| /* |
| * drivers/rtc/rtc-pl031.c |
| * |
| * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC |
| * |
| * Author: Deepak Saxena <dsaxena@plexity.net> |
| * |
| * Copyright 2006 (c) MontaVista Software, Inc. |
| * |
| * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com> |
| * Copyright 2010 (c) ST-Ericsson AB |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/module.h> |
| #include <linux/rtc.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/amba/bus.h> |
| #include <linux/io.h> |
| #include <linux/bcd.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| |
| /* |
| * Register definitions |
| */ |
| #define RTC_DR 0x00 /* Data read register */ |
| #define RTC_MR 0x04 /* Match register */ |
| #define RTC_LR 0x08 /* Data load register */ |
| #define RTC_CR 0x0c /* Control register */ |
| #define RTC_IMSC 0x10 /* Interrupt mask and set register */ |
| #define RTC_RIS 0x14 /* Raw interrupt status register */ |
| #define RTC_MIS 0x18 /* Masked interrupt status register */ |
| #define RTC_ICR 0x1c /* Interrupt clear register */ |
| /* ST variants have additional timer functionality */ |
| #define RTC_TDR 0x20 /* Timer data read register */ |
| #define RTC_TLR 0x24 /* Timer data load register */ |
| #define RTC_TCR 0x28 /* Timer control register */ |
| #define RTC_YDR 0x30 /* Year data read register */ |
| #define RTC_YMR 0x34 /* Year match register */ |
| #define RTC_YLR 0x38 /* Year data load register */ |
| |
| #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */ |
| |
| #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */ |
| |
| /* Common bit definitions for Interrupt status and control registers */ |
| #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */ |
| #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */ |
| |
| /* Common bit definations for ST v2 for reading/writing time */ |
| #define RTC_SEC_SHIFT 0 |
| #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */ |
| #define RTC_MIN_SHIFT 6 |
| #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */ |
| #define RTC_HOUR_SHIFT 12 |
| #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */ |
| #define RTC_WDAY_SHIFT 17 |
| #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */ |
| #define RTC_MDAY_SHIFT 20 |
| #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */ |
| #define RTC_MON_SHIFT 25 |
| #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */ |
| |
| #define RTC_TIMER_FREQ 32768 |
| |
| struct pl031_local { |
| struct rtc_device *rtc; |
| void __iomem *base; |
| u8 hw_designer; |
| u8 hw_revision:4; |
| }; |
| |
| static int pl031_alarm_irq_enable(struct device *dev, |
| unsigned int enabled) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| unsigned long imsc; |
| |
| /* Clear any pending alarm interrupts. */ |
| writel(RTC_BIT_AI, ldata->base + RTC_ICR); |
| |
| imsc = readl(ldata->base + RTC_IMSC); |
| |
| if (enabled == 1) |
| writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC); |
| else |
| writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC); |
| |
| return 0; |
| } |
| |
| /* |
| * Convert Gregorian date to ST v2 RTC format. |
| */ |
| static int pl031_stv2_tm_to_time(struct device *dev, |
| struct rtc_time *tm, unsigned long *st_time, |
| unsigned long *bcd_year) |
| { |
| int year = tm->tm_year + 1900; |
| int wday = tm->tm_wday; |
| |
| /* wday masking is not working in hardware so wday must be valid */ |
| if (wday < -1 || wday > 6) { |
| dev_err(dev, "invalid wday value %d\n", tm->tm_wday); |
| return -EINVAL; |
| } else if (wday == -1) { |
| /* wday is not provided, calculate it here */ |
| unsigned long time; |
| struct rtc_time calc_tm; |
| |
| rtc_tm_to_time(tm, &time); |
| rtc_time_to_tm(time, &calc_tm); |
| wday = calc_tm.tm_wday; |
| } |
| |
| *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8); |
| |
| *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT) |
| | (tm->tm_mday << RTC_MDAY_SHIFT) |
| | ((wday + 1) << RTC_WDAY_SHIFT) |
| | (tm->tm_hour << RTC_HOUR_SHIFT) |
| | (tm->tm_min << RTC_MIN_SHIFT) |
| | (tm->tm_sec << RTC_SEC_SHIFT); |
| |
| return 0; |
| } |
| |
| /* |
| * Convert ST v2 RTC format to Gregorian date. |
| */ |
| static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year, |
| struct rtc_time *tm) |
| { |
| tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100); |
| tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1; |
| tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT); |
| tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1; |
| tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT); |
| tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT); |
| tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT); |
| |
| tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year); |
| tm->tm_year -= 1900; |
| |
| return 0; |
| } |
| |
| static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| |
| pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR), |
| readl(ldata->base + RTC_YDR), tm); |
| |
| return 0; |
| } |
| |
| static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| unsigned long time; |
| unsigned long bcd_year; |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year); |
| if (ret == 0) { |
| writel(bcd_year, ldata->base + RTC_YLR); |
| writel(time, ldata->base + RTC_LR); |
| } |
| |
| return ret; |
| } |
| |
| static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR), |
| readl(ldata->base + RTC_YMR), &alarm->time); |
| |
| alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; |
| alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; |
| |
| return ret; |
| } |
| |
| static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| unsigned long time; |
| unsigned long bcd_year; |
| int ret; |
| |
| /* At the moment, we can only deal with non-wildcarded alarm times. */ |
| ret = rtc_valid_tm(&alarm->time); |
| if (ret == 0) { |
| ret = pl031_stv2_tm_to_time(dev, &alarm->time, |
| &time, &bcd_year); |
| if (ret == 0) { |
| writel(bcd_year, ldata->base + RTC_YMR); |
| writel(time, ldata->base + RTC_MR); |
| |
| pl031_alarm_irq_enable(dev, alarm->enabled); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static irqreturn_t pl031_interrupt(int irq, void *dev_id) |
| { |
| struct pl031_local *ldata = dev_id; |
| unsigned long rtcmis; |
| unsigned long events = 0; |
| |
| rtcmis = readl(ldata->base + RTC_MIS); |
| if (rtcmis) { |
| writel(rtcmis, ldata->base + RTC_ICR); |
| |
| if (rtcmis & RTC_BIT_AI) |
| events |= (RTC_AF | RTC_IRQF); |
| |
| /* Timer interrupt is only available in ST variants */ |
| if ((rtcmis & RTC_BIT_PI) && |
| (ldata->hw_designer == AMBA_VENDOR_ST)) |
| events |= (RTC_PF | RTC_IRQF); |
| |
| rtc_update_irq(ldata->rtc, 1, events); |
| |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static int pl031_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| |
| rtc_time_to_tm(readl(ldata->base + RTC_DR), tm); |
| |
| return 0; |
| } |
| |
| static int pl031_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| unsigned long time; |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = rtc_tm_to_time(tm, &time); |
| |
| if (ret == 0) |
| writel(time, ldata->base + RTC_LR); |
| |
| return ret; |
| } |
| |
| static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| |
| rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time); |
| |
| alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; |
| alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; |
| |
| return 0; |
| } |
| |
| static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| unsigned long time; |
| int ret; |
| |
| /* At the moment, we can only deal with non-wildcarded alarm times. */ |
| ret = rtc_valid_tm(&alarm->time); |
| if (ret == 0) { |
| ret = rtc_tm_to_time(&alarm->time, &time); |
| if (ret == 0) { |
| writel(time, ldata->base + RTC_MR); |
| pl031_alarm_irq_enable(dev, alarm->enabled); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* Periodic interrupt is only available in ST variants. */ |
| static int pl031_irq_set_state(struct device *dev, int enabled) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| |
| if (enabled == 1) { |
| /* Clear any pending timer interrupt. */ |
| writel(RTC_BIT_PI, ldata->base + RTC_ICR); |
| |
| writel(readl(ldata->base + RTC_IMSC) | RTC_BIT_PI, |
| ldata->base + RTC_IMSC); |
| |
| /* Now start the timer */ |
| writel(readl(ldata->base + RTC_TCR) | RTC_TCR_EN, |
| ldata->base + RTC_TCR); |
| |
| } else { |
| writel(readl(ldata->base + RTC_IMSC) & (~RTC_BIT_PI), |
| ldata->base + RTC_IMSC); |
| |
| /* Also stop the timer */ |
| writel(readl(ldata->base + RTC_TCR) & (~RTC_TCR_EN), |
| ldata->base + RTC_TCR); |
| } |
| /* Wait at least 1 RTC32 clock cycle to ensure next access |
| * to RTC_TCR will succeed. |
| */ |
| udelay(40); |
| |
| return 0; |
| } |
| |
| static int pl031_irq_set_freq(struct device *dev, int freq) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(dev); |
| |
| /* Cant set timer if it is already enabled */ |
| if (readl(ldata->base + RTC_TCR) & RTC_TCR_EN) { |
| dev_err(dev, "can't change frequency while timer enabled\n"); |
| return -EINVAL; |
| } |
| |
| /* If self start bit in RTC_TCR is set timer will start here, |
| * but we never set that bit. Instead we start the timer when |
| * set_state is called with enabled == 1. |
| */ |
| writel(RTC_TIMER_FREQ / freq, ldata->base + RTC_TLR); |
| |
| return 0; |
| } |
| |
| static int pl031_remove(struct amba_device *adev) |
| { |
| struct pl031_local *ldata = dev_get_drvdata(&adev->dev); |
| |
| amba_set_drvdata(adev, NULL); |
| free_irq(adev->irq[0], ldata->rtc); |
| rtc_device_unregister(ldata->rtc); |
| iounmap(ldata->base); |
| kfree(ldata); |
| amba_release_regions(adev); |
| |
| return 0; |
| } |
| |
| static int pl031_probe(struct amba_device *adev, struct amba_id *id) |
| { |
| int ret; |
| struct pl031_local *ldata; |
| struct rtc_class_ops *ops = id->data; |
| |
| ret = amba_request_regions(adev, NULL); |
| if (ret) |
| goto err_req; |
| |
| ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL); |
| if (!ldata) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ldata->base = ioremap(adev->res.start, resource_size(&adev->res)); |
| |
| if (!ldata->base) { |
| ret = -ENOMEM; |
| goto out_no_remap; |
| } |
| |
| amba_set_drvdata(adev, ldata); |
| |
| ldata->hw_designer = amba_manf(adev); |
| ldata->hw_revision = amba_rev(adev); |
| |
| dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer); |
| dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision); |
| |
| /* Enable the clockwatch on ST Variants */ |
| if ((ldata->hw_designer == AMBA_VENDOR_ST) && |
| (ldata->hw_revision > 1)) |
| writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN, |
| ldata->base + RTC_CR); |
| |
| ldata->rtc = rtc_device_register("pl031", &adev->dev, ops, |
| THIS_MODULE); |
| if (IS_ERR(ldata->rtc)) { |
| ret = PTR_ERR(ldata->rtc); |
| goto out_no_rtc; |
| } |
| |
| if (request_irq(adev->irq[0], pl031_interrupt, |
| IRQF_DISABLED | IRQF_SHARED, "rtc-pl031", ldata)) { |
| ret = -EIO; |
| goto out_no_irq; |
| } |
| |
| return 0; |
| |
| out_no_irq: |
| rtc_device_unregister(ldata->rtc); |
| out_no_rtc: |
| iounmap(ldata->base); |
| amba_set_drvdata(adev, NULL); |
| out_no_remap: |
| kfree(ldata); |
| out: |
| amba_release_regions(adev); |
| err_req: |
| |
| return ret; |
| } |
| |
| /* Operations for the original ARM version */ |
| static struct rtc_class_ops arm_pl031_ops = { |
| .read_time = pl031_read_time, |
| .set_time = pl031_set_time, |
| .read_alarm = pl031_read_alarm, |
| .set_alarm = pl031_set_alarm, |
| .alarm_irq_enable = pl031_alarm_irq_enable, |
| }; |
| |
| /* The First ST derivative */ |
| static struct rtc_class_ops stv1_pl031_ops = { |
| .read_time = pl031_read_time, |
| .set_time = pl031_set_time, |
| .read_alarm = pl031_read_alarm, |
| .set_alarm = pl031_set_alarm, |
| .alarm_irq_enable = pl031_alarm_irq_enable, |
| .irq_set_state = pl031_irq_set_state, |
| .irq_set_freq = pl031_irq_set_freq, |
| }; |
| |
| /* And the second ST derivative */ |
| static struct rtc_class_ops stv2_pl031_ops = { |
| .read_time = pl031_stv2_read_time, |
| .set_time = pl031_stv2_set_time, |
| .read_alarm = pl031_stv2_read_alarm, |
| .set_alarm = pl031_stv2_set_alarm, |
| .alarm_irq_enable = pl031_alarm_irq_enable, |
| .irq_set_state = pl031_irq_set_state, |
| .irq_set_freq = pl031_irq_set_freq, |
| }; |
| |
| static struct amba_id pl031_ids[] = { |
| { |
| .id = 0x00041031, |
| .mask = 0x000fffff, |
| .data = &arm_pl031_ops, |
| }, |
| /* ST Micro variants */ |
| { |
| .id = 0x00180031, |
| .mask = 0x00ffffff, |
| .data = &stv1_pl031_ops, |
| }, |
| { |
| .id = 0x00280031, |
| .mask = 0x00ffffff, |
| .data = &stv2_pl031_ops, |
| }, |
| {0, 0}, |
| }; |
| |
| static struct amba_driver pl031_driver = { |
| .drv = { |
| .name = "rtc-pl031", |
| }, |
| .id_table = pl031_ids, |
| .probe = pl031_probe, |
| .remove = pl031_remove, |
| }; |
| |
| static int __init pl031_init(void) |
| { |
| return amba_driver_register(&pl031_driver); |
| } |
| |
| static void __exit pl031_exit(void) |
| { |
| amba_driver_unregister(&pl031_driver); |
| } |
| |
| module_init(pl031_init); |
| module_exit(pl031_exit); |
| |
| MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net"); |
| MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver"); |
| MODULE_LICENSE("GPL"); |