| /* |
| * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/bitops.h> |
| #include <linux/debugfs.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/regulator/of_regulator.h> |
| #include <linux/regulator/msm-ldo-regulator.h> |
| |
| #include "cpr3-regulator.h" |
| |
| #define MSM8996_HMSS_FUSE_CORNERS 5 |
| |
| /** |
| * struct cpr3_msm8996_hmss_fuses - HMSS specific fuse data for MSM8996 |
| * @ro_sel: Ring oscillator select fuse parameter value for each |
| * fuse corner |
| * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value |
| * for each fuse corner (raw, not converted to a voltage) |
| * @target_quot: CPR target quotient fuse parameter value for each fuse |
| * corner |
| * @quot_offset: CPR target quotient offset fuse parameter value for each |
| * fuse corner (raw, not unpacked) used for target quotient |
| * interpolation |
| * @speed_bin: Application processor speed bin fuse parameter value for |
| * the given chip |
| * @cbf_voltage_offset: Voltage margin offset for the CBF regulator used on |
| * MSM8996-Pro chips. |
| * @cpr_fusing_rev: CPR fusing revision fuse parameter value |
| * @redundant_fusing: Redundant fusing select fuse parameter value |
| * @limitation: CPR limitation select fuse parameter value |
| * @partial_binning: Chip partial binning fuse parameter value which defines |
| * limitations found on a given chip |
| * @vdd_mx_ret_fuse: Defines the logic retention voltage of VDD_MX |
| * @vdd_apcc_ret_fuse: Defines the logic retention voltage of VDD_APCC |
| * @aging_init_quot_diff: Initial quotient difference between CPR aging |
| * min and max sensors measured at time of manufacturing |
| * |
| * This struct holds the values for all of the fuses read from memory. The |
| * values for ro_sel, init_voltage, target_quot, and quot_offset come from |
| * either the primary or redundant fuse locations depending upon the value of |
| * redundant_fusing. |
| */ |
| struct cpr3_msm8996_hmss_fuses { |
| u64 ro_sel[MSM8996_HMSS_FUSE_CORNERS]; |
| u64 init_voltage[MSM8996_HMSS_FUSE_CORNERS]; |
| u64 target_quot[MSM8996_HMSS_FUSE_CORNERS]; |
| u64 quot_offset[MSM8996_HMSS_FUSE_CORNERS]; |
| u64 cbf_voltage_offset[MSM8996_HMSS_FUSE_CORNERS]; |
| u64 speed_bin; |
| u64 cpr_fusing_rev; |
| u64 redundant_fusing; |
| u64 limitation; |
| u64 partial_binning; |
| u64 vdd_mx_ret_fuse; |
| u64 vdd_apcc_ret_fuse; |
| u64 aging_init_quot_diff; |
| }; |
| |
| /* |
| * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0. |
| * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1. |
| */ |
| #define CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT 16 |
| |
| /* |
| * Constants which define the name of each fuse corner. Note that no actual |
| * fuses are defined for LowSVS. However, a mapping from corner to LowSVS |
| * is required in order to perform target quotient interpolation properly. |
| */ |
| enum cpr3_msm8996_hmss_fuse_corner { |
| CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS = 0, |
| CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS = 1, |
| CPR3_MSM8996_HMSS_FUSE_CORNER_SVS = 2, |
| CPR3_MSM8996_HMSS_FUSE_CORNER_NOM = 3, |
| CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO = 4, |
| }; |
| |
| static const char * const cpr3_msm8996_hmss_fuse_corner_name[] = { |
| [CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS] = "MinSVS", |
| [CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS] = "LowSVS", |
| [CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] = "SVS", |
| [CPR3_MSM8996_HMSS_FUSE_CORNER_NOM] = "NOM", |
| [CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO] = "TURBO", |
| }; |
| |
| /* CPR3 hardware thread IDs */ |
| #define MSM8996_HMSS_POWER_CLUSTER_THREAD_ID 0 |
| #define MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID 1 |
| |
| /* |
| * MSM8996 HMSS fuse parameter locations: |
| * |
| * Structs are organized with the following dimensions: |
| * Outer: 0 or 1 for power or performance cluster |
| * Middle: 0 to 3 for fuse corners from lowest to highest corner |
| * Inner: large enough to hold the longest set of parameter segments which |
| * fully defines a fuse parameter, +1 (for NULL termination). |
| * Each segment corresponds to a contiguous group of bits from a |
| * single fuse row. These segments are concatentated together in |
| * order to form the full fuse parameter value. The segments for |
| * a given parameter may correspond to different fuse rows. |
| * |
| * Note that there are only physically 4 sets of fuse parameters which |
| * correspond to the MinSVS, SVS, NOM, and TURBO fuse corners. However, the SVS |
| * quotient offset fuse is used to define the target quotient for the LowSVS |
| * fuse corner. In order to utilize LowSVS, it must be treated as if it were a |
| * real fully defined fuse corner. Thus, LowSVS fuse parameter locations are |
| * specified. These locations duplicate the SVS values in order to simplify |
| * interpolation logic. |
| */ |
| static const struct cpr3_fuse_param |
| msm8996_hmss_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{66, 38, 41}, {} }, |
| {{66, 38, 41}, {} }, |
| {{66, 38, 41}, {} }, |
| {{66, 34, 37}, {} }, |
| {{66, 30, 33}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{64, 54, 57}, {} }, |
| {{64, 54, 57}, {} }, |
| {{64, 54, 57}, {} }, |
| {{64, 50, 53}, {} }, |
| {{64, 46, 49}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{67, 0, 5}, {} }, |
| {{66, 58, 63}, {} }, |
| {{66, 58, 63}, {} }, |
| {{66, 52, 57}, {} }, |
| {{66, 46, 51}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{65, 16, 21}, {} }, |
| {{65, 10, 15}, {} }, |
| {{65, 10, 15}, {} }, |
| {{65, 4, 9}, {} }, |
| {{64, 62, 63}, {65, 0, 3}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{67, 42, 53}, {} }, |
| {{67, 30, 41}, {} }, |
| {{67, 30, 41}, {} }, |
| {{67, 18, 29}, {} }, |
| {{67, 6, 17}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{65, 58, 63}, {66, 0, 5}, {} }, |
| {{65, 46, 57}, {} }, |
| {{65, 46, 57}, {} }, |
| {{65, 34, 45}, {} }, |
| {{65, 22, 33}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{} }, |
| {{} }, |
| {{68, 6, 13}, {} }, |
| {{67, 62, 63}, {68, 0, 5}, {} }, |
| {{67, 54, 61}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{} }, |
| {{} }, |
| {{66, 22, 29}, {} }, |
| {{66, 14, 21}, {} }, |
| {{66, 6, 13}, {} }, |
| }, |
| }; |
| |
| /* |
| * This fuse is used to define if the redundant set of fuses should be used for |
| * any particular feature. CPR is one such feature. The redundant CPR fuses |
| * should be used if this fuse parameter has a value of 1. |
| */ |
| static const struct cpr3_fuse_param msm8996_redundant_fusing_param[] = { |
| {73, 61, 63}, |
| {}, |
| }; |
| #define MSM8996_CPR_REDUNDANT_FUSING 1 |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_redun_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{76, 36, 39}, {} }, |
| {{76, 32, 35}, {} }, |
| {{76, 32, 35}, {} }, |
| {{76, 28, 31}, {} }, |
| {{76, 24, 27}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{74, 52, 55}, {} }, |
| {{74, 48, 51}, {} }, |
| {{74, 48, 51}, {} }, |
| {{74, 44, 47}, {} }, |
| {{74, 40, 43}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_redun_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{76, 58, 63}, {} }, |
| {{76, 52, 57}, {} }, |
| {{76, 52, 57}, {} }, |
| {{76, 46, 51}, {} }, |
| {{76, 40, 45}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{75, 10, 15}, {} }, |
| {{75, 4, 9}, {} }, |
| {{75, 4, 9}, {} }, |
| {{74, 62, 63}, {75, 0, 3}, {} }, |
| {{74, 56, 61}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_redun_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{77, 36, 47}, {} }, |
| {{77, 24, 35}, {} }, |
| {{77, 24, 35}, {} }, |
| {{77, 12, 23}, {} }, |
| {{77, 0, 11}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{75, 52, 63}, {} }, |
| {{75, 40, 51}, {} }, |
| {{75, 40, 51}, {} }, |
| {{75, 28, 39}, {} }, |
| {{75, 16, 27}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_redun_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { |
| [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { |
| {{} }, |
| {{} }, |
| {{68, 11, 18}, {} }, |
| {{77, 56, 63}, {} }, |
| {{77, 48, 55}, {} }, |
| }, |
| [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { |
| {{} }, |
| {{} }, |
| {{76, 16, 23}, {} }, |
| {{76, 8, 15}, {} }, |
| {{76, 0, 7}, {} }, |
| }, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = { |
| {39, 51, 53}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_hmss_speed_bin_param[] = { |
| {38, 29, 31}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = { |
| {41, 31, 32}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_vdd_mx_ret_param[] = { |
| {41, 2, 4}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_vdd_apcc_ret_param[] = { |
| {41, 52, 54}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param msm8996_cpr_partial_binning_param[] = { |
| {39, 55, 59}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996_hmss_aging_init_quot_diff_param[] = { |
| {68, 14, 19}, |
| {}, |
| }; |
| |
| static const struct cpr3_fuse_param |
| msm8996pro_hmss_voltage_offset_param[MSM8996_HMSS_FUSE_CORNERS][4] = { |
| {{68, 50, 52}, {41, 63, 63}, {} }, |
| {{62, 30, 31}, {62, 63, 63}, {66, 45, 45}, {} }, |
| {{61, 35, 36}, {61, 62, 63}, {} }, |
| {{61, 26, 26}, {61, 32, 34}, {} }, |
| {{61, 22, 25}, {} }, |
| }; |
| |
| #define MSM8996PRO_SOC_ID 4 |
| |
| /* |
| * Some initial msm8996 parts cannot be used in a meaningful way by software. |
| * Other parts can only be used when operating with CPR disabled (i.e. at the |
| * fused open-loop voltage) when no voltage interpolation is applied. A fuse |
| * parameter is provided so that software can properly handle these limitations. |
| */ |
| enum msm8996_cpr_limitation { |
| MSM8996_CPR_LIMITATION_NONE = 0, |
| MSM8996_CPR_LIMITATION_UNSUPPORTED = 2, |
| MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3, |
| }; |
| |
| /* |
| * Some initial msm8996 parts cannot be operated at low voltages. A fuse |
| * parameter is provided so that software can properly handle these limitations. |
| */ |
| enum msm8996_cpr_partial_binning { |
| MSM8996_CPR_PARTIAL_BINNING_SVS = 11, |
| MSM8996_CPR_PARTIAL_BINNING_NOM = 12, |
| }; |
| |
| /* Additional MSM8996 specific data: */ |
| |
| /* Open loop voltage fuse reference voltages in microvolts for MSM8996 v1/v2 */ |
| static const int msm8996_v1_v2_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = { |
| 605000, |
| 745000, /* Place holder entry for LowSVS */ |
| 745000, |
| 905000, |
| 1015000, |
| }; |
| |
| /* Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 */ |
| static const int msm8996_v3_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = { |
| 605000, |
| 745000, /* Place holder entry for LowSVS */ |
| 745000, |
| 905000, |
| 1140000, |
| }; |
| |
| /* |
| * Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 with |
| * speed_bin == 1 and cpr_fusing_rev >= 5. |
| */ |
| static const int msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt[ |
| MSM8996_HMSS_FUSE_CORNERS] = { |
| 605000, |
| 745000, /* Place holder entry for LowSVS */ |
| 745000, |
| 905000, |
| 1040000, |
| }; |
| |
| /* Defines mapping from retention fuse values to voltages in microvolts */ |
| static const int msm8996_vdd_apcc_fuse_ret_volt[] = { |
| 600000, 550000, 500000, 450000, 400000, 350000, 300000, 600000, |
| }; |
| |
| static const int msm8996_vdd_mx_fuse_ret_volt[] = { |
| 700000, 650000, 580000, 550000, 490000, 490000, 490000, 490000, |
| }; |
| |
| #define MSM8996_HMSS_FUSE_STEP_VOLT 10000 |
| #define MSM8996_HMSS_VOLTAGE_FUSE_SIZE 6 |
| #define MSM8996PRO_HMSS_CBF_FUSE_STEP_VOLT 10000 |
| #define MSM8996PRO_HMSS_CBF_VOLTAGE_FUSE_SIZE 4 |
| #define MSM8996_HMSS_QUOT_OFFSET_SCALE 5 |
| #define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE 2 |
| #define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE 6 |
| |
| #define MSM8996_HMSS_CPR_SENSOR_COUNT 25 |
| #define MSM8996_HMSS_THREAD0_SENSOR_MIN 0 |
| #define MSM8996_HMSS_THREAD0_SENSOR_MAX 14 |
| #define MSM8996_HMSS_THREAD1_SENSOR_MIN 15 |
| #define MSM8996_HMSS_THREAD1_SENSOR_MAX 24 |
| |
| #define MSM8996_HMSS_CPR_CLOCK_RATE 19200000 |
| |
| #define MSM8996_HMSS_AGING_SENSOR_ID 11 |
| #define MSM8996_HMSS_AGING_BYPASS_MASK0 (GENMASK(7, 0) & ~BIT(3)) |
| |
| /** |
| * cpr3_msm8996_hmss_use_voltage_offset_fuse() - return if this part utilizes |
| * voltage offset fuses or not |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * Return: true if this part utilizes voltage offset fuses, else false |
| */ |
| static inline bool cpr3_msm8996_hmss_use_voltage_offset_fuse( |
| struct cpr3_regulator *vreg) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| |
| return vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID |
| && fuse->cpr_fusing_rev >= 1 |
| && of_property_read_bool(vreg->of_node, "qcom,is-cbf-regulator"); |
| } |
| |
| /** |
| * cpr3_msm8996_hmss_read_fuse_data() - load HMSS specific fuse parameter values |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * This function allocates a cpr3_msm8996_hmss_fuses struct, fills it with |
| * values read out of hardware fuses, and finally copies common fuse values |
| * into the CPR3 regulator struct. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_msm8996_hmss_read_fuse_data(struct cpr3_regulator *vreg) |
| { |
| void __iomem *base = vreg->thread->ctrl->fuse_base; |
| struct cpr3_msm8996_hmss_fuses *fuse; |
| bool redundant; |
| int i, id, rc; |
| |
| fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); |
| if (!fuse) |
| return -ENOMEM; |
| |
| rc = cpr3_read_fuse_param(base, msm8996_hmss_speed_bin_param, |
| &fuse->speed_bin); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc); |
| return rc; |
| } |
| cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_cpr_fusing_rev_param, |
| &fuse->cpr_fusing_rev); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_redundant_fusing_param, |
| &fuse->redundant_fusing); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read redundant fusing config fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| redundant = (fuse->redundant_fusing == MSM8996_CPR_REDUNDANT_FUSING); |
| cpr3_info(vreg, "using redundant fuses = %c\n", |
| redundant ? 'Y' : 'N'); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_cpr_limitation_param, |
| &fuse->limitation); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| cpr3_info(vreg, "CPR limitation = %s\n", |
| fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED |
| ? "unsupported chip" : fuse->limitation |
| == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION |
| ? "CPR disabled and no interpolation" : "none"); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_cpr_partial_binning_param, |
| &fuse->partial_binning); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read partial binning fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| cpr3_info(vreg, "CPR partial binning limitation = %s\n", |
| fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS |
| ? "SVS min voltage" |
| : fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM |
| ? "NOM min voltage" |
| : "none"); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_vdd_mx_ret_param, |
| &fuse->vdd_mx_ret_fuse); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read VDD_MX retention fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = cpr3_read_fuse_param(base, msm8996_vdd_apcc_ret_param, |
| &fuse->vdd_apcc_ret_fuse); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read VDD_APCC retention fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| cpr3_info(vreg, "Retention voltage fuses: VDD_MX = %llu, VDD_APCC = %llu\n", |
| fuse->vdd_mx_ret_fuse, fuse->vdd_apcc_ret_fuse); |
| |
| rc = cpr3_read_fuse_param(base, msm8996_hmss_aging_init_quot_diff_param, |
| &fuse->aging_init_quot_diff); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| id = vreg->thread->thread_id; |
| |
| for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) { |
| rc = cpr3_read_fuse_param(base, |
| redundant |
| ? msm8996_hmss_redun_init_voltage_param[id][i] |
| : msm8996_hmss_init_voltage_param[id][i], |
| &fuse->init_voltage[i]); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", |
| i, rc); |
| return rc; |
| } |
| |
| rc = cpr3_read_fuse_param(base, |
| redundant |
| ? msm8996_hmss_redun_target_quot_param[id][i] |
| : msm8996_hmss_target_quot_param[id][i], |
| &fuse->target_quot[i]); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n", |
| i, rc); |
| return rc; |
| } |
| |
| rc = cpr3_read_fuse_param(base, |
| redundant |
| ? msm8996_hmss_redun_ro_sel_param[id][i] |
| : msm8996_hmss_ro_sel_param[id][i], |
| &fuse->ro_sel[i]); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n", |
| i, rc); |
| return rc; |
| } |
| |
| rc = cpr3_read_fuse_param(base, |
| redundant |
| ? msm8996_hmss_redun_quot_offset_param[id][i] |
| : msm8996_hmss_quot_offset_param[id][i], |
| &fuse->quot_offset[i]); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n", |
| i, rc); |
| return rc; |
| } |
| } |
| |
| vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; |
| if (vreg->fuse_combo >= CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT) { |
| cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", |
| vreg->fuse_combo); |
| return -EINVAL; |
| } |
| |
| vreg->speed_bin_fuse = fuse->speed_bin; |
| vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; |
| vreg->fuse_corner_count = MSM8996_HMSS_FUSE_CORNERS; |
| vreg->platform_fuses = fuse; |
| |
| if (cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg)) { |
| for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) { |
| rc = cpr3_read_fuse_param(base, |
| msm8996pro_hmss_voltage_offset_param[i], |
| &fuse->cbf_voltage_offset[i]); |
| if (rc) { |
| cpr3_err(vreg, "Unable to read fuse-corner %d CBF voltage offset fuse, rc=%d\n", |
| i, rc); |
| return rc; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_apply_fused_voltage_offset() - adjust the fused voltages for each |
| * fuse corner according to voltage offset fuse values |
| * @vreg: Pointer to the CPR3 regulator |
| * @fuse_volt: Pointer to an array of the fused voltage values; must |
| * have length equal to vreg->fuse_corner_count |
| * |
| * Voltage values in fuse_volt are modified in place. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_apply_fused_voltage_offset(struct cpr3_regulator *vreg, |
| int *fuse_volt) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| int i; |
| |
| if (!cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg)) |
| return 0; |
| |
| for (i = 0; i < vreg->fuse_corner_count; i++) |
| fuse_volt[i] += cpr3_convert_open_loop_voltage_fuse( |
| 0, |
| MSM8996PRO_HMSS_CBF_FUSE_STEP_VOLT, |
| fuse->cbf_voltage_offset[i], |
| MSM8996PRO_HMSS_CBF_VOLTAGE_FUSE_SIZE); |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_parse_corner_data() - parse HMSS corner data from device tree |
| * properties of the CPR3 regulator's device node |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_parse_corner_data(struct cpr3_regulator *vreg) |
| { |
| int rc; |
| |
| rc = cpr3_parse_common_corner_data(vreg); |
| if (rc) { |
| cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); |
| return rc; |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * cpr3_msm8996_hmss_calculate_open_loop_voltages() - calculate the open-loop |
| * voltage for each corner of a CPR3 regulator |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * If open-loop voltage interpolation is allowed in both device tree and in |
| * hardware fuses, then this function calculates the open-loop voltage for a |
| * given corner using linear interpolation. This interpolation is performed |
| * using the processor frequencies of the lower and higher Fmax corners along |
| * with their fused open-loop voltages. |
| * |
| * If open-loop voltage interpolation is not allowed, then this function uses |
| * the Fmax fused open-loop voltage for all of the corners associated with a |
| * given fuse corner. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_msm8996_hmss_calculate_open_loop_voltages( |
| struct cpr3_regulator *vreg) |
| { |
| struct device_node *node = vreg->of_node; |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| int rc = 0; |
| bool allow_interpolation; |
| u64 freq_low, volt_low, freq_high, volt_high; |
| int i, j, soc_revision; |
| const int *ref_volt; |
| int *fuse_volt; |
| int *fmax_corner; |
| |
| fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), |
| GFP_KERNEL); |
| fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), |
| GFP_KERNEL); |
| if (!fuse_volt || !fmax_corner) { |
| rc = -ENOMEM; |
| goto done; |
| } |
| |
| soc_revision = vreg->thread->ctrl->soc_revision; |
| if (soc_revision == 1 || soc_revision == 2) |
| ref_volt = msm8996_v1_v2_hmss_fuse_ref_volt; |
| else if (soc_revision == 3 && fuse->speed_bin == 1 |
| && fuse->cpr_fusing_rev >= 5) |
| ref_volt = msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt; |
| else |
| ref_volt = msm8996_v3_hmss_fuse_ref_volt; |
| |
| for (i = 0; i < vreg->fuse_corner_count; i++) { |
| fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse( |
| ref_volt[i], |
| MSM8996_HMSS_FUSE_STEP_VOLT, fuse->init_voltage[i], |
| MSM8996_HMSS_VOLTAGE_FUSE_SIZE); |
| |
| /* Log fused open-loop voltage values for debugging purposes. */ |
| if (i != CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS) |
| cpr3_info(vreg, "fused %6s: open-loop=%7d uV\n", |
| cpr3_msm8996_hmss_fuse_corner_name[i], |
| fuse_volt[i]); |
| } |
| |
| if (cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg)) { |
| rc = cpr3_hmss_apply_fused_voltage_offset(vreg, fuse_volt); |
| if (rc) { |
| cpr3_err(vreg, "could not apply CBF voltage offsets, rc=%d\n", |
| rc); |
| goto done; |
| } |
| |
| for (i = 0; i < vreg->fuse_corner_count; i++) |
| cpr3_info(vreg, "fused %6s: CBF offset open-loop=%7d uV\n", |
| cpr3_msm8996_hmss_fuse_corner_name[i], |
| fuse_volt[i]); |
| } |
| |
| rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); |
| if (rc) { |
| cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", |
| rc); |
| goto done; |
| } |
| |
| allow_interpolation = of_property_read_bool(node, |
| "qcom,allow-voltage-interpolation"); |
| |
| /* |
| * No LowSVS open-loop voltage fuse exists. Instead, intermediate |
| * voltages are interpolated between MinSVS and SVS. Set the LowSVS |
| * voltage to be equal to the adjusted SVS voltage in order to avoid |
| * triggering an incorrect condition violation in the following loop. |
| */ |
| fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS] |
| = fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]; |
| |
| for (i = 1; i < vreg->fuse_corner_count; i++) { |
| if (fuse_volt[i] < fuse_volt[i - 1]) { |
| cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", |
| i, fuse_volt[i], i - 1, fuse_volt[i - 1], |
| i, fuse_volt[i - 1]); |
| fuse_volt[i] = fuse_volt[i - 1]; |
| } |
| } |
| |
| if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) |
| allow_interpolation = false; |
| |
| if (!allow_interpolation) { |
| /* Use fused open-loop voltage for lower frequencies. */ |
| for (i = 0; i < vreg->corner_count; i++) |
| vreg->corner[i].open_loop_volt |
| = fuse_volt[vreg->corner[i].cpr_fuse_corner]; |
| goto done; |
| } |
| |
| for (i = 0; i < vreg->fuse_corner_count; i++) |
| fmax_corner[i] = vreg->fuse_corner_map[i]; |
| |
| /* |
| * Interpolation is not possible for corners mapped to the lowest fuse |
| * corner so use the fuse corner value directly. |
| */ |
| for (i = 0; i <= fmax_corner[0]; i++) |
| vreg->corner[i].open_loop_volt = fuse_volt[0]; |
| |
| /* |
| * Interpolation is not possible for corners mapped above the highest |
| * fuse corner so use the fuse corner value directly. |
| */ |
| j = vreg->fuse_corner_count - 1; |
| for (i = fmax_corner[j] + 1; i < vreg->corner_count; i++) |
| vreg->corner[i].open_loop_volt = fuse_volt[j]; |
| |
| /* |
| * Corner LowSVS should be skipped for voltage interpolation |
| * since no fuse exists for it. Instead, the lowest interpolation |
| * should be between MinSVS and SVS. |
| */ |
| for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS; |
| i < vreg->fuse_corner_count - 1; i++) { |
| fmax_corner[i] = fmax_corner[i + 1]; |
| fuse_volt[i] = fuse_volt[i + 1]; |
| } |
| |
| /* Interpolate voltages for the higher fuse corners. */ |
| for (i = 1; i < vreg->fuse_corner_count - 1; i++) { |
| freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; |
| volt_low = fuse_volt[i - 1]; |
| freq_high = vreg->corner[fmax_corner[i]].proc_freq; |
| volt_high = fuse_volt[i]; |
| |
| for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) |
| vreg->corner[j].open_loop_volt = cpr3_interpolate( |
| freq_low, volt_low, freq_high, volt_high, |
| vreg->corner[j].proc_freq); |
| } |
| |
| done: |
| if (rc == 0) { |
| cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); |
| for (i = 0; i < vreg->corner_count; i++) |
| cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, |
| vreg->corner[i].open_loop_volt); |
| |
| rc = cpr3_adjust_open_loop_voltages(vreg); |
| if (rc) |
| cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", |
| rc); |
| } |
| |
| kfree(fuse_volt); |
| kfree(fmax_corner); |
| return rc; |
| } |
| |
| /** |
| * cpr3_msm8996_hmss_set_no_interpolation_quotients() - use the fused target |
| * quotient values for lower frequencies. |
| * @vreg: Pointer to the CPR3 regulator |
| * @volt_adjust: Pointer to array of per-corner closed-loop adjustment |
| * voltages |
| * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop |
| * adjustment voltages |
| * @ro_scale: Pointer to array of per-fuse-corner RO scaling factor |
| * values with units of QUOT/V |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_msm8996_hmss_set_no_interpolation_quotients( |
| struct cpr3_regulator *vreg, int *volt_adjust, |
| int *volt_adjust_fuse, int *ro_scale) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| u32 quot, ro; |
| int quot_adjust; |
| int i, fuse_corner; |
| |
| for (i = 0; i < vreg->corner_count; i++) { |
| fuse_corner = vreg->corner[i].cpr_fuse_corner; |
| quot = fuse->target_quot[fuse_corner]; |
| quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], |
| volt_adjust_fuse[fuse_corner] + volt_adjust[i]); |
| ro = fuse->ro_sel[fuse_corner]; |
| vreg->corner[i].target_quot[ro] = quot + quot_adjust; |
| if (quot_adjust) |
| cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n", |
| i, ro, quot, vreg->corner[i].target_quot[ro], |
| volt_adjust_fuse[fuse_corner] + volt_adjust[i]); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_msm8996_hmss_calculate_target_quotients() - calculate the CPR target |
| * quotient for each corner of a CPR3 regulator |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * If target quotient interpolation is allowed in both device tree and in |
| * hardware fuses, then this function calculates the target quotient for a |
| * given corner using linear interpolation. This interpolation is performed |
| * using the processor frequencies of the lower and higher Fmax corners along |
| * with the fused target quotient and quotient offset of the higher Fmax corner. |
| * |
| * If target quotient interpolation is not allowed, then this function uses |
| * the Fmax fused target quotient for all of the corners associated with a |
| * given fuse corner. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_msm8996_hmss_calculate_target_quotients( |
| struct cpr3_regulator *vreg) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| int rc; |
| bool allow_interpolation; |
| u64 freq_low, freq_high, prev_quot; |
| u64 *quot_low; |
| u64 *quot_high; |
| u32 quot, ro; |
| int i, j, fuse_corner, quot_adjust; |
| int *fmax_corner; |
| int *volt_adjust, *volt_adjust_fuse, *ro_scale; |
| |
| /* Log fused quotient values for debugging purposes. */ |
| cpr3_info(vreg, "fused MinSVS: quot[%2llu]=%4llu\n", |
| fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS], |
| fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]); |
| for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; |
| i <= CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO; i++) |
| cpr3_info(vreg, "fused %6s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n", |
| cpr3_msm8996_hmss_fuse_corner_name[i], |
| fuse->ro_sel[i], fuse->target_quot[i], fuse->ro_sel[i], |
| fuse->quot_offset[i] * MSM8996_HMSS_QUOT_OFFSET_SCALE); |
| |
| allow_interpolation = of_property_read_bool(vreg->of_node, |
| "qcom,allow-quotient-interpolation"); |
| |
| if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) |
| allow_interpolation = false; |
| |
| volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), |
| GFP_KERNEL); |
| volt_adjust_fuse = kcalloc(vreg->fuse_corner_count, |
| sizeof(*volt_adjust_fuse), GFP_KERNEL); |
| ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale), |
| GFP_KERNEL); |
| fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), |
| GFP_KERNEL); |
| quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low), |
| GFP_KERNEL); |
| quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high), |
| GFP_KERNEL); |
| if (!volt_adjust || !volt_adjust_fuse || !ro_scale || |
| !fmax_corner || !quot_low || !quot_high) { |
| rc = -ENOMEM; |
| goto done; |
| } |
| |
| rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0], |
| volt_adjust, volt_adjust_fuse, ro_scale); |
| if (rc) { |
| cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", |
| rc); |
| goto done; |
| } |
| |
| rc = cpr3_hmss_apply_fused_voltage_offset(vreg, volt_adjust_fuse); |
| if (rc) { |
| cpr3_err(vreg, "could not apply CBF voltage offsets, rc=%d\n", |
| rc); |
| goto done; |
| } |
| |
| if (!allow_interpolation) { |
| /* Use fused target quotients for lower frequencies. */ |
| return cpr3_msm8996_hmss_set_no_interpolation_quotients(vreg, |
| volt_adjust, volt_adjust_fuse, ro_scale); |
| } |
| |
| for (i = 0; i < vreg->fuse_corner_count; i++) |
| fmax_corner[i] = vreg->fuse_corner_map[i]; |
| |
| /* |
| * Interpolation is not possible for corners mapped to the lowest fuse |
| * corner so use the fuse corner value directly. |
| */ |
| i = CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS; |
| quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]); |
| quot = fuse->target_quot[i] + quot_adjust; |
| quot_high[i] = quot; |
| ro = fuse->ro_sel[i]; |
| if (quot_adjust) |
| cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n", |
| i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]); |
| for (i = 0; i <= fmax_corner[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; i++) |
| vreg->corner[i].target_quot[ro] = quot; |
| |
| /* |
| * Interpolation is not possible for corners mapped above the highest |
| * fuse corner so use the fuse corner value directly. |
| */ |
| j = vreg->fuse_corner_count - 1; |
| quot_adjust = cpr3_quot_adjustment(ro_scale[j], volt_adjust_fuse[j]); |
| quot = fuse->target_quot[j] + quot_adjust; |
| ro = fuse->ro_sel[j]; |
| for (i = fmax_corner[j] + 1; i < vreg->corner_count; i++) |
| vreg->corner[i].target_quot[ro] = quot; |
| |
| /* |
| * The LowSVS target quotient is defined as: |
| * (SVS target quotient) - (the unpacked SVS quotient offset) |
| * MinSVS, LowSVS, and SVS fuse corners all share the same RO so it is |
| * possible to interpolate between their target quotient values. |
| */ |
| i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS; |
| quot_high[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] |
| - fuse->quot_offset[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] |
| * MSM8996_HMSS_QUOT_OFFSET_SCALE; |
| quot_low[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; |
| if (quot_high[i] < quot_low[i]) { |
| cpr3_info(vreg, "quot_lowsvs=%llu < quot_minsvs=%llu; overriding: quot_lowsvs=%llu\n", |
| quot_high[i], quot_low[i], quot_low[i]); |
| quot_high[i] = quot_low[i]; |
| } |
| if (fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS] |
| != fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]) { |
| cpr3_info(vreg, "MinSVS RO=%llu != SVS RO=%llu; disabling LowSVS interpolation\n", |
| fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS], |
| fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]); |
| quot_low[i] = quot_high[i]; |
| } |
| |
| for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; |
| i < vreg->fuse_corner_count; i++) { |
| quot_high[i] = fuse->target_quot[i]; |
| if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) |
| quot_low[i] = quot_high[i - 1]; |
| else |
| quot_low[i] = quot_high[i] |
| - fuse->quot_offset[i] |
| * MSM8996_HMSS_QUOT_OFFSET_SCALE; |
| if (quot_high[i] < quot_low[i]) { |
| cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n", |
| i, quot_high[i], i, quot_low[i], |
| i, quot_low[i]); |
| quot_high[i] = quot_low[i]; |
| } |
| } |
| |
| /* Perform per-fuse-corner target quotient adjustment */ |
| for (i = 1; i < vreg->fuse_corner_count; i++) { |
| quot_adjust = cpr3_quot_adjustment(ro_scale[i], |
| volt_adjust_fuse[i]); |
| if (quot_adjust) { |
| prev_quot = quot_high[i]; |
| quot_high[i] += quot_adjust; |
| cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n", |
| i, fuse->ro_sel[i], prev_quot, quot_high[i], |
| volt_adjust_fuse[i]); |
| } |
| |
| if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) |
| quot_low[i] = quot_high[i - 1]; |
| else |
| quot_low[i] += cpr3_quot_adjustment(ro_scale[i], |
| volt_adjust_fuse[i - 1]); |
| |
| if (quot_high[i] < quot_low[i]) { |
| cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n", |
| i, quot_high[i], i, quot_low[i], |
| i, quot_low[i]); |
| quot_high[i] = quot_low[i]; |
| } |
| } |
| |
| /* Interpolate voltages for the higher fuse corners. */ |
| for (i = 1; i < vreg->fuse_corner_count; i++) { |
| freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; |
| freq_high = vreg->corner[fmax_corner[i]].proc_freq; |
| |
| ro = fuse->ro_sel[i]; |
| for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) |
| vreg->corner[j].target_quot[ro] = cpr3_interpolate( |
| freq_low, quot_low[i], freq_high, quot_high[i], |
| vreg->corner[j].proc_freq); |
| } |
| |
| /* Perform per-corner target quotient adjustment */ |
| for (i = 0; i < vreg->corner_count; i++) { |
| fuse_corner = vreg->corner[i].cpr_fuse_corner; |
| ro = fuse->ro_sel[fuse_corner]; |
| quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], |
| volt_adjust[i]); |
| if (quot_adjust) { |
| prev_quot = vreg->corner[i].target_quot[ro]; |
| vreg->corner[i].target_quot[ro] += quot_adjust; |
| cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n", |
| i, ro, prev_quot, |
| vreg->corner[i].target_quot[ro], |
| volt_adjust[i]); |
| } |
| } |
| |
| /* Ensure that target quotients increase monotonically */ |
| for (i = 1; i < vreg->corner_count; i++) { |
| ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner]; |
| if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro |
| && vreg->corner[i].target_quot[ro] |
| < vreg->corner[i - 1].target_quot[ro]) { |
| cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", |
| i, ro, vreg->corner[i].target_quot[ro], |
| i - 1, ro, vreg->corner[i - 1].target_quot[ro], |
| i, ro, vreg->corner[i - 1].target_quot[ro]); |
| vreg->corner[i].target_quot[ro] |
| = vreg->corner[i - 1].target_quot[ro]; |
| } |
| } |
| |
| done: |
| kfree(volt_adjust); |
| kfree(volt_adjust_fuse); |
| kfree(ro_scale); |
| kfree(fmax_corner); |
| kfree(quot_low); |
| kfree(quot_high); |
| return rc; |
| } |
| |
| /** |
| * cpr3_msm8996_partial_binning_override() - override the voltage and quotient |
| * settings for low corners based upon the value of the partial |
| * binning fuse |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * Some parts are not able to operate at low voltages. The partial binning |
| * fuse specifies if a given part has such limitations. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_msm8996_partial_binning_override(struct cpr3_regulator *vreg) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| int i, fuse_corner, fmax_corner; |
| |
| if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS) |
| fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; |
| else if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM) |
| fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_NOM; |
| else |
| return 0; |
| |
| cpr3_info(vreg, "overriding voltages and quotients for all corners below %s Fmax\n", |
| cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]); |
| |
| fmax_corner = -1; |
| for (i = vreg->corner_count - 1; i >= 0; i--) { |
| if (vreg->corner[i].cpr_fuse_corner == fuse_corner) { |
| fmax_corner = i; |
| break; |
| } |
| } |
| if (fmax_corner < 0) { |
| cpr3_err(vreg, "could not find %s Fmax corner\n", |
| cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < fmax_corner; i++) |
| vreg->corner[i] = vreg->corner[fmax_corner]; |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_print_settings() - print out HMSS CPR configuration settings into |
| * the kernel log for debugging purposes |
| * @vreg: Pointer to the CPR3 regulator |
| */ |
| static void cpr3_hmss_print_settings(struct cpr3_regulator *vreg) |
| { |
| struct cpr3_corner *corner; |
| int i; |
| |
| cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); |
| for (i = 0; i < vreg->corner_count; i++) { |
| corner = &vreg->corner[i]; |
| cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", |
| i, corner->proc_freq, corner->cpr_fuse_corner, |
| corner->floor_volt, corner->open_loop_volt, |
| corner->ceiling_volt); |
| } |
| |
| if (vreg->thread->ctrl->apm) |
| cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n", |
| vreg->thread->ctrl->apm_threshold_volt, |
| vreg->thread->ctrl->apm_adj_volt); |
| } |
| |
| /** |
| * cpr3_hmss_init_thread() - perform steps necessary to initialize the |
| * configuration data for a CPR3 thread |
| * @thread: Pointer to the CPR3 thread |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_init_thread(struct cpr3_thread *thread) |
| { |
| int rc; |
| |
| rc = cpr3_parse_common_thread_data(thread); |
| if (rc) { |
| cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n", |
| thread->thread_id, rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| #define MAX_VREG_NAME_SIZE 25 |
| /** |
| * cpr3_hmss_kvreg_init() - initialize HMSS Kryo Regulator data for a CPR3 |
| * regulator |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * This function loads Kryo Regulator data from device tree if it is present |
| * and requests a handle to the appropriate Kryo regulator device. In addition, |
| * it initializes Kryo Regulator data originating from hardware fuses, such as |
| * the LDO retention voltage, and requests the Kryo retention regulator to |
| * be configured to that value. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_kvreg_init(struct cpr3_regulator *vreg) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; |
| struct device_node *node = vreg->of_node; |
| struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| int id = vreg->thread->thread_id; |
| char kvreg_name_buf[MAX_VREG_NAME_SIZE]; |
| int rc; |
| |
| scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, |
| "vdd-thread%d-ldo-supply", id); |
| |
| if (!of_find_property(ctrl->dev->of_node, kvreg_name_buf, NULL)) |
| return 0; |
| else if (!of_find_property(node, "qcom,ldo-min-headroom-voltage", NULL)) |
| return 0; |
| |
| scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo", id); |
| |
| vreg->ldo_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf); |
| if (IS_ERR(vreg->ldo_regulator)) { |
| rc = PTR_ERR(vreg->ldo_regulator); |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", |
| kvreg_name_buf, rc); |
| return rc; |
| } |
| |
| vreg->ldo_regulator_bypass = BHS_MODE; |
| |
| scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo-ret", |
| id); |
| |
| vreg->ldo_ret_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf); |
| if (IS_ERR(vreg->ldo_ret_regulator)) { |
| rc = PTR_ERR(vreg->ldo_ret_regulator); |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", |
| kvreg_name_buf, rc); |
| return rc; |
| } |
| |
| if (!ctrl->system_supply_max_volt) { |
| cpr3_err(ctrl, "system-supply max voltage must be specified\n"); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,ldo-min-headroom-voltage", |
| &vreg->ldo_min_headroom_volt); |
| if (rc) { |
| cpr3_err(vreg, "error reading qcom,ldo-min-headroom-voltage, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,ldo-max-headroom-voltage", |
| &vreg->ldo_max_headroom_volt); |
| if (rc) { |
| cpr3_err(vreg, "error reading qcom,ldo-max-headroom-voltage, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,ldo-max-voltage", |
| &vreg->ldo_max_volt); |
| if (rc) { |
| cpr3_err(vreg, "error reading qcom,ldo-max-voltage, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| /* Determine the CPU retention voltage based on fused data */ |
| vreg->ldo_ret_volt = |
| max(msm8996_vdd_apcc_fuse_ret_volt[fuse->vdd_apcc_ret_fuse], |
| msm8996_vdd_mx_fuse_ret_volt[fuse->vdd_mx_ret_fuse]); |
| |
| rc = regulator_set_voltage(vreg->ldo_ret_regulator, vreg->ldo_ret_volt, |
| INT_MAX); |
| if (rc < 0) { |
| cpr3_err(vreg, "regulator_set_voltage(ldo_ret) == %d failed, rc=%d\n", |
| vreg->ldo_ret_volt, rc); |
| return rc; |
| } |
| |
| /* optional properties, do not error out if missing */ |
| of_property_read_u32(node, "qcom,ldo-adjust-voltage", |
| &vreg->ldo_adjust_volt); |
| |
| vreg->ldo_mode_allowed = !of_property_read_bool(node, |
| "qcom,ldo-disable"); |
| |
| cpr3_info(vreg, "LDO min headroom=%d uV, LDO max headroom=%d uV, LDO adj=%d uV, LDO mode=%s, LDO retention=%d uV\n", |
| vreg->ldo_min_headroom_volt, |
| vreg->ldo_max_headroom_volt, |
| vreg->ldo_adjust_volt, |
| vreg->ldo_mode_allowed ? "allowed" : "disallowed", |
| vreg->ldo_ret_volt); |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_mem_acc_init() - initialize mem-acc regulator data for |
| * a CPR3 regulator |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * This function loads mem-acc data from device tree to enable |
| * the control of mem-acc settings based upon the CPR3 regulator |
| * output voltage. |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_mem_acc_init(struct cpr3_regulator *vreg) |
| { |
| struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| int id = vreg->thread->thread_id; |
| char mem_acc_vreg_name_buf[MAX_VREG_NAME_SIZE]; |
| int rc; |
| |
| scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE, |
| "mem-acc-thread%d-supply", id); |
| |
| if (!of_find_property(ctrl->dev->of_node, mem_acc_vreg_name_buf, |
| NULL)) { |
| cpr3_debug(vreg, "not using memory accelerator regulator\n"); |
| return 0; |
| } else if (!of_property_read_bool(vreg->of_node, "qcom,uses-mem-acc")) { |
| return 0; |
| } |
| |
| scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE, |
| "mem-acc-thread%d", id); |
| |
| vreg->mem_acc_regulator = devm_regulator_get(ctrl->dev, |
| mem_acc_vreg_name_buf); |
| if (IS_ERR(vreg->mem_acc_regulator)) { |
| rc = PTR_ERR(vreg->mem_acc_regulator); |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", |
| mem_acc_vreg_name_buf, rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_init_regulator() - perform all steps necessary to initialize the |
| * configuration data for a CPR3 regulator |
| * @vreg: Pointer to the CPR3 regulator |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_init_regulator(struct cpr3_regulator *vreg) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse; |
| int rc; |
| |
| rc = cpr3_msm8996_hmss_read_fuse_data(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = cpr3_hmss_kvreg_init(vreg); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(vreg, "unable to initialize Kryo Regulator settings, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = cpr3_hmss_mem_acc_init(vreg); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| fuse = vreg->platform_fuses; |
| if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) { |
| cpr3_err(vreg, "this chip requires an unsupported voltage\n"); |
| return -EPERM; |
| } else if (fuse->limitation |
| == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) { |
| vreg->thread->ctrl->cpr_allowed_hw = false; |
| } |
| |
| rc = of_property_read_u32(vreg->of_node, "qcom,cpr-pd-bypass-mask", |
| &vreg->pd_bypass_mask); |
| if (rc) { |
| cpr3_err(vreg, "error reading qcom,cpr-pd-bypass-mask, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = cpr3_hmss_parse_corner_data(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| if (of_find_property(vreg->of_node, "qcom,cpr-dynamic-floor-corner", |
| NULL)) { |
| rc = cpr3_parse_array_property(vreg, |
| "qcom,cpr-dynamic-floor-corner", |
| 1, &vreg->dynamic_floor_corner); |
| if (rc) { |
| cpr3_err(vreg, "error reading qcom,cpr-dynamic-floor-corner, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| if (vreg->dynamic_floor_corner <= 0) { |
| vreg->uses_dynamic_floor = false; |
| } else if (vreg->dynamic_floor_corner < CPR3_CORNER_OFFSET |
| || vreg->dynamic_floor_corner |
| > vreg->corner_count - 1 + CPR3_CORNER_OFFSET) { |
| cpr3_err(vreg, "dynamic floor corner=%d not in range [%d, %d]\n", |
| vreg->dynamic_floor_corner, CPR3_CORNER_OFFSET, |
| vreg->corner_count - 1 + CPR3_CORNER_OFFSET); |
| return -EINVAL; |
| } |
| |
| vreg->dynamic_floor_corner -= CPR3_CORNER_OFFSET; |
| vreg->uses_dynamic_floor = true; |
| } |
| |
| rc = cpr3_msm8996_hmss_calculate_open_loop_voltages(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = cpr3_limit_open_loop_voltages(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| cpr3_open_loop_voltage_as_ceiling(vreg); |
| |
| rc = cpr3_limit_floor_voltages(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = cpr3_msm8996_hmss_calculate_target_quotients(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = cpr3_msm8996_partial_binning_override(vreg); |
| if (rc) { |
| cpr3_err(vreg, "unable to override voltages and quotients based on partial binning fuse, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| cpr3_hmss_print_settings(vreg); |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_init_aging() - perform HMSS CPR3 controller specific |
| * aging initializations |
| * @ctrl: Pointer to the CPR3 controller |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_init_aging(struct cpr3_controller *ctrl) |
| { |
| struct cpr3_msm8996_hmss_fuses *fuse = NULL; |
| struct cpr3_regulator *vreg; |
| u32 aging_ro_scale; |
| int i, j, rc; |
| |
| for (i = 0; i < ctrl->thread_count; i++) { |
| for (j = 0; j < ctrl->thread[i].vreg_count; j++) { |
| if (ctrl->thread[i].vreg[j].aging_allowed) { |
| ctrl->aging_required = true; |
| vreg = &ctrl->thread[i].vreg[j]; |
| fuse = vreg->platform_fuses; |
| break; |
| } |
| } |
| } |
| |
| if (!ctrl->aging_required || !fuse || !vreg) |
| return 0; |
| |
| rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor", |
| 1, &aging_ro_scale); |
| if (rc) |
| return rc; |
| |
| if (aging_ro_scale == 0) { |
| cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n", |
| aging_ro_scale); |
| return -EINVAL; |
| } |
| |
| ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL; |
| ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE; |
| |
| ctrl->aging_sensor_count = 1; |
| ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL); |
| if (!ctrl->aging_sensor) |
| return -ENOMEM; |
| |
| ctrl->aging_sensor->sensor_id = MSM8996_HMSS_AGING_SENSOR_ID; |
| ctrl->aging_sensor->bypass_mask[0] = MSM8996_HMSS_AGING_BYPASS_MASK0; |
| ctrl->aging_sensor->ro_scale = aging_ro_scale; |
| |
| ctrl->aging_sensor->init_quot_diff |
| = cpr3_convert_open_loop_voltage_fuse(0, |
| MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE, |
| fuse->aging_init_quot_diff, |
| MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE); |
| |
| cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n", |
| ctrl->aging_sensor->sensor_id, |
| ctrl->aging_sensor->init_quot_diff, |
| ctrl->aging_sensor->ro_scale); |
| |
| return 0; |
| } |
| |
| /** |
| * cpr3_hmss_init_controller() - perform HMSS CPR3 controller specific |
| * initializations |
| * @ctrl: Pointer to the CPR3 controller |
| * |
| * Return: 0 on success, errno on failure |
| */ |
| static int cpr3_hmss_init_controller(struct cpr3_controller *ctrl) |
| { |
| int i, rc; |
| |
| rc = cpr3_parse_common_ctrl_data(ctrl); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit"); |
| if (IS_ERR(ctrl->vdd_limit_regulator)) { |
| rc = PTR_ERR(ctrl->vdd_limit_regulator); |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(ctrl, "unable to request vdd-supply regulator, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(ctrl->dev->of_node, |
| "qcom,cpr-up-down-delay-time", |
| &ctrl->up_down_delay_time); |
| if (rc) { |
| cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| /* No error check since this is an optional property. */ |
| of_property_read_u32(ctrl->dev->of_node, |
| "qcom,system-supply-max-voltage", |
| &ctrl->system_supply_max_volt); |
| |
| /* No error check since this is an optional property. */ |
| of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-clock-throttling", |
| &ctrl->proc_clock_throttle); |
| |
| rc = cpr3_apm_init(ctrl); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| ctrl->sensor_count = MSM8996_HMSS_CPR_SENSOR_COUNT; |
| |
| ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, |
| sizeof(*ctrl->sensor_owner), GFP_KERNEL); |
| if (!ctrl->sensor_owner) |
| return -ENOMEM; |
| |
| /* Specify sensor ownership */ |
| for (i = MSM8996_HMSS_THREAD0_SENSOR_MIN; |
| i <= MSM8996_HMSS_THREAD0_SENSOR_MAX; i++) |
| ctrl->sensor_owner[i] = 0; |
| for (i = MSM8996_HMSS_THREAD1_SENSOR_MIN; |
| i <= MSM8996_HMSS_THREAD1_SENSOR_MAX; i++) |
| ctrl->sensor_owner[i] = 1; |
| |
| ctrl->cpr_clock_rate = MSM8996_HMSS_CPR_CLOCK_RATE; |
| ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3; |
| ctrl->supports_hw_closed_loop = true; |
| ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node, |
| "qcom,cpr-hw-closed-loop"); |
| |
| if (ctrl->mem_acc_regulator) { |
| rc = of_property_read_u32(ctrl->dev->of_node, |
| "qcom,mem-acc-supply-threshold-voltage", |
| &ctrl->mem_acc_threshold_volt); |
| if (rc) { |
| cpr3_err(ctrl, "error reading property qcom,mem-acc-supply-threshold-voltage, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| ctrl->mem_acc_threshold_volt = |
| CPR3_ROUND(ctrl->mem_acc_threshold_volt, |
| ctrl->step_volt); |
| |
| rc = of_property_read_u32_array(ctrl->dev->of_node, |
| "qcom,mem-acc-supply-corner-map", |
| &ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER], |
| CPR3_MEM_ACC_CORNERS); |
| if (rc) { |
| cpr3_err(ctrl, "error reading qcom,mem-acc-supply-corner-map, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cpr3_hmss_regulator_suspend(struct platform_device *pdev, |
| pm_message_t state) |
| { |
| struct cpr3_controller *ctrl = platform_get_drvdata(pdev); |
| |
| return cpr3_regulator_suspend(ctrl); |
| } |
| |
| static int cpr3_hmss_regulator_resume(struct platform_device *pdev) |
| { |
| struct cpr3_controller *ctrl = platform_get_drvdata(pdev); |
| |
| return cpr3_regulator_resume(ctrl); |
| } |
| |
| /* Data corresponds to the SoC revision */ |
| static const struct of_device_id cpr_regulator_match_table[] = { |
| { |
| .compatible = "qcom,cpr3-msm8996-v1-hmss-regulator", |
| .data = (void *)(uintptr_t)1 |
| }, |
| { |
| .compatible = "qcom,cpr3-msm8996-v2-hmss-regulator", |
| .data = (void *)(uintptr_t)2 |
| }, |
| { |
| .compatible = "qcom,cpr3-msm8996-v3-hmss-regulator", |
| .data = (void *)(uintptr_t)3 |
| }, |
| { |
| .compatible = "qcom,cpr3-msm8996-hmss-regulator", |
| .data = (void *)(uintptr_t)3 |
| }, |
| { |
| .compatible = "qcom,cpr3-msm8996pro-hmss-regulator", |
| .data = (void *)(uintptr_t)MSM8996PRO_SOC_ID, |
| }, |
| {} |
| }; |
| |
| static int cpr3_hmss_regulator_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct of_device_id *match; |
| struct cpr3_controller *ctrl; |
| struct cpr3_regulator *vreg; |
| int i, j, rc; |
| |
| if (!dev->of_node) { |
| dev_err(dev, "Device tree node is missing\n"); |
| return -EINVAL; |
| } |
| |
| ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) |
| return -ENOMEM; |
| |
| ctrl->dev = dev; |
| /* Set to false later if anything precludes CPR operation. */ |
| ctrl->cpr_allowed_hw = true; |
| |
| rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", |
| &ctrl->name); |
| if (rc) { |
| cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| match = of_match_node(cpr_regulator_match_table, dev->of_node); |
| if (match) |
| ctrl->soc_revision = (uintptr_t)match->data; |
| else |
| cpr3_err(ctrl, "could not find compatible string match\n"); |
| |
| rc = cpr3_map_fuse_base(ctrl, pdev); |
| if (rc) { |
| cpr3_err(ctrl, "could not map fuse base address\n"); |
| return rc; |
| } |
| |
| rc = cpr3_allocate_threads(ctrl, MSM8996_HMSS_POWER_CLUSTER_THREAD_ID, |
| MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID); |
| if (rc) { |
| cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| if (ctrl->thread_count < 1) { |
| cpr3_err(ctrl, "thread nodes are missing\n"); |
| return -EINVAL; |
| } |
| |
| rc = cpr3_hmss_init_controller(ctrl); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| for (i = 0; i < ctrl->thread_count; i++) { |
| rc = cpr3_hmss_init_thread(&ctrl->thread[i]); |
| if (rc) { |
| cpr3_err(ctrl, "thread %u initialization failed, rc=%d\n", |
| ctrl->thread[i].thread_id, rc); |
| return rc; |
| } |
| |
| for (j = 0; j < ctrl->thread[i].vreg_count; j++) { |
| vreg = &ctrl->thread[i].vreg[j]; |
| |
| rc = cpr3_hmss_init_regulator(vreg); |
| if (rc) { |
| cpr3_err(vreg, "regulator initialization failed, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| } |
| |
| rc = cpr3_hmss_init_aging(ctrl); |
| if (rc) { |
| cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n", |
| rc); |
| return rc; |
| } |
| |
| platform_set_drvdata(pdev, ctrl); |
| |
| return cpr3_regulator_register(pdev, ctrl); |
| } |
| |
| static int cpr3_hmss_regulator_remove(struct platform_device *pdev) |
| { |
| struct cpr3_controller *ctrl = platform_get_drvdata(pdev); |
| |
| return cpr3_regulator_unregister(ctrl); |
| } |
| |
| static struct platform_driver cpr3_hmss_regulator_driver = { |
| .driver = { |
| .name = "qcom,cpr3-hmss-regulator", |
| .of_match_table = cpr_regulator_match_table, |
| .owner = THIS_MODULE, |
| }, |
| .probe = cpr3_hmss_regulator_probe, |
| .remove = cpr3_hmss_regulator_remove, |
| .suspend = cpr3_hmss_regulator_suspend, |
| .resume = cpr3_hmss_regulator_resume, |
| }; |
| |
| static int cpr_regulator_init(void) |
| { |
| return platform_driver_register(&cpr3_hmss_regulator_driver); |
| } |
| |
| static void cpr_regulator_exit(void) |
| { |
| platform_driver_unregister(&cpr3_hmss_regulator_driver); |
| } |
| |
| MODULE_DESCRIPTION("CPR3 HMSS regulator driver"); |
| MODULE_LICENSE("GPL v2"); |
| |
| arch_initcall(cpr_regulator_init); |
| module_exit(cpr_regulator_exit); |