blob: db3377dae9d5f99156cf569008ca8795dc598fed [file] [log] [blame]
/*
* Davicom DM9601 USB 1.1 10/100Mbps ethernet devices
*
* Peter Korsgaard <jacmet@sunsite.dk>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
//#define DEBUG
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
/* datasheet:
http://www.davicom.com.tw/big5/download/Data%20Sheet/DM9601-DS-P01-930914.pdf
*/
/* control requests */
#define DM_READ_REGS 0x00
#define DM_WRITE_REGS 0x01
#define DM_READ_MEMS 0x02
#define DM_WRITE_REG 0x03
#define DM_WRITE_MEMS 0x05
#define DM_WRITE_MEM 0x07
/* registers */
#define DM_NET_CTRL 0x00
#define DM_RX_CTRL 0x05
#define DM_SHARED_CTRL 0x0b
#define DM_SHARED_ADDR 0x0c
#define DM_SHARED_DATA 0x0d /* low + high */
#define DM_PHY_ADDR 0x10 /* 6 bytes */
#define DM_MCAST_ADDR 0x16 /* 8 bytes */
#define DM_GPR_CTRL 0x1e
#define DM_GPR_DATA 0x1f
#define DM_MAX_MCAST 64
#define DM_MCAST_SIZE 8
#define DM_EEPROM_LEN 256
#define DM_TX_OVERHEAD 2 /* 2 byte header */
#define DM_RX_OVERHEAD 7 /* 3 byte header + 4 byte crc tail */
#define DM_TIMEOUT 1000
static int dm_read(struct usbnet *dev, u8 reg, u16 length, void *data)
{
void *buf;
int err = -ENOMEM;
devdbg(dev, "dm_read() reg=0x%02x length=%d", reg, length);
buf = kmalloc(length, GFP_KERNEL);
if (!buf)
goto out;
err = usb_control_msg(dev->udev,
usb_rcvctrlpipe(dev->udev, 0),
DM_READ_REGS,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, reg, buf, length, USB_CTRL_SET_TIMEOUT);
if (err == length)
memcpy(data, buf, length);
else if (err >= 0)
err = -EINVAL;
kfree(buf);
out:
return err;
}
static int dm_read_reg(struct usbnet *dev, u8 reg, u8 *value)
{
return dm_read(dev, reg, 1, value);
}
static int dm_write(struct usbnet *dev, u8 reg, u16 length, void *data)
{
void *buf = NULL;
int err = -ENOMEM;
devdbg(dev, "dm_write() reg=0x%02x, length=%d", reg, length);
if (data) {
buf = kmalloc(length, GFP_KERNEL);
if (!buf)
goto out;
memcpy(buf, data, length);
}
err = usb_control_msg(dev->udev,
usb_sndctrlpipe(dev->udev, 0),
DM_WRITE_REGS,
USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE,
0, reg, buf, length, USB_CTRL_SET_TIMEOUT);
kfree(buf);
if (err >= 0 && err < length)
err = -EINVAL;
out:
return err;
}
static int dm_write_reg(struct usbnet *dev, u8 reg, u8 value)
{
devdbg(dev, "dm_write_reg() reg=0x%02x, value=0x%02x", reg, value);
return usb_control_msg(dev->udev,
usb_sndctrlpipe(dev->udev, 0),
DM_WRITE_REG,
USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE,
value, reg, NULL, 0, USB_CTRL_SET_TIMEOUT);
}
static void dm_write_async_callback(struct urb *urb)
{
struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context;
if (urb->status < 0)
printk(KERN_DEBUG "dm_write_async_callback() failed with %d\n",
urb->status);
kfree(req);
usb_free_urb(urb);
}
static void dm_write_async_helper(struct usbnet *dev, u8 reg, u8 value,
u16 length, void *data)
{
struct usb_ctrlrequest *req;
struct urb *urb;
int status;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
deverr(dev, "Error allocating URB in dm_write_async_helper!");
return;
}
req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC);
if (!req) {
deverr(dev, "Failed to allocate memory for control request");
usb_free_urb(urb);
return;
}
req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
req->bRequest = length ? DM_WRITE_REGS : DM_WRITE_REG;
req->wValue = cpu_to_le16(value);
req->wIndex = cpu_to_le16(reg);
req->wLength = cpu_to_le16(length);
usb_fill_control_urb(urb, dev->udev,
usb_sndctrlpipe(dev->udev, 0),
(void *)req, data, length,
dm_write_async_callback, req);
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status < 0) {
deverr(dev, "Error submitting the control message: status=%d",
status);
kfree(req);
usb_free_urb(urb);
}
}
static void dm_write_async(struct usbnet *dev, u8 reg, u16 length, void *data)
{
devdbg(dev, "dm_write_async() reg=0x%02x length=%d", reg, length);
dm_write_async_helper(dev, reg, 0, length, data);
}
static void dm_write_reg_async(struct usbnet *dev, u8 reg, u8 value)
{
devdbg(dev, "dm_write_reg_async() reg=0x%02x value=0x%02x",
reg, value);
dm_write_async_helper(dev, reg, value, 0, NULL);
}
static int dm_read_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 *value)
{
int ret, i;
mutex_lock(&dev->phy_mutex);
dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg);
dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0xc : 0x4);
for (i = 0; i < DM_TIMEOUT; i++) {
u8 tmp;
udelay(1);
ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp);
if (ret < 0)
goto out;
/* ready */
if ((tmp & 1) == 0)
break;
}
if (i == DM_TIMEOUT) {
deverr(dev, "%s read timed out!", phy ? "phy" : "eeprom");
ret = -EIO;
goto out;
}
dm_write_reg(dev, DM_SHARED_CTRL, 0x0);
ret = dm_read(dev, DM_SHARED_DATA, 2, value);
devdbg(dev, "read shared %d 0x%02x returned 0x%04x, %d",
phy, reg, *value, ret);
out:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int dm_write_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 value)
{
int ret, i;
mutex_lock(&dev->phy_mutex);
ret = dm_write(dev, DM_SHARED_DATA, 2, &value);
if (ret < 0)
goto out;
dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg);
dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0x1c : 0x14);
for (i = 0; i < DM_TIMEOUT; i++) {
u8 tmp;
udelay(1);
ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp);
if (ret < 0)
goto out;
/* ready */
if ((tmp & 1) == 0)
break;
}
if (i == DM_TIMEOUT) {
deverr(dev, "%s write timed out!", phy ? "phy" : "eeprom");
ret = -EIO;
goto out;
}
dm_write_reg(dev, DM_SHARED_CTRL, 0x0);
out:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int dm_read_eeprom_word(struct usbnet *dev, u8 offset, void *value)
{
return dm_read_shared_word(dev, 0, offset, value);
}
static int dm9601_get_eeprom_len(struct net_device *dev)
{
return DM_EEPROM_LEN;
}
static int dm9601_get_eeprom(struct net_device *net,
struct ethtool_eeprom *eeprom, u8 * data)
{
struct usbnet *dev = netdev_priv(net);
__le16 *ebuf = (__le16 *) data;
int i;
/* access is 16bit */
if ((eeprom->offset % 2) || (eeprom->len % 2))
return -EINVAL;
for (i = 0; i < eeprom->len / 2; i++) {
if (dm_read_eeprom_word(dev, eeprom->offset / 2 + i,
&ebuf[i]) < 0)
return -EINVAL;
}
return 0;
}
static int dm9601_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res;
if (phy_id) {
devdbg(dev, "Only internal phy supported");
return 0;
}
dm_read_shared_word(dev, 1, loc, &res);
devdbg(dev,
"dm9601_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x",
phy_id, loc, le16_to_cpu(res));
return le16_to_cpu(res);
}
static void dm9601_mdio_write(struct net_device *netdev, int phy_id, int loc,
int val)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res = cpu_to_le16(val);
if (phy_id) {
devdbg(dev, "Only internal phy supported");
return;
}
devdbg(dev,"dm9601_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x",
phy_id, loc, val);
dm_write_shared_word(dev, 1, loc, res);
}
static void dm9601_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
/* Inherit standard device info */
usbnet_get_drvinfo(net, info);
info->eedump_len = DM_EEPROM_LEN;
}
static u32 dm9601_get_link(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
return mii_link_ok(&dev->mii);
}
static int dm9601_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(net);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static struct ethtool_ops dm9601_ethtool_ops = {
.get_drvinfo = dm9601_get_drvinfo,
.get_link = dm9601_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = dm9601_get_eeprom_len,
.get_eeprom = dm9601_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static void dm9601_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
/* We use the 20 byte dev->data for our 8 byte filter buffer
* to avoid allocating memory that is tricky to free later */
u8 *hashes = (u8 *) & dev->data;
u8 rx_ctl = 0x31;
memset(hashes, 0x00, DM_MCAST_SIZE);
hashes[DM_MCAST_SIZE - 1] |= 0x80; /* broadcast address */
if (net->flags & IFF_PROMISC) {
rx_ctl |= 0x02;
} else if (net->flags & IFF_ALLMULTI || net->mc_count > DM_MAX_MCAST) {
rx_ctl |= 0x04;
} else if (net->mc_count) {
struct dev_mc_list *mc_list = net->mc_list;
int i;
for (i = 0; i < net->mc_count; i++, mc_list = mc_list->next) {
u32 crc = ether_crc(ETH_ALEN, mc_list->dmi_addr) >> 26;
hashes[crc >> 3] |= 1 << (crc & 0x7);
}
}
dm_write_async(dev, DM_MCAST_ADDR, DM_MCAST_SIZE, hashes);
dm_write_reg_async(dev, DM_RX_CTRL, rx_ctl);
}
static int dm9601_set_mac_address(struct net_device *net, void *p)
{
struct sockaddr *addr = p;
struct usbnet *dev = netdev_priv(net);
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(net->dev_addr, addr->sa_data, net->addr_len);
dm_write_async(dev, DM_PHY_ADDR, net->addr_len, net->dev_addr);
return 0;
}
static int dm9601_bind(struct usbnet *dev, struct usb_interface *intf)
{
int ret;
ret = usbnet_get_endpoints(dev, intf);
if (ret)
goto out;
dev->net->do_ioctl = dm9601_ioctl;
dev->net->set_multicast_list = dm9601_set_multicast;
dev->net->set_mac_address = dm9601_set_mac_address;
dev->net->ethtool_ops = &dm9601_ethtool_ops;
dev->net->hard_header_len += DM_TX_OVERHEAD;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
dev->rx_urb_size = dev->net->mtu + ETH_HLEN + DM_RX_OVERHEAD;
dev->mii.dev = dev->net;
dev->mii.mdio_read = dm9601_mdio_read;
dev->mii.mdio_write = dm9601_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
/* reset */
dm_write_reg(dev, DM_NET_CTRL, 1);
udelay(20);
/* read MAC */
if (dm_read(dev, DM_PHY_ADDR, ETH_ALEN, dev->net->dev_addr) < 0) {
printk(KERN_ERR "Error reading MAC address\n");
ret = -ENODEV;
goto out;
}
/* power up phy */
dm_write_reg(dev, DM_GPR_CTRL, 1);
dm_write_reg(dev, DM_GPR_DATA, 0);
/* receive broadcast packets */
dm9601_set_multicast(dev->net);
dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
mii_nway_restart(&dev->mii);
out:
return ret;
}
static int dm9601_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
u8 status;
int len;
/* format:
b0: rx status
b1: packet length (incl crc) low
b2: packet length (incl crc) high
b3..n-4: packet data
bn-3..bn: ethernet crc
*/
if (unlikely(skb->len < DM_RX_OVERHEAD)) {
dev_err(&dev->udev->dev, "unexpected tiny rx frame\n");
return 0;
}
status = skb->data[0];
len = (skb->data[1] | (skb->data[2] << 8)) - 4;
if (unlikely(status & 0xbf)) {
if (status & 0x01) dev->stats.rx_fifo_errors++;
if (status & 0x02) dev->stats.rx_crc_errors++;
if (status & 0x04) dev->stats.rx_frame_errors++;
if (status & 0x20) dev->stats.rx_missed_errors++;
if (status & 0x90) dev->stats.rx_length_errors++;
return 0;
}
skb_pull(skb, 3);
skb_trim(skb, len);
return 1;
}
static struct sk_buff *dm9601_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int len;
/* format:
b0: packet length low
b1: packet length high
b3..n: packet data
*/
len = skb->len;
if (skb_headroom(skb) < DM_TX_OVERHEAD) {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, DM_TX_OVERHEAD, 0, flags);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
}
__skb_push(skb, DM_TX_OVERHEAD);
/* usbnet adds padding if length is a multiple of packet size
if so, adjust length value in header */
if ((skb->len % dev->maxpacket) == 0)
len++;
skb->data[0] = len;
skb->data[1] = len >> 8;
return skb;
}
static void dm9601_status(struct usbnet *dev, struct urb *urb)
{
int link;
u8 *buf;
/* format:
b0: net status
b1: tx status 1
b2: tx status 2
b3: rx status
b4: rx overflow
b5: rx count
b6: tx count
b7: gpr
*/
if (urb->actual_length < 8)
return;
buf = urb->transfer_buffer;
link = !!(buf[0] & 0x40);
if (netif_carrier_ok(dev->net) != link) {
if (link) {
netif_carrier_on(dev->net);
usbnet_defer_kevent (dev, EVENT_LINK_RESET);
}
else
netif_carrier_off(dev->net);
devdbg(dev, "Link Status is: %d", link);
}
}
static int dm9601_link_reset(struct usbnet *dev)
{
struct ethtool_cmd ecmd;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
devdbg(dev, "link_reset() speed: %d duplex: %d",
ecmd.speed, ecmd.duplex);
return 0;
}
static const struct driver_info dm9601_info = {
.description = "Davicom DM9601 USB Ethernet",
.flags = FLAG_ETHER,
.bind = dm9601_bind,
.rx_fixup = dm9601_rx_fixup,
.tx_fixup = dm9601_tx_fixup,
.status = dm9601_status,
.link_reset = dm9601_link_reset,
.reset = dm9601_link_reset,
};
static const struct usb_device_id products[] = {
{
USB_DEVICE(0x07aa, 0x9601), /* Corega FEther USB-TXC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x9601), /* Davicom USB-100 */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x6688), /* ZT6688 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x0268), /* ShanTou ST268 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x8515), /* ADMtek ADM8515 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a47, 0x9601), /* Hirose USB-100 */
.driver_info = (unsigned long)&dm9601_info,
},
{}, // END
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver dm9601_driver = {
.name = "dm9601",
.id_table = products,
.probe = usbnet_probe,
.disconnect = usbnet_disconnect,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
};
static int __init dm9601_init(void)
{
return usb_register(&dm9601_driver);
}
static void __exit dm9601_exit(void)
{
usb_deregister(&dm9601_driver);
}
module_init(dm9601_init);
module_exit(dm9601_exit);
MODULE_AUTHOR("Peter Korsgaard <jacmet@sunsite.dk>");
MODULE_DESCRIPTION("Davicom DM9601 USB 1.1 ethernet devices");
MODULE_LICENSE("GPL");