| /* |
| * net/sched/ematch.c Extended Match API |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Authors: Thomas Graf <tgraf@suug.ch> |
| * |
| * ========================================================================== |
| * |
| * An extended match (ematch) is a small classification tool not worth |
| * writing a full classifier for. Ematches can be interconnected to form |
| * a logic expression and get attached to classifiers to extend their |
| * functionatlity. |
| * |
| * The userspace part transforms the logic expressions into an array |
| * consisting of multiple sequences of interconnected ematches separated |
| * by markers. Precedence is implemented by a special ematch kind |
| * referencing a sequence beyond the marker of the current sequence |
| * causing the current position in the sequence to be pushed onto a stack |
| * to allow the current position to be overwritten by the position referenced |
| * in the special ematch. Matching continues in the new sequence until a |
| * marker is reached causing the position to be restored from the stack. |
| * |
| * Example: |
| * A AND (B1 OR B2) AND C AND D |
| * |
| * ------->-PUSH------- |
| * -->-- / -->-- \ -->-- |
| * / \ / / \ \ / \ |
| * +-------+-------+-------+-------+-------+--------+ |
| * | A AND | B AND | C AND | D END | B1 OR | B2 END | |
| * +-------+-------+-------+-------+-------+--------+ |
| * \ / |
| * --------<-POP--------- |
| * |
| * where B is a virtual ematch referencing to sequence starting with B1. |
| * |
| * ========================================================================== |
| * |
| * How to write an ematch in 60 seconds |
| * ------------------------------------ |
| * |
| * 1) Provide a matcher function: |
| * static int my_match(struct sk_buff *skb, struct tcf_ematch *m, |
| * struct tcf_pkt_info *info) |
| * { |
| * struct mydata *d = (struct mydata *) m->data; |
| * |
| * if (...matching goes here...) |
| * return 1; |
| * else |
| * return 0; |
| * } |
| * |
| * 2) Fill out a struct tcf_ematch_ops: |
| * static struct tcf_ematch_ops my_ops = { |
| * .kind = unique id, |
| * .datalen = sizeof(struct mydata), |
| * .match = my_match, |
| * .owner = THIS_MODULE, |
| * }; |
| * |
| * 3) Register/Unregister your ematch: |
| * static int __init init_my_ematch(void) |
| * { |
| * return tcf_em_register(&my_ops); |
| * } |
| * |
| * static void __exit exit_my_ematch(void) |
| * { |
| * tcf_em_unregister(&my_ops); |
| * } |
| * |
| * module_init(init_my_ematch); |
| * module_exit(exit_my_ematch); |
| * |
| * 4) By now you should have two more seconds left, barely enough to |
| * open up a beer to watch the compilation going. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/skbuff.h> |
| #include <net/pkt_cls.h> |
| |
| static LIST_HEAD(ematch_ops); |
| static DEFINE_RWLOCK(ematch_mod_lock); |
| |
| static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind) |
| { |
| struct tcf_ematch_ops *e = NULL; |
| |
| read_lock(&ematch_mod_lock); |
| list_for_each_entry(e, &ematch_ops, link) { |
| if (kind == e->kind) { |
| if (!try_module_get(e->owner)) |
| e = NULL; |
| read_unlock(&ematch_mod_lock); |
| return e; |
| } |
| } |
| read_unlock(&ematch_mod_lock); |
| |
| return NULL; |
| } |
| |
| /** |
| * tcf_em_register - register an extended match |
| * |
| * @ops: ematch operations lookup table |
| * |
| * This function must be called by ematches to announce their presence. |
| * The given @ops must have kind set to a unique identifier and the |
| * callback match() must be implemented. All other callbacks are optional |
| * and a fallback implementation is used instead. |
| * |
| * Returns -EEXISTS if an ematch of the same kind has already registered. |
| */ |
| int tcf_em_register(struct tcf_ematch_ops *ops) |
| { |
| int err = -EEXIST; |
| struct tcf_ematch_ops *e; |
| |
| if (ops->match == NULL) |
| return -EINVAL; |
| |
| write_lock(&ematch_mod_lock); |
| list_for_each_entry(e, &ematch_ops, link) |
| if (ops->kind == e->kind) |
| goto errout; |
| |
| list_add_tail(&ops->link, &ematch_ops); |
| err = 0; |
| errout: |
| write_unlock(&ematch_mod_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(tcf_em_register); |
| |
| /** |
| * tcf_em_unregister - unregster and extended match |
| * |
| * @ops: ematch operations lookup table |
| * |
| * This function must be called by ematches to announce their disappearance |
| * for examples when the module gets unloaded. The @ops parameter must be |
| * the same as the one used for registration. |
| * |
| * Returns -ENOENT if no matching ematch was found. |
| */ |
| void tcf_em_unregister(struct tcf_ematch_ops *ops) |
| { |
| write_lock(&ematch_mod_lock); |
| list_del(&ops->link); |
| write_unlock(&ematch_mod_lock); |
| } |
| EXPORT_SYMBOL(tcf_em_unregister); |
| |
| static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree, |
| int index) |
| { |
| return &tree->matches[index]; |
| } |
| |
| |
| static int tcf_em_validate(struct tcf_proto *tp, |
| struct tcf_ematch_tree_hdr *tree_hdr, |
| struct tcf_ematch *em, struct nlattr *nla, int idx) |
| { |
| int err = -EINVAL; |
| struct tcf_ematch_hdr *em_hdr = nla_data(nla); |
| int data_len = nla_len(nla) - sizeof(*em_hdr); |
| void *data = (void *) em_hdr + sizeof(*em_hdr); |
| |
| if (!TCF_EM_REL_VALID(em_hdr->flags)) |
| goto errout; |
| |
| if (em_hdr->kind == TCF_EM_CONTAINER) { |
| /* Special ematch called "container", carries an index |
| * referencing an external ematch sequence. */ |
| u32 ref; |
| |
| if (data_len < sizeof(ref)) |
| goto errout; |
| ref = *(u32 *) data; |
| |
| if (ref >= tree_hdr->nmatches) |
| goto errout; |
| |
| /* We do not allow backward jumps to avoid loops and jumps |
| * to our own position are of course illegal. */ |
| if (ref <= idx) |
| goto errout; |
| |
| |
| em->data = ref; |
| } else { |
| /* Note: This lookup will increase the module refcnt |
| * of the ematch module referenced. In case of a failure, |
| * a destroy function is called by the underlying layer |
| * which automatically releases the reference again, therefore |
| * the module MUST not be given back under any circumstances |
| * here. Be aware, the destroy function assumes that the |
| * module is held if the ops field is non zero. */ |
| em->ops = tcf_em_lookup(em_hdr->kind); |
| |
| if (em->ops == NULL) { |
| err = -ENOENT; |
| #ifdef CONFIG_MODULES |
| __rtnl_unlock(); |
| request_module("ematch-kind-%u", em_hdr->kind); |
| rtnl_lock(); |
| em->ops = tcf_em_lookup(em_hdr->kind); |
| if (em->ops) { |
| /* We dropped the RTNL mutex in order to |
| * perform the module load. Tell the caller |
| * to replay the request. */ |
| module_put(em->ops->owner); |
| err = -EAGAIN; |
| } |
| #endif |
| goto errout; |
| } |
| |
| /* ematch module provides expected length of data, so we |
| * can do a basic sanity check. */ |
| if (em->ops->datalen && data_len < em->ops->datalen) |
| goto errout; |
| |
| if (em->ops->change) { |
| err = em->ops->change(tp, data, data_len, em); |
| if (err < 0) |
| goto errout; |
| } else if (data_len > 0) { |
| /* ematch module doesn't provide an own change |
| * procedure and expects us to allocate and copy |
| * the ematch data. |
| * |
| * TCF_EM_SIMPLE may be specified stating that the |
| * data only consists of a u32 integer and the module |
| * does not expected a memory reference but rather |
| * the value carried. */ |
| if (em_hdr->flags & TCF_EM_SIMPLE) { |
| if (data_len < sizeof(u32)) |
| goto errout; |
| em->data = *(u32 *) data; |
| } else { |
| void *v = kmemdup(data, data_len, GFP_KERNEL); |
| if (v == NULL) { |
| err = -ENOBUFS; |
| goto errout; |
| } |
| em->data = (unsigned long) v; |
| } |
| } |
| } |
| |
| em->matchid = em_hdr->matchid; |
| em->flags = em_hdr->flags; |
| em->datalen = data_len; |
| |
| err = 0; |
| errout: |
| return err; |
| } |
| |
| static const struct nla_policy em_policy[TCA_EMATCH_TREE_MAX + 1] = { |
| [TCA_EMATCH_TREE_HDR] = { .len = sizeof(struct tcf_ematch_tree_hdr) }, |
| [TCA_EMATCH_TREE_LIST] = { .type = NLA_NESTED }, |
| }; |
| |
| /** |
| * tcf_em_tree_validate - validate ematch config TLV and build ematch tree |
| * |
| * @tp: classifier kind handle |
| * @nla: ematch tree configuration TLV |
| * @tree: destination ematch tree variable to store the resulting |
| * ematch tree. |
| * |
| * This function validates the given configuration TLV @nla and builds an |
| * ematch tree in @tree. The resulting tree must later be copied into |
| * the private classifier data using tcf_em_tree_change(). You MUST NOT |
| * provide the ematch tree variable of the private classifier data directly, |
| * the changes would not be locked properly. |
| * |
| * Returns a negative error code if the configuration TLV contains errors. |
| */ |
| int tcf_em_tree_validate(struct tcf_proto *tp, struct nlattr *nla, |
| struct tcf_ematch_tree *tree) |
| { |
| int idx, list_len, matches_len, err; |
| struct nlattr *tb[TCA_EMATCH_TREE_MAX + 1]; |
| struct nlattr *rt_match, *rt_hdr, *rt_list; |
| struct tcf_ematch_tree_hdr *tree_hdr; |
| struct tcf_ematch *em; |
| |
| memset(tree, 0, sizeof(*tree)); |
| if (!nla) |
| return 0; |
| |
| err = nla_parse_nested(tb, TCA_EMATCH_TREE_MAX, nla, em_policy); |
| if (err < 0) |
| goto errout; |
| |
| err = -EINVAL; |
| rt_hdr = tb[TCA_EMATCH_TREE_HDR]; |
| rt_list = tb[TCA_EMATCH_TREE_LIST]; |
| |
| if (rt_hdr == NULL || rt_list == NULL) |
| goto errout; |
| |
| tree_hdr = nla_data(rt_hdr); |
| memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr)); |
| |
| rt_match = nla_data(rt_list); |
| list_len = nla_len(rt_list); |
| matches_len = tree_hdr->nmatches * sizeof(*em); |
| |
| tree->matches = kzalloc(matches_len, GFP_KERNEL); |
| if (tree->matches == NULL) |
| goto errout; |
| |
| /* We do not use nla_parse_nested here because the maximum |
| * number of attributes is unknown. This saves us the allocation |
| * for a tb buffer which would serve no purpose at all. |
| * |
| * The array of rt attributes is parsed in the order as they are |
| * provided, their type must be incremental from 1 to n. Even |
| * if it does not serve any real purpose, a failure of sticking |
| * to this policy will result in parsing failure. */ |
| for (idx = 0; nla_ok(rt_match, list_len); idx++) { |
| err = -EINVAL; |
| |
| if (rt_match->nla_type != (idx + 1)) |
| goto errout_abort; |
| |
| if (idx >= tree_hdr->nmatches) |
| goto errout_abort; |
| |
| if (nla_len(rt_match) < sizeof(struct tcf_ematch_hdr)) |
| goto errout_abort; |
| |
| em = tcf_em_get_match(tree, idx); |
| |
| err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx); |
| if (err < 0) |
| goto errout_abort; |
| |
| rt_match = nla_next(rt_match, &list_len); |
| } |
| |
| /* Check if the number of matches provided by userspace actually |
| * complies with the array of matches. The number was used for |
| * the validation of references and a mismatch could lead to |
| * undefined references during the matching process. */ |
| if (idx != tree_hdr->nmatches) { |
| err = -EINVAL; |
| goto errout_abort; |
| } |
| |
| err = 0; |
| errout: |
| return err; |
| |
| errout_abort: |
| tcf_em_tree_destroy(tp, tree); |
| return err; |
| } |
| EXPORT_SYMBOL(tcf_em_tree_validate); |
| |
| /** |
| * tcf_em_tree_destroy - destroy an ematch tree |
| * |
| * @tp: classifier kind handle |
| * @tree: ematch tree to be deleted |
| * |
| * This functions destroys an ematch tree previously created by |
| * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that |
| * the ematch tree is not in use before calling this function. |
| */ |
| void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree) |
| { |
| int i; |
| |
| if (tree->matches == NULL) |
| return; |
| |
| for (i = 0; i < tree->hdr.nmatches; i++) { |
| struct tcf_ematch *em = tcf_em_get_match(tree, i); |
| |
| if (em->ops) { |
| if (em->ops->destroy) |
| em->ops->destroy(tp, em); |
| else if (!tcf_em_is_simple(em)) |
| kfree((void *) em->data); |
| module_put(em->ops->owner); |
| } |
| } |
| |
| tree->hdr.nmatches = 0; |
| kfree(tree->matches); |
| tree->matches = NULL; |
| } |
| EXPORT_SYMBOL(tcf_em_tree_destroy); |
| |
| /** |
| * tcf_em_tree_dump - dump ematch tree into a rtnl message |
| * |
| * @skb: skb holding the rtnl message |
| * @t: ematch tree to be dumped |
| * @tlv: TLV type to be used to encapsulate the tree |
| * |
| * This function dumps a ematch tree into a rtnl message. It is valid to |
| * call this function while the ematch tree is in use. |
| * |
| * Returns -1 if the skb tailroom is insufficient. |
| */ |
| int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv) |
| { |
| int i; |
| u8 *tail; |
| struct nlattr *top_start; |
| struct nlattr *list_start; |
| |
| top_start = nla_nest_start(skb, tlv); |
| if (top_start == NULL) |
| goto nla_put_failure; |
| |
| NLA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr); |
| |
| list_start = nla_nest_start(skb, TCA_EMATCH_TREE_LIST); |
| if (list_start == NULL) |
| goto nla_put_failure; |
| |
| tail = skb_tail_pointer(skb); |
| for (i = 0; i < tree->hdr.nmatches; i++) { |
| struct nlattr *match_start = (struct nlattr *)tail; |
| struct tcf_ematch *em = tcf_em_get_match(tree, i); |
| struct tcf_ematch_hdr em_hdr = { |
| .kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER, |
| .matchid = em->matchid, |
| .flags = em->flags |
| }; |
| |
| NLA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr); |
| |
| if (em->ops && em->ops->dump) { |
| if (em->ops->dump(skb, em) < 0) |
| goto nla_put_failure; |
| } else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) { |
| u32 u = em->data; |
| nla_put_nohdr(skb, sizeof(u), &u); |
| } else if (em->datalen > 0) |
| nla_put_nohdr(skb, em->datalen, (void *) em->data); |
| |
| tail = skb_tail_pointer(skb); |
| match_start->nla_len = tail - (u8 *)match_start; |
| } |
| |
| nla_nest_end(skb, list_start); |
| nla_nest_end(skb, top_start); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -1; |
| } |
| EXPORT_SYMBOL(tcf_em_tree_dump); |
| |
| static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em, |
| struct tcf_pkt_info *info) |
| { |
| int r = em->ops->match(skb, em, info); |
| return tcf_em_is_inverted(em) ? !r : r; |
| } |
| |
| /* Do not use this function directly, use tcf_em_tree_match instead */ |
| int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, |
| struct tcf_pkt_info *info) |
| { |
| int stackp = 0, match_idx = 0, res = 0; |
| struct tcf_ematch *cur_match; |
| int stack[CONFIG_NET_EMATCH_STACK]; |
| |
| proceed: |
| while (match_idx < tree->hdr.nmatches) { |
| cur_match = tcf_em_get_match(tree, match_idx); |
| |
| if (tcf_em_is_container(cur_match)) { |
| if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK)) |
| goto stack_overflow; |
| |
| stack[stackp++] = match_idx; |
| match_idx = cur_match->data; |
| goto proceed; |
| } |
| |
| res = tcf_em_match(skb, cur_match, info); |
| |
| if (tcf_em_early_end(cur_match, res)) |
| break; |
| |
| match_idx++; |
| } |
| |
| pop_stack: |
| if (stackp > 0) { |
| match_idx = stack[--stackp]; |
| cur_match = tcf_em_get_match(tree, match_idx); |
| |
| if (tcf_em_early_end(cur_match, res)) |
| goto pop_stack; |
| else { |
| match_idx++; |
| goto proceed; |
| } |
| } |
| |
| return res; |
| |
| stack_overflow: |
| if (net_ratelimit()) |
| printk(KERN_WARNING "tc ematch: local stack overflow," |
| " increase NET_EMATCH_STACK\n"); |
| return -1; |
| } |
| EXPORT_SYMBOL(__tcf_em_tree_match); |