struct raw_spinlock *lock); |
| void (*spin_lock_flags)(struct raw_spinlock *lock, unsigned long flags); |
| int (*spin_trylock)(struct raw_spinlock *lock); |
| void (*spin_unlock)(struct raw_spinlock *lock); |
| }; |
| |
| /* This contains all the paravirt structures: we get a convenient |
| * number for each function using the offset which we use to indicate |
| * what to patch. */ |
| struct paravirt_patch_template { |
| struct pv_init_ops pv_init_ops; |
| struct pv_time_ops pv_time_ops; |
| struct pv_cpu_ops pv_cpu_ops; |
| struct pv_irq_ops pv_irq_ops; |
| struct pv_apic_ops pv_apic_ops; |
| struct pv_mmu_ops pv_mmu_ops; |
| struct pv_lock_ops pv_lock_ops; |
| }; |
| |
| extern struct pv_info pv_info; |
| extern struct pv_init_ops pv_init_ops; |
| extern struct pv_time_ops pv_time_ops; |
| extern struct pv_cpu_ops pv_cpu_ops; |
| extern struct pv_irq_ops pv_irq_ops; |
| extern struct pv_apic_ops pv_apic_ops; |
| extern struct pv_mmu_ops pv_mmu_ops; |
| extern struct pv_lock_ops pv_lock_ops; |
| |
| #define PARAVIRT_PATCH(x) \ |
| (offsetof(struct paravirt_patch_template, x) / sizeof(void *)) |
| |
| #define paravirt_type(op) \ |
| [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \ |
| [paravirt_opptr] "m" (op) |
| #define paravirt_clobber(clobber) \ |
| [paravirt_clobber] "i" (clobber) |
| |
| /* |
| * Generate some code, and mark it as patchable by the |
| * apply_paravirt() alternate instruction patcher. |
| */ |
| #define _paravirt_alt(insn_string, type, clobber) \ |
| "771:\n\t" insn_string "\n" "772:\n" \ |
| ".pushsection .parainstructions,\"a\"\n" \ |
| _ASM_ALIGN "\n" \ |
| _ASM_PTR " 771b\n" \ |
| " .byte " type "\n" \ |
| " .byte 772b-771b\n" \ |
| " .short " clobber "\n" \ |
| ".popsection\n" |
| |
| /* Generate patchable code, with the default asm parameters. */ |
| #define paravirt_alt(insn_string) \ |
| _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]") |
| |
| /* Simple instruction patching code. */ |
| #define DEF_NATIVE(ops, name, code) \ |
| extern const char start_##ops##_##name[], end_##ops##_##name[]; \ |
| asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":") |
| |
| unsigned paravirt_patch_nop(void); |
| unsigned paravirt_patch_ignore(unsigned len); |
| unsigned paravirt_patch_call(void *insnbuf, |
| const void *target, u16 tgt_clobbers, |
| unsigned long addr, u16 site_clobbers, |
| unsigned len); |
| unsigned paravirt_patch_jmp(void *insnbuf, const void *target, |
| unsigned long addr, unsigned len); |
| unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf, |
| unsigned long addr, unsigned len); |
| |
| unsigned paravirt_patch_insns(void *insnbuf, unsigned len, |
| const char *start, const char *end); |
| |
| unsigned native_patch(u8 type, u16 clobbers, void *ibuf, |
| unsigned long addr, unsigned len); |
| |
| int paravirt_disable_iospace(void); |
| |
| /* |
| * This generates an indirect call based on the operation type number. |
| * The type number, computed in PARAVIRT_PATCH, is derived from the |
| * offset into the paravirt_patch_template structure, and can therefore be |
| * freely converted back into a structure offset. |
| */ |
| #define PARAVIRT_CALL "call *%[paravirt_opptr];" |
| |
| /* |
| * These macros are intended to wrap calls through one of the paravirt |
| * ops structs, so that they can be later identified and patched at |
| * runtime. |
| * |
| * Normally, a call to a pv_op function is a simple indirect call: |
| * (pv_op_struct.operations)(args...). |
| * |
| * Unfortunately, this is a relatively slow operation for modern CPUs, |
| * because it cannot necessarily determine what the destination |
| * address is. In this case, the address is a runtime constant, so at |
| * the very least we can patch the call to e a simple direct call, or |
| * ideally, patch an inline implementation into the callsite. (Direct |
| * calls are essentially free, because the call and return addresses |
| * are completely predictable.) |
| * |
| * For i386, these macros rely on the standard gcc "regparm(3)" calling |
| * convention, in which the first three arguments are placed in %eax, |
| * %edx, %ecx (in that order), and the remaining arguments are placed |
| * on the stack. All caller-save registers (eax,edx,ecx) are expected |
| * to be modified (either clobbered or used for return values). |
| * X86_64, on the other hand, already specifies a register-based calling |
| * conventions, returning at %rax, with parameteres going on %rdi, %rsi, |
| * %rdx, and %rcx. Note that for this reason, x86_64 does not need any |
| * special handling for dealing with 4 arguments, unlike i386. |
| * However, x86_64 also have to clobber all caller saved registers, which |
| * unfortunately, are quite a bit (r8 - r11) |
| * |
| * The call instruction itself is marked by placing its start address |
| * and size into the .parainstructions section, so that |
| * apply_paravirt() in arch/i386/kernel/alternative.c can do the |
| * appropriate patching under the control of the backend pv_init_ops |
| * implementation. |
| * |
| * Unfortunately there's no way to get gcc to generate the args setup |
| * for the call, and then allow the call itself to be generated by an |
| * inline asm. Because of this, we must do the complete arg setup and |
| * return value handling from within these macros. This is fairly |
| * cumbersome. |
| * |
| * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments. |
| * It could be extended to more arguments, but there would be little |
| * to be gained from that. For each number of arguments, there are |
| * the two VCALL and CALL variants for void and non-void functions. |
| * |
| * When there is a return value, the invoker of the macro must specify |
| * the return type. The macro then uses sizeof() on that type to |
| * determine whether its a 32 or 64 bit value, and places the return |
| * in the right register(s) (just %eax for 32-bit, and %edx:%eax for |
| * 64-bit). For x86_64 machines, it just returns at %rax regardless of |
| * the return value size. |
| * |
| * 64-bit arguments are passed as a pair of adjacent 32-bit arguments |
| * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments |
| * in low,high order |
| * |
| * Small structures are passed and returned in registers. The macro |
| * calling convention can't directly deal with this, so the wrapper |
| * functions must do this. |
| * |
| * These PVOP_* macros are only defined within this header. This |
| * means that all uses must be wrapped in inline functions. This also |
| * makes sure the incoming and outgoing types are always correct. |
| */ |
| #ifdef CONFIG_X86_32 |
| #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx |
| #define PVOP_CALL_ARGS PVOP_VCALL_ARGS |
| #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \ |
| "=c" (__ecx) |
| #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS |
| #define EXTRA_CLOBBERS |
| #define VEXTRA_CLOBBERS |
| #else |
| #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx |
| #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax |
| #define PVOP_VCALL_CLOBBERS "=D" (__edi), \ |
| "=S" (__esi), "=d" (__edx), \ |
| "=c" (__ecx) |
| |
| #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax) |
| |
| #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11" |
| #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11" |
| #endif |
| |
| #ifdef CONFIG_PARAVIRT_DEBUG |
| #define PVOP_TEST_NULL(op) BUG_ON(op == NULL) |
| #else |
| #define PVOP_TEST_NULL(op) ((void)op) |
| #endif |
| |
| #define __PVOP_CALL(rettype, op, pre, post, ...) \ |
| ({ \ |
| rettype __ret; \ |
| PVOP_CALL_ARGS; \ |
| PVOP_TEST_NULL(op); \ |
| /* This is 32-bit specific, but is okay in 64-bit */ \ |
| /* since this condition will never hold */ \ |
| if (sizeof(rettype) > sizeof(unsigned long)) { \ |
| asm volatile(pre \ |
| paravirt_alt(PARAVIRT_CALL) \ |
| post \ |
| : PVOP_CALL_CLOBBERS \ |
| : paravirt_type(op), \ |
| paravirt_clobber(CLBR_ANY), \ |
| ##__VA_ARGS__ \ |
| : "memory", "cc" EXTRA_CLOBBERS); \ |
| __ret = (rettype)((((u64)__edx) << 32) | __eax); \ |
| } else { \ |
| asm volatile(pre \ |
| paravirt_alt(PARAVIRT_CALL) \ |
| post \ |
| : PVOP_CALL_CLOBBERS \ |
| : paravirt_type(op), \ |
| paravirt_clobber(CLBR_ANY), \ |
| ##__VA_ARGS__ \ |
| : "memory", "cc" EXTRA_CLOBBERS); \ |
| __ret = (rettype)__eax; \ |
| } \ |
| __ret; \ |
| }) |
| #define __PVOP_VCALL(op, pre, post, ...) \ |
| ({ \ |
| PVOP_VCALL_ARGS; \ |
| PVOP_TEST_NULL(op); \ |
| asm volatile(pre \ |
| paravirt_alt(PARAVIRT_CALL) \ |
| post \ |
| : PVOP_VCALL_CLOBBERS \ |
| : paravirt_type(op), \ |
| paravirt_clobber(CLBR_ANY), \ |
| ##__VA_ARGS__ \ |
| : "memory", "cc" VEXTRA_CLOBBERS); \ |
| }) |
| |
| #define PVOP_CALL0(rettype, op) \ |
| __PVOP_CALL(rettype, op, "", "") |
| #define PVOP_VCALL0(op) \ |
| __PVOP_VCALL(op, "", "") |
| |
| #define PVOP_CALL1(rettype, op, arg1) \ |
| __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1))) |
| #define PVOP_VCALL1(op, arg1) \ |
| __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1))) |
| |
| #define PVOP_CALL2(rettype, op, arg1, arg2) \ |
| __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1" ((unsigned long)(arg2))) |
| #define PVOP_VCALL2(op, arg1, arg2) \ |
| __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1" ((unsigned long)(arg2))) |
| |
| #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \ |
| __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3))) |
| #define PVOP_VCALL3(op, arg1, arg2, arg3) \ |
| __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3))) |
| |
| /* This is the only difference in x86_64. We can make it much simpler */ |
| #ifdef CONFIG_X86_32 |
| #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ |
| __PVOP_CALL(rettype, op, \ |
| "push %[_arg4];", "lea 4(%%esp),%%esp;", \ |
| "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ |
| "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) |
| #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ |
| __PVOP_VCALL(op, \ |
| "push %[_arg4];", "lea 4(%%esp),%%esp;", \ |
| "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ |
| "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) |
| #else |
| #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ |
| __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \ |
| "3"((unsigned long)(arg4))) |
| #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ |
| __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \ |
| "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \ |
| "3"((unsigned long)(arg4))) |
| #endif |
| |
| static inline int paravirt_enabled(void) |
| { |
| return pv_info.paravirt_enabled; |
| } |
| |
| static inline void load_sp0(struct tss_struct *tss, |
| struct thread_struct *thread) |
| { |
| PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread); |
| } |
| |
| #define ARCH_SETUP pv_init_ops.arch_setup(); |
| static inline unsigned long get_wallclock(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock); |
| } |
| |
| static inline int set_wallclock(unsigned long nowtime) |
| { |
| return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime); |
| } |
| |
| static inline void (*choose_time_init(void))(void) |
| { |
| return pv_time_ops.time_init; |
| } |
| |
| /* The paravirtualized CPUID instruction. */ |
| static inline void __cpuid(unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx) |
| { |
| PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx); |
| } |
| |
| /* |
| * These special macros can be used to get or set a debugging register |
| */ |
| static inline unsigned long paravirt_get_debugreg(int reg) |
| { |
| return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg); |
| } |
| #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) |
| static inline void set_debugreg(unsigned long val, int reg) |
| { |
| PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val); |
| } |
| |
| static inline void clts(void) |
| { |
| PVOP_VCALL0(pv_cpu_ops.clts); |
| } |
| |
| static inline unsigned long read_cr0(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0); |
| } |
| |
| static inline void write_cr0(unsigned long x) |
| { |
| PVOP_VCALL1(pv_cpu_ops.write_cr0, x); |
| } |
| |
| static inline unsigned long read_cr2(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2); |
| } |
| |
| static inline void write_cr2(unsigned long x) |
| { |
| PVOP_VCALL1(pv_mmu_ops.write_cr2, x); |
| } |
| |
| static inline unsigned long read_cr3(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3); |
| } |
| |
| static inline void write_cr3(unsigned long x) |
| { |
| PVOP_VCALL1(pv_mmu_ops.write_cr3, x); |
| } |
| |
| static inline unsigned long read_cr4(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4); |
| } |
| static inline unsigned long read_cr4_safe(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe); |
| } |
| |
| static inline void write_cr4(unsigned long x) |
| { |
| PVOP_VCALL1(pv_cpu_ops.write_cr4, x); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static inline unsigned long read_cr8(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8); |
| } |
| |
| static inline void write_cr8(unsigned long x) |
| { |
| PVOP_VCALL1(pv_cpu_ops.write_cr8, x); |
| } |
| #endif |
| |
| static inline void raw_safe_halt(void) |
| { |
| PVOP_VCALL0(pv_irq_ops.safe_halt); |
| } |
| |
| static inline void halt(void) |
| { |
| PVOP_VCALL0(pv_irq_ops.safe_halt); |
| } |
| |
| static inline void wbinvd(void) |
| { |
| PVOP_VCALL0(pv_cpu_ops.wbinvd); |
| } |
| |
| #define get_kernel_rpl() (pv_info.kernel_rpl) |
| |
| static inline u64 paravirt_read_msr(unsigned msr, int *err) |
| { |
| return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err); |
| } |
| static inline u64 paravirt_read_msr_amd(unsigned msr, int *err) |
| { |
| return PVOP_CALL2(u64, pv_cpu_ops.read_msr_amd, msr, err); |
| } |
| static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high) |
| { |
| return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high); |
| } |
| |
| /* These should all do BUG_ON(_err), but our headers are too tangled. */ |
| #define rdmsr(msr, val1, val2) \ |
| do { \ |
| int _err; \ |
| u64 _l = paravirt_read_msr(msr, &_err); \ |
| val1 = (u32)_l; \ |
| val2 = _l >> 32; \ |
| } while (0) |
| |
| #define wrmsr(msr, val1, val2) \ |
| do { \ |
| paravirt_write_msr(msr, val1, val2); \ |
| } while (0) |
| |
| #define rdmsrl(msr, val) \ |
| do { \ |
| int _err; \ |
| val = paravirt_read_msr(msr, &_err); \ |
| } while (0) |
| |
| #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32) |
| #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b) |
| |
| /* rdmsr with exception handling */ |
| #define rdmsr_safe(msr, a, b) \ |
| ({ \ |
| int _err; \ |
| u64 _l = paravirt_read_msr(msr, &_err); \ |
| (*a) = (u32)_l; \ |
| (*b) = _l >> 32; \ |
| _err; \ |
| }) |
| |
| static inline int rdmsrl_safe(unsigned msr, unsigned long long *p) |
| { |
| int err; |
| |
| *p = paravirt_read_msr(msr, &err); |
| return err; |
| } |
| static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) |
| { |
| int err; |
| |
| *p = paravirt_read_msr_amd(msr, &err); |
| return err; |
| } |
| |
| static inline u64 paravirt_read_tsc(void) |
| { |
| return PVOP_CALL0(u64, pv_cpu_ops.read_tsc); |
| } |
| |
| #define rdtscl(low) \ |
| do { \ |
| u64 _l = paravirt_read_tsc(); \ |
| low = (int)_l; \ |
| } while (0) |
| |
| #define rdtscll(val) (val = paravirt_read_tsc()) |
| |
| static inline unsigned long long paravirt_sched_clock(void) |
| { |
| return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock); |
| } |
| #define calibrate_tsc() (pv_time_ops.get_tsc_khz()) |
| |
| static inline unsigned long long paravirt_read_pmc(int counter) |
| { |
| return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter); |
| } |
| |
| #define rdpmc(counter, low, high) \ |
| do { \ |
| u64 _l = paravirt_read_pmc(counter); \ |
| low = (u32)_l; \ |
| high = _l >> 32; \ |
| } while (0) |
| |
| static inline unsigned long long paravirt_rdtscp(unsigned int *aux) |
| { |
| return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux); |
| } |
| |
| #define rdtscp(low, high, aux) \ |
| do { \ |
| int __aux; \ |
| unsigned long __val = paravirt_rdtscp(&__aux); \ |
| (low) = (u32)__val; \ |
| (high) = (u32)(__val >> 32); \ |
| (aux) = __aux; \ |
| } while (0) |
| |
| #define rdtscpll(val, aux) \ |
| do { \ |
| unsigned long __aux; \ |
| val = paravirt_rdtscp(&__aux); \ |
| (aux) = __aux; \ |
| } while (0) |
| |
| static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) |
| { |
| PVOP_VCALL2(pv_cpu_ops.alloc_ldt, ldt, entries); |
| } |
| |
| static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) |
| { |
| PVOP_VCALL2(pv_cpu_ops.free_ldt, ldt, entries); |
| } |
| |
| static inline void load_TR_desc(void) |
| { |
| PVOP_VCALL0(pv_cpu_ops.load_tr_desc); |
| } |
| static inline void load_gdt(const struct desc_ptr *dtr) |
| { |
| PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr); |
| } |
| static inline void load_idt(const struct desc_ptr *dtr) |
| { |
| PVOP_VCALL1(pv_cpu_ops.load_idt, dtr); |
| } |
| static inline void set_ldt(const void *addr, unsigned entries) |
| { |
| PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries); |
| } |
| static inline void store_gdt(struct desc_ptr *dtr) |
| { |
| PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr); |
| } |
| static inline void store_idt(struct desc_ptr *dtr) |
| { |
| PVOP_VCALL1(pv_cpu_ops.store_idt, dtr); |
| } |
| static inline unsigned long paravirt_store_tr(void) |
| { |
| return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr); |
| } |
| #define store_tr(tr) ((tr) = paravirt_store_tr()) |
| static inline void load_TLS(struct thread_struct *t, unsigned cpu) |
| { |
| PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static inline void load_gs_index(unsigned int gs) |
| { |
| PVOP_VCALL1(pv_cpu_ops.load_gs_index, gs); |
| } |
| #endif |
| |
| static inline void write_ldt_entry(struct desc_struct *dt, int entry, |
| const void *desc) |
| { |
| PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc); |
| } |
| |
| static inline void write_gdt_entry(struct desc_struct *dt, int entry, |
| void *desc, int type) |
| { |
| PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type); |
| } |
| |
| static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) |
| { |
| PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g); |
| } |
| static inline void set_iopl_mask(unsigned mask) |
| { |
| PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask); |
| } |
| |
| /* The paravirtualized I/O functions */ |
| static inline void slow_down_io(void) |
| { |
| pv_cpu_ops.io_delay(); |
| #ifdef REALLY_SLOW_IO |
| pv_cpu_ops.io_delay(); |
| pv_cpu_ops.io_delay(); |
| pv_cpu_ops.io_delay(); |
| #endif |
| } |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| static inline void setup_boot_clock(void) |
| { |
| PVOP_VCALL0(pv_apic_ops.setup_boot_clock); |
| } |
| |
| static inline void setup_secondary_clock(void) |
| { |
| PVOP_VCALL0(pv_apic_ops.setup_secondary_clock); |
| } |
| #endif |
| |
| static inline void paravirt_post_allocator_init(void) |
| { |
| if (pv_init_ops.post_allocator_init) |
| (*pv_init_ops.post_allocator_init)(); |
| } |
| |
| static inline void paravirt_pagetable_setup_start(pgd_t *base) |
| { |
| (*pv_mmu_ops.pagetable_setup_start)(base); |
| } |
| |
| static inline void paravirt_pagetable_setup_done(pgd_t *base) |
| { |
| (*pv_mmu_ops.pagetable_setup_done)(base); |
| } |
| |
| #ifdef CONFIG_SMP |
| static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip, |
| unsigned long start_esp) |
| { |
| PVOP_VCALL3(pv_apic_ops.startup_ipi_hook, |
| phys_apicid, start_eip, start_esp); |
| } |
| #endif |
| |
| static inline void paravirt_activate_mm(struct mm_struct *prev, |
| struct mm_struct *next) |
| { |
| PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next); |
| } |
| |
| static inline void arch_dup_mmap(struct mm_struct *oldmm, |
| struct mm_struct *mm) |
| { |
| PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm); |
| } |
| |
| static inline void arch_exit_mmap(struct mm_struct *mm) |
| { |
| PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm); |
| } |
| |
| static inline void __flush_tlb(void) |
| { |
| PVOP_VCALL0(pv_mmu_ops.flush_tlb_user); |
| } |
| static inline void __flush_tlb_global(void) |
| { |
| PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel); |
| } |
| static inline void __flush_tlb_single(unsigned long addr) |
| { |
| PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr); |
| } |
| |
| static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, |
| unsigned long va) |
| { |
| PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va); |
| } |
| |
| static inline int paravirt_pgd_alloc(struct mm_struct *mm) |
| { |
| return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm); |
| } |
| |
| static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| { |
| PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd); |
| } |
| |
| static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
| { |
| PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn); |
| } |
| static inline void paravirt_release_pte(unsigned long pfn) |
| { |
| PVOP_VCALL1(pv_mmu_ops.release_pte, pfn); |
| } |
| |
| static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
| { |
| PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn); |
| } |
| |
| static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn, |
| unsigned long start, unsigned long count) |
| { |
| PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count); |
| } |
| static inline void paravirt_release_pmd(unsigned long pfn) |
| { |
| PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn); |
| } |
| |
| static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
| { |
| PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn); |
| } |
| static inline void paravirt_release_pud(unsigned long pfn) |
| { |
| PVOP_VCALL1(pv_mmu_ops.release_pud, pfn); |
| } |
| |
| #ifdef CONFIG_HIGHPTE |
| static inline void *kmap_atomic_pte(struct page *page, enum km_type type) |
| { |
| unsigned long ret; |
| ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type); |
| return (void *)ret; |
| } |
| #endif |
| |
| static inline void pte_update(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep); |
| } |
| |
| static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep); |
| } |
| |
| static inline pte_t __pte(pteval_t val) |
| { |
| pteval_t ret; |
| |
| if (sizeof(pteval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pteval_t, |
| pv_mmu_ops.make_pte, |
| val, (u64)val >> 32); |
| else |
| ret = PVOP_CALL1(pteval_t, |
| pv_mmu_ops.make_pte, |
| val); |
| |
| return (pte_t) { .pte = ret }; |
| } |
| |
| static inline pteval_t pte_val(pte_t pte) |
| { |
| pteval_t ret; |
| |
| if (sizeof(pteval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val, |
| pte.pte, (u64)pte.pte >> 32); |
| else |
| ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val, |
| pte.pte); |
| |
| return ret; |
| } |
| |
| static inline pteval_t pte_flags(pte_t pte) |
| { |
| pteval_t ret; |
| |
| if (sizeof(pteval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags, |
| pte.pte, (u64)pte.pte >> 32); |
| else |
| ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags, |
| pte.pte); |
| |
| #ifdef CONFIG_PARAVIRT_DEBUG |
| BUG_ON(ret & PTE_PFN_MASK); |
| #endif |
| return ret; |
| } |
| |
| static inline pgd_t __pgd(pgdval_t val) |
| { |
| pgdval_t ret; |
| |
| if (sizeof(pgdval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd, |
| val, (u64)val >> 32); |
| else |
| ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd, |
| val); |
| |
| return (pgd_t) { ret }; |
| } |
| |
| static inline pgdval_t pgd_val(pgd_t pgd) |
| { |
| pgdval_t ret; |
| |
| if (sizeof(pgdval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val, |
| pgd.pgd, (u64)pgd.pgd >> 32); |
| else |
| ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val, |
| pgd.pgd); |
| |
| return ret; |
| } |
| |
| #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| pteval_t ret; |
| |
| ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start, |
| mm, addr, ptep); |
| |
| return (pte_t) { .pte = ret }; |
| } |
| |
| static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| if (sizeof(pteval_t) > sizeof(long)) |
| /* 5 arg words */ |
| pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte); |
| else |
| PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit, |
| mm, addr, ptep, pte.pte); |
| } |
| |
| static inline void set_pte(pte_t *ptep, pte_t pte) |
| { |
| if (sizeof(pteval_t) > sizeof(long)) |
| PVOP_VCALL3(pv_mmu_ops.set_pte, ptep, |
| pte.pte, (u64)pte.pte >> 32); |
| else |
| PVOP_VCALL2(pv_mmu_ops.set_pte, ptep, |
| pte.pte); |
| } |
| |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| if (sizeof(pteval_t) > sizeof(long)) |
| /* 5 arg words */ |
| pv_mmu_ops.set_pte_at(mm, addr, ptep, pte); |
| else |
| PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte); |
| } |
| |
| static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| pmdval_t val = native_pmd_val(pmd); |
| |
| if (sizeof(pmdval_t) > sizeof(long)) |
| PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32); |
| else |
| PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val); |
| } |
| |
| #if PAGETABLE_LEVELS >= 3 |
| static inline pmd_t __pmd(pmdval_t val) |
| { |
| pmdval_t ret; |
| |
| if (sizeof(pmdval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd, |
| val, (u64)val >> 32); |
| else |
| ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd, |
| val); |
| |
| return (pmd_t) { ret }; |
| } |
| |
| static inline pmdval_t pmd_val(pmd_t pmd) |
| { |
| pmdval_t ret; |
| |
| if (sizeof(pmdval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val, |
| pmd.pmd, (u64)pmd.pmd >> 32); |
| else |
| ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val, |
| pmd.pmd); |
| |
| return ret; |
| } |
| |
| static inline void set_pud(pud_t *pudp, pud_t pud) |
| { |
| pudval_t val = native_pud_val(pud); |
| |
| if (sizeof(pudval_t) > sizeof(long)) |
| PVOP_VCALL3(pv_mmu_ops.set_pud, pudp, |
| val, (u64)val >> 32); |
| else |
| PVOP_VCALL2(pv_mmu_ops.set_pud, pudp, |
| val); |
| } |
| #if PAGETABLE_LEVELS == 4 |
| static inline pud_t __pud(pudval_t val) |
| { |
| pudval_t ret; |
| |
| if (sizeof(pudval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud, |
| val, (u64)val >> 32); |
| else |
| ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud, |
| val); |
| |
| return (pud_t) { ret }; |
| } |
| |
| static inline pudval_t pud_val(pud_t pud) |
| { |
| pudval_t ret; |
| |
| if (sizeof(pudval_t) > sizeof(long)) |
| ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val, |
| pud.pud, (u64)pud.pud >> 32); |
| else |
| ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val, |
| pud.pud); |
| |
| return ret; |
| } |
| |
| static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) |
| { |
| pgdval_t val = native_pgd_val(pgd); |
| |
| if (sizeof(pgdval_t) > sizeof(long)) |
| PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp, |
| val, (u64)val >> 32); |
| else |
| PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp, |
| val); |
| } |
| |
| static inline void pgd_clear(pgd_t *pgdp) |
| { |
| set_pgd(pgdp, __pgd(0)); |
| } |
| |
| static inline void pud_clear(pud_t *pudp) |
| { |
| set_pud(pudp, __pud(0)); |
| } |
| |
| #endif /* PAGETABLE_LEVELS == 4 */ |
| |
| #endif /* PAGETABLE_LEVELS >= 3 */ |
| |
| #ifdef CONFIG_X86_PAE |
| /* Special-case pte-setting operations for PAE, which can't update a |
| 64-bit pte atomically */ |
| static inline void set_pte_atomic(pte_t *ptep, pte_t pte) |
| { |
| PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep, |
| pte.pte, pte.pte >> 32); |
| } |
| |
| static inline void set_pte_present(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| /* 5 arg words */ |
| pv_mmu_ops.set_pte_present(mm, addr, ptep, pte); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep); |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp); |
| } |
| #else /* !CONFIG_X86_PAE */ |
| static inline void set_pte_atomic(pte_t *ptep, pte_t pte) |
| { |
| set_pte(ptep, pte); |
| } |
| |
| static inline void set_pte_present(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| set_pte(ptep, pte); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| set_pte_at(mm, addr, ptep, __pte(0)); |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| set_pmd(pmdp, __pmd(0)); |
| } |
| #endif /* CONFIG_X86_PAE */ |
| |
| /* Lazy mode for batching updates / context switch */ |
| enum paravirt_lazy_mode { |
| PARAVIRT_LAZY_NONE, |
| PARAVIRT_LAZY_MMU, |
| PARAVIRT_LAZY_CPU, |
| }; |
| |
| enum paravirt_lazy_mode paravirt_get_lazy_mode(void); |
| void paravirt_enter_lazy_cpu(void); |
| void paravirt_leave_lazy_cpu(void); |
| void paravirt_enter_lazy_mmu(void); |
| void paravirt_leave_lazy_mmu(void); |
| void paravirt_leave_lazy(enum paravirt_lazy_mode mode); |
| |
| #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE |
| static inline void arch_enter_lazy_cpu_mode(void) |
| { |
| PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter); |
| } |
| |
| static inline void arch_leave_lazy_cpu_mode(void) |
| { |
| PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave); |
| } |
| |
| static inline void arch_flush_lazy_cpu_mode(void) |
| { |
| if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) { |
| arch_leave_lazy_cpu_mode(); |
| arch_enter_lazy_cpu_mode(); |
| } |
| } |
| |
| |
| #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE |
| static inline void arch_enter_lazy_mmu_mode(void) |
| { |
| PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter); |
| } |
| |
| static inline void arch_leave_lazy_mmu_mode(void) |
| { |
| PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave); |
| } |
| |
| static inline void arch_flush_lazy_mmu_mode(void) |
| { |
| if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) { |
| arch_leave_lazy_mmu_mode(); |
| arch_enter_lazy_mmu_mode(); |
| } |
| } |
| |
| static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx, |
| unsigned long phys, pgprot_t flags) |
| { |
| pv_mmu_ops.set_fixmap(idx, phys, flags); |
| } |
| |
| void _paravirt_nop(void); |
| #define paravirt_nop ((void *)_paravirt_nop) |
| |
| void paravirt_use_bytelocks(void); |
| |
| #ifdef CONFIG_SMP |
| |
| static inline int __raw_spin_is_locked(struct raw_spinlock *lock) |
| { |
| return PVOP_CALL1(int, pv_lock_ops.spin_is_locked, lock); |
| } |
| |
| static inline int __raw_spin_is_contended(struct raw_spinlock *lock) |
| { |
| return PVOP_CALL1(int, pv_lock_ops.spin_is_contended, lock); |
| } |
| |
| static __always_inline void __raw_spin_lock(struct raw_spinlock *lock) |
| { |
| PVOP_VCALL1(pv_lock_ops.spin_lock, lock); |
| } |
| |
| static __always_inline void __raw_spin_lock_flags(struct raw_spinlock *lock, |
| unsigned long flags) |
| { |
| PVOP_VCALL2(pv_lock_ops.spin_lock_flags, lock, flags); |
| } |
| |
| static __always_inline int __raw_spin_trylock(struct raw_spinlock *lock) |
| { |
| return PVOP_CALL1(int, pv_lock_ops.spin_trylock, lock); |
| } |
| |
| static __always_inline void __raw_spin_unlock(struct raw_spinlock *lock) |
| { |
| PVOP_VCALL1(pv_lock_ops.spin_unlock, lock); |
| } |
| |
| #endif |
| |
| /* These all sit in the .parainstructions section to tell us what to patch. */ |
| struct paravirt_patch_site { |
| u8 *instr; /* original instructions */ |
| u8 instrtype; /* type of this instruction */ |
| u8 len; /* length of original instruction */ |
| u16 clobbers; /* what registers you may clobber */ |
| }; |
| |
| extern struct paravirt_patch_site __parainstructions[], |
| __parainstructions_end[]; |
| |
| #ifdef CONFIG_X86_32 |
| #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;" |
| #define PV_RESTORE_REGS "popl %%edx; popl %%ecx" |
| #define PV_FLAGS_ARG "0" |
| #define PV_EXTRA_CLOBBERS |
| #define PV_VEXTRA_CLOBBERS |
| #else |
| /* We save some registers, but all of them, that's too much. We clobber all |
| * caller saved registers but the argument parameter */ |
| #define PV_SAVE_REGS "pushq %%rdi;" |
| #define PV_RESTORE_REGS "popq %%rdi;" |
| #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx", "rsi" |
| #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx", "rsi" |
| #define PV_FLAGS_ARG "D" |
| #endif |
| |
| static inline unsigned long __raw_local_save_flags(void) |
| { |
| unsigned long f; |
| |
| asm volatile(paravirt_alt(PV_SAVE_REGS |
| PARAVIRT_CALL |
| PV_RESTORE_REGS) |
| : "=a"(f) |
| : paravirt_type(pv_irq_ops.save_fl), |
| paravirt_clobber(CLBR_EAX) |
| : "memory", "cc" PV_VEXTRA_CLOBBERS); |
| return f; |
| } |
| |
| static inline void raw_local_irq_restore(unsigned long f) |
| { |
| asm volatile(paravirt_alt(PV_SAVE_REGS |
| PARAVIRT_CALL |
| PV_RESTORE_REGS) |
| : "=a"(f) |
| : PV_FLAGS_ARG(f), |
| paravirt_type(pv_irq_ops.restore_fl), |
| paravirt_clobber(CLBR_EAX) |
| : "memory", "cc" PV_EXTRA_CLOBBERS); |
| } |
| |
| static inline void raw_local_irq_disable(void) |
| { |
| asm volatile(paravirt_alt(PV_SAVE_REGS |
| PARAVIRT_CALL |
| PV_RESTORE_REGS) |
| : |
| : paravirt_type(pv_irq_ops.irq_disable), |
| paravirt_clobber(CLBR_EAX) |
| : "memory", "eax", "cc" PV_EXTRA_CLOBBERS); |
| } |
| |
| static inline void raw_local_irq_enable(void) |
| { |
| asm volatile(paravirt_alt(PV_SAVE_REGS |
| PARAVIRT_CALL |
| PV_RESTORE_REGS) |
| : |
| : paravirt_type(pv_irq_ops.irq_enable), |
| paravirt_clobber(CLBR_EAX) |
| : "memory", "eax", "cc" PV_EXTRA_CLOBBERS); |
| } |
| |
| static inline unsigned long __raw_local_irq_save(void) |
| { |
| unsigned long f; |
| |
| f = __raw_local_save_flags(); |
| raw_local_irq_disable(); |
| return f; |
| } |
| |
| |
| /* Make sure as little as possible of this mess escapes. */ |
| #undef PARAVIRT_CALL |
| #undef __PVOP_CALL |
| #undef __PVOP_VCALL |
| #undef PVOP_VCALL0 |
| #undef PVOP_CALL0 |
| #undef PVOP_VCALL1 |
| #undef PVOP_CALL1 |
| #undef PVOP_VCALL2 |
| #undef PVOP_CALL2 |
| #undef PVOP_VCALL3 |
| #undef PVOP_CALL3 |
| #undef PVOP_VCALL4 |
| #undef PVOP_CALL4 |
| |
| #else /* __ASSEMBLY__ */ |
| |
| #define _PVSITE(ptype, clobbers, ops, word, algn) \ |
| 771:; \ |
| ops; \ |
| 772:; \ |
| .pushsection .parainstructions,"a"; \ |
| .align algn; \ |
| word 771b; \ |
| .byte ptype; \ |
| .byte 772b-771b; \ |
| .short clobbers; \ |
| .popsection |
| |
| |
| #ifdef CONFIG_X86_64 |
| #define PV_SAVE_REGS \ |
| push %rax; \ |
| push %rcx; \ |
| push %rdx; \ |
| push %rsi; \ |
| push %rdi; \ |
| push %r8; \ |
| push %r9; \ |
| push %r10; \ |
| push %r11 |
| #define PV_RESTORE_REGS \ |
| pop %r11; \ |
| pop %r10; \ |
| pop %r9; \ |
| pop %r8; \ |
| pop %rdi; \ |
| pop %rsi; \ |
| pop %rdx; \ |
| pop %rcx; \ |
| pop %rax |
| #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8) |
| #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8) |
| #define PARA_INDIRECT(addr) *addr(%rip) |
| #else |
| #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx |
| #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax |
| #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4) |
| #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4) |
| #define PARA_INDIRECT(addr) *%cs:addr |
| #endif |
| |
| #define INTERRUPT_RETURN \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \ |
| jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_iret)) |
| |
| #define DISABLE_INTERRUPTS(clobbers) \ |
| PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \ |
| PV_SAVE_REGS; \ |
| call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_disable); \ |
| PV_RESTORE_REGS;) \ |
| |
| #define ENABLE_INTERRUPTS(clobbers) \ |
| PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \ |
| PV_SAVE_REGS; \ |
| call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_enable); \ |
| PV_RESTORE_REGS;) |
| |
| #define USERGS_SYSRET32 \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret32), \ |
| CLBR_NONE, \ |
| jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret32)) |
| |
| #ifdef CONFIG_X86_32 |
| #define GET_CR0_INTO_EAX \ |
| push %ecx; push %edx; \ |
| call PARA_INDIRECT(pv_cpu_ops+PV_CPU_read_cr0); \ |
| pop %edx; pop %ecx |
| |
| #define ENABLE_INTERRUPTS_SYSEXIT \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \ |
| CLBR_NONE, \ |
| jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit)) |
| |
| |
| #else /* !CONFIG_X86_32 */ |
| |
| /* |
| * If swapgs is used while the userspace stack is still current, |
| * there's no way to call a pvop. The PV replacement *must* be |
| * inlined, or the swapgs instruction must be trapped and emulated. |
| */ |
| #define SWAPGS_UNSAFE_STACK \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \ |
| swapgs) |
| |
| #define SWAPGS \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \ |
| PV_SAVE_REGS; \ |
| call PARA_INDIRECT(pv_cpu_ops+PV_CPU_swapgs); \ |
| PV_RESTORE_REGS \ |
| ) |
| |
| #define GET_CR2_INTO_RCX \ |
| call PARA_INDIRECT(pv_mmu_ops+PV_MMU_read_cr2); \ |
| movq %rax, %rcx; \ |
| xorq %rax, %rax; |
| |
| #define PARAVIRT_ADJUST_EXCEPTION_FRAME \ |
| PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_adjust_exception_frame), \ |
| CLBR_NONE, \ |
| call PARA_INDIRECT(pv_irq_ops+PV_IRQ_adjust_exception_frame)) |
| |
| #define USERGS_SYSRET64 \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret64), \ |
| CLBR_NONE, \ |
| jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret64)) |
| |
| #define ENABLE_INTERRUPTS_SYSEXIT32 \ |
| PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \ |
| CLBR_NONE, \ |
| jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit)) |
| #endif /* CONFIG_X86_32 */ |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* CONFIG_PARAVIRT */ |
| #endif /* _ASM_X86_PARAVIRT_H */ |