| /* |
| * inftlmount.c -- INFTL mount code with extensive checks. |
| * |
| * Author: Greg Ungerer (gerg@snapgear.com) |
| * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) |
| * |
| * Based heavily on the nftlmount.c code which is: |
| * Author: Fabrice Bellard (fabrice.bellard@netgem.com) |
| * Copyright © 2000 Netgem S.A. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <asm/errno.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nftl.h> |
| #include <linux/mtd/inftl.h> |
| |
| /* |
| * find_boot_record: Find the INFTL Media Header and its Spare copy which |
| * contains the various device information of the INFTL partition and |
| * Bad Unit Table. Update the PUtable[] table according to the Bad |
| * Unit Table. PUtable[] is used for management of Erase Unit in |
| * other routines in inftlcore.c and inftlmount.c. |
| */ |
| static int find_boot_record(struct INFTLrecord *inftl) |
| { |
| struct inftl_unittail h1; |
| //struct inftl_oob oob; |
| unsigned int i, block; |
| u8 buf[SECTORSIZE]; |
| struct INFTLMediaHeader *mh = &inftl->MediaHdr; |
| struct mtd_info *mtd = inftl->mbd.mtd; |
| struct INFTLPartition *ip; |
| size_t retlen; |
| |
| pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); |
| |
| /* |
| * Assume logical EraseSize == physical erasesize for starting the |
| * scan. We'll sort it out later if we find a MediaHeader which says |
| * otherwise. |
| */ |
| inftl->EraseSize = inftl->mbd.mtd->erasesize; |
| inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; |
| |
| inftl->MediaUnit = BLOCK_NIL; |
| |
| /* Search for a valid boot record */ |
| for (block = 0; block < inftl->nb_blocks; block++) { |
| int ret; |
| |
| /* |
| * Check for BNAND header first. Then whinge if it's found |
| * but later checks fail. |
| */ |
| ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, |
| &retlen, buf); |
| /* We ignore ret in case the ECC of the MediaHeader is invalid |
| (which is apparently acceptable) */ |
| if (retlen != SECTORSIZE) { |
| static int warncount = 5; |
| |
| if (warncount) { |
| printk(KERN_WARNING "INFTL: block read at 0x%x " |
| "of mtd%d failed: %d\n", |
| block * inftl->EraseSize, |
| inftl->mbd.mtd->index, ret); |
| if (!--warncount) |
| printk(KERN_WARNING "INFTL: further " |
| "failures for this block will " |
| "not be printed\n"); |
| } |
| continue; |
| } |
| |
| if (retlen < 6 || memcmp(buf, "BNAND", 6)) { |
| /* BNAND\0 not found. Continue */ |
| continue; |
| } |
| |
| /* To be safer with BIOS, also use erase mark as discriminant */ |
| ret = inftl_read_oob(mtd, |
| block * inftl->EraseSize + SECTORSIZE + 8, |
| 8, &retlen,(char *)&h1); |
| if (ret < 0) { |
| printk(KERN_WARNING "INFTL: ANAND header found at " |
| "0x%x in mtd%d, but OOB data read failed " |
| "(err %d)\n", block * inftl->EraseSize, |
| inftl->mbd.mtd->index, ret); |
| continue; |
| } |
| |
| |
| /* |
| * This is the first we've seen. |
| * Copy the media header structure into place. |
| */ |
| memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); |
| |
| /* Read the spare media header at offset 4096 */ |
| mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, |
| &retlen, buf); |
| if (retlen != SECTORSIZE) { |
| printk(KERN_WARNING "INFTL: Unable to read spare " |
| "Media Header\n"); |
| return -1; |
| } |
| /* Check if this one is the same as the first one we found. */ |
| if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { |
| printk(KERN_WARNING "INFTL: Primary and spare Media " |
| "Headers disagree.\n"); |
| return -1; |
| } |
| |
| mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); |
| mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); |
| mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); |
| mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); |
| mh->FormatFlags = le32_to_cpu(mh->FormatFlags); |
| mh->PercentUsed = le32_to_cpu(mh->PercentUsed); |
| |
| pr_debug("INFTL: Media Header ->\n" |
| " bootRecordID = %s\n" |
| " NoOfBootImageBlocks = %d\n" |
| " NoOfBinaryPartitions = %d\n" |
| " NoOfBDTLPartitions = %d\n" |
| " BlockMultiplerBits = %d\n" |
| " FormatFlgs = %d\n" |
| " OsakVersion = 0x%x\n" |
| " PercentUsed = %d\n", |
| mh->bootRecordID, mh->NoOfBootImageBlocks, |
| mh->NoOfBinaryPartitions, |
| mh->NoOfBDTLPartitions, |
| mh->BlockMultiplierBits, mh->FormatFlags, |
| mh->OsakVersion, mh->PercentUsed); |
| |
| if (mh->NoOfBDTLPartitions == 0) { |
| printk(KERN_WARNING "INFTL: Media Header sanity check " |
| "failed: NoOfBDTLPartitions (%d) == 0, " |
| "must be at least 1\n", mh->NoOfBDTLPartitions); |
| return -1; |
| } |
| |
| if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { |
| printk(KERN_WARNING "INFTL: Media Header sanity check " |
| "failed: Total Partitions (%d) > 4, " |
| "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + |
| mh->NoOfBinaryPartitions, |
| mh->NoOfBDTLPartitions, |
| mh->NoOfBinaryPartitions); |
| return -1; |
| } |
| |
| if (mh->BlockMultiplierBits > 1) { |
| printk(KERN_WARNING "INFTL: sorry, we don't support " |
| "UnitSizeFactor 0x%02x\n", |
| mh->BlockMultiplierBits); |
| return -1; |
| } else if (mh->BlockMultiplierBits == 1) { |
| printk(KERN_WARNING "INFTL: support for INFTL with " |
| "UnitSizeFactor 0x%02x is experimental\n", |
| mh->BlockMultiplierBits); |
| inftl->EraseSize = inftl->mbd.mtd->erasesize << |
| mh->BlockMultiplierBits; |
| inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; |
| block >>= mh->BlockMultiplierBits; |
| } |
| |
| /* Scan the partitions */ |
| for (i = 0; (i < 4); i++) { |
| ip = &mh->Partitions[i]; |
| ip->virtualUnits = le32_to_cpu(ip->virtualUnits); |
| ip->firstUnit = le32_to_cpu(ip->firstUnit); |
| ip->lastUnit = le32_to_cpu(ip->lastUnit); |
| ip->flags = le32_to_cpu(ip->flags); |
| ip->spareUnits = le32_to_cpu(ip->spareUnits); |
| ip->Reserved0 = le32_to_cpu(ip->Reserved0); |
| |
| pr_debug(" PARTITION[%d] ->\n" |
| " virtualUnits = %d\n" |
| " firstUnit = %d\n" |
| " lastUnit = %d\n" |
| " flags = 0x%x\n" |
| " spareUnits = %d\n", |
| i, ip->virtualUnits, ip->firstUnit, |
| ip->lastUnit, ip->flags, |
| ip->spareUnits); |
| |
| if (ip->Reserved0 != ip->firstUnit) { |
| struct erase_info *instr = &inftl->instr; |
| |
| instr->mtd = inftl->mbd.mtd; |
| |
| /* |
| * Most likely this is using the |
| * undocumented qiuck mount feature. |
| * We don't support that, we will need |
| * to erase the hidden block for full |
| * compatibility. |
| */ |
| instr->addr = ip->Reserved0 * inftl->EraseSize; |
| instr->len = inftl->EraseSize; |
| mtd_erase(mtd, instr); |
| } |
| if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { |
| printk(KERN_WARNING "INFTL: Media Header " |
| "Partition %d sanity check failed\n" |
| " firstUnit %d : lastUnit %d > " |
| "virtualUnits %d\n", i, ip->lastUnit, |
| ip->firstUnit, ip->Reserved0); |
| return -1; |
| } |
| if (ip->Reserved1 != 0) { |
| printk(KERN_WARNING "INFTL: Media Header " |
| "Partition %d sanity check failed: " |
| "Reserved1 %d != 0\n", |
| i, ip->Reserved1); |
| return -1; |
| } |
| |
| if (ip->flags & INFTL_BDTL) |
| break; |
| } |
| |
| if (i >= 4) { |
| printk(KERN_WARNING "INFTL: Media Header Partition " |
| "sanity check failed:\n No partition " |
| "marked as Disk Partition\n"); |
| return -1; |
| } |
| |
| inftl->nb_boot_blocks = ip->firstUnit; |
| inftl->numvunits = ip->virtualUnits; |
| if (inftl->numvunits > (inftl->nb_blocks - |
| inftl->nb_boot_blocks - 2)) { |
| printk(KERN_WARNING "INFTL: Media Header sanity check " |
| "failed:\n numvunits (%d) > nb_blocks " |
| "(%d) - nb_boot_blocks(%d) - 2\n", |
| inftl->numvunits, inftl->nb_blocks, |
| inftl->nb_boot_blocks); |
| return -1; |
| } |
| |
| inftl->mbd.size = inftl->numvunits * |
| (inftl->EraseSize / SECTORSIZE); |
| |
| /* |
| * Block count is set to last used EUN (we won't need to keep |
| * any meta-data past that point). |
| */ |
| inftl->firstEUN = ip->firstUnit; |
| inftl->lastEUN = ip->lastUnit; |
| inftl->nb_blocks = ip->lastUnit + 1; |
| |
| /* Memory alloc */ |
| inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
| if (!inftl->PUtable) { |
| printk(KERN_WARNING "INFTL: allocation of PUtable " |
| "failed (%zd bytes)\n", |
| inftl->nb_blocks * sizeof(u16)); |
| return -ENOMEM; |
| } |
| |
| inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
| if (!inftl->VUtable) { |
| kfree(inftl->PUtable); |
| printk(KERN_WARNING "INFTL: allocation of VUtable " |
| "failed (%zd bytes)\n", |
| inftl->nb_blocks * sizeof(u16)); |
| return -ENOMEM; |
| } |
| |
| /* Mark the blocks before INFTL MediaHeader as reserved */ |
| for (i = 0; i < inftl->nb_boot_blocks; i++) |
| inftl->PUtable[i] = BLOCK_RESERVED; |
| /* Mark all remaining blocks as potentially containing data */ |
| for (; i < inftl->nb_blocks; i++) |
| inftl->PUtable[i] = BLOCK_NOTEXPLORED; |
| |
| /* Mark this boot record (NFTL MediaHeader) block as reserved */ |
| inftl->PUtable[block] = BLOCK_RESERVED; |
| |
| /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ |
| for (i = 0; i < inftl->nb_blocks; i++) { |
| int physblock; |
| /* If any of the physical eraseblocks are bad, don't |
| use the unit. */ |
| for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { |
| if (mtd_block_isbad(inftl->mbd.mtd, |
| i * inftl->EraseSize + physblock)) |
| inftl->PUtable[i] = BLOCK_RESERVED; |
| } |
| } |
| |
| inftl->MediaUnit = block; |
| return 0; |
| } |
| |
| /* Not found. */ |
| return -1; |
| } |
| |
| static int memcmpb(void *a, int c, int n) |
| { |
| int i; |
| for (i = 0; i < n; i++) { |
| if (c != ((unsigned char *)a)[i]) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * check_free_sector: check if a free sector is actually FREE, |
| * i.e. All 0xff in data and oob area. |
| */ |
| static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, |
| int len, int check_oob) |
| { |
| u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize]; |
| struct mtd_info *mtd = inftl->mbd.mtd; |
| size_t retlen; |
| int i; |
| |
| for (i = 0; i < len; i += SECTORSIZE) { |
| if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) |
| return -1; |
| if (memcmpb(buf, 0xff, SECTORSIZE) != 0) |
| return -1; |
| |
| if (check_oob) { |
| if(inftl_read_oob(mtd, address, mtd->oobsize, |
| &retlen, &buf[SECTORSIZE]) < 0) |
| return -1; |
| if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) |
| return -1; |
| } |
| address += SECTORSIZE; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase |
| * Unit and Update INFTL metadata. Each erase operation is |
| * checked with check_free_sectors. |
| * |
| * Return: 0 when succeed, -1 on error. |
| * |
| * ToDo: 1. Is it necessary to check_free_sector after erasing ?? |
| */ |
| int INFTL_formatblock(struct INFTLrecord *inftl, int block) |
| { |
| size_t retlen; |
| struct inftl_unittail uci; |
| struct erase_info *instr = &inftl->instr; |
| struct mtd_info *mtd = inftl->mbd.mtd; |
| int physblock; |
| |
| pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); |
| |
| memset(instr, 0, sizeof(struct erase_info)); |
| |
| /* FIXME: Shouldn't we be setting the 'discarded' flag to zero |
| _first_? */ |
| |
| /* Use async erase interface, test return code */ |
| instr->mtd = inftl->mbd.mtd; |
| instr->addr = block * inftl->EraseSize; |
| instr->len = inftl->mbd.mtd->erasesize; |
| /* Erase one physical eraseblock at a time, even though the NAND api |
| allows us to group them. This way we if we have a failure, we can |
| mark only the failed block in the bbt. */ |
| for (physblock = 0; physblock < inftl->EraseSize; |
| physblock += instr->len, instr->addr += instr->len) { |
| mtd_erase(inftl->mbd.mtd, instr); |
| |
| if (instr->state == MTD_ERASE_FAILED) { |
| printk(KERN_WARNING "INFTL: error while formatting block %d\n", |
| block); |
| goto fail; |
| } |
| |
| /* |
| * Check the "freeness" of Erase Unit before updating metadata. |
| * FixMe: is this check really necessary? Since we have check |
| * the return code after the erase operation. |
| */ |
| if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) |
| goto fail; |
| } |
| |
| uci.EraseMark = cpu_to_le16(ERASE_MARK); |
| uci.EraseMark1 = cpu_to_le16(ERASE_MARK); |
| uci.Reserved[0] = 0; |
| uci.Reserved[1] = 0; |
| uci.Reserved[2] = 0; |
| uci.Reserved[3] = 0; |
| instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; |
| if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) |
| goto fail; |
| return 0; |
| fail: |
| /* could not format, update the bad block table (caller is responsible |
| for setting the PUtable to BLOCK_RESERVED on failure) */ |
| mtd_block_markbad(inftl->mbd.mtd, instr->addr); |
| return -1; |
| } |
| |
| /* |
| * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase |
| * Units in a Virtual Unit Chain, i.e. all the units are disconnected. |
| * |
| * Since the chain is invalid then we will have to erase it from its |
| * head (normally for INFTL we go from the oldest). But if it has a |
| * loop then there is no oldest... |
| */ |
| static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) |
| { |
| unsigned int block = first_block, block1; |
| |
| printk(KERN_WARNING "INFTL: formatting chain at block %d\n", |
| first_block); |
| |
| for (;;) { |
| block1 = inftl->PUtable[block]; |
| |
| printk(KERN_WARNING "INFTL: formatting block %d\n", block); |
| if (INFTL_formatblock(inftl, block) < 0) { |
| /* |
| * Cannot format !!!! Mark it as Bad Unit, |
| */ |
| inftl->PUtable[block] = BLOCK_RESERVED; |
| } else { |
| inftl->PUtable[block] = BLOCK_FREE; |
| } |
| |
| /* Goto next block on the chain */ |
| block = block1; |
| |
| if (block == BLOCK_NIL || block >= inftl->lastEUN) |
| break; |
| } |
| } |
| |
| void INFTL_dumptables(struct INFTLrecord *s) |
| { |
| int i; |
| |
| pr_debug("-------------------------------------------" |
| "----------------------------------\n"); |
| |
| pr_debug("VUtable[%d] ->", s->nb_blocks); |
| for (i = 0; i < s->nb_blocks; i++) { |
| if ((i % 8) == 0) |
| pr_debug("\n%04x: ", i); |
| pr_debug("%04x ", s->VUtable[i]); |
| } |
| |
| pr_debug("\n-------------------------------------------" |
| "----------------------------------\n"); |
| |
| pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); |
| for (i = 0; i <= s->lastEUN; i++) { |
| if ((i % 8) == 0) |
| pr_debug("\n%04x: ", i); |
| pr_debug("%04x ", s->PUtable[i]); |
| } |
| |
| pr_debug("\n-------------------------------------------" |
| "----------------------------------\n"); |
| |
| pr_debug("INFTL ->\n" |
| " EraseSize = %d\n" |
| " h/s/c = %d/%d/%d\n" |
| " numvunits = %d\n" |
| " firstEUN = %d\n" |
| " lastEUN = %d\n" |
| " numfreeEUNs = %d\n" |
| " LastFreeEUN = %d\n" |
| " nb_blocks = %d\n" |
| " nb_boot_blocks = %d", |
| s->EraseSize, s->heads, s->sectors, s->cylinders, |
| s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, |
| s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); |
| |
| pr_debug("\n-------------------------------------------" |
| "----------------------------------\n"); |
| } |
| |
| void INFTL_dumpVUchains(struct INFTLrecord *s) |
| { |
| int logical, block, i; |
| |
| pr_debug("-------------------------------------------" |
| "----------------------------------\n"); |
| |
| pr_debug("INFTL Virtual Unit Chains:\n"); |
| for (logical = 0; logical < s->nb_blocks; logical++) { |
| block = s->VUtable[logical]; |
| if (block > s->nb_blocks) |
| continue; |
| pr_debug(" LOGICAL %d --> %d ", logical, block); |
| for (i = 0; i < s->nb_blocks; i++) { |
| if (s->PUtable[block] == BLOCK_NIL) |
| break; |
| block = s->PUtable[block]; |
| pr_debug("%d ", block); |
| } |
| pr_debug("\n"); |
| } |
| |
| pr_debug("-------------------------------------------" |
| "----------------------------------\n"); |
| } |
| |
| int INFTL_mount(struct INFTLrecord *s) |
| { |
| struct mtd_info *mtd = s->mbd.mtd; |
| unsigned int block, first_block, prev_block, last_block; |
| unsigned int first_logical_block, logical_block, erase_mark; |
| int chain_length, do_format_chain; |
| struct inftl_unithead1 h0; |
| struct inftl_unittail h1; |
| size_t retlen; |
| int i; |
| u8 *ANACtable, ANAC; |
| |
| pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); |
| |
| /* Search for INFTL MediaHeader and Spare INFTL Media Header */ |
| if (find_boot_record(s) < 0) { |
| printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); |
| return -ENXIO; |
| } |
| |
| /* Init the logical to physical table */ |
| for (i = 0; i < s->nb_blocks; i++) |
| s->VUtable[i] = BLOCK_NIL; |
| |
| logical_block = block = BLOCK_NIL; |
| |
| /* Temporary buffer to store ANAC numbers. */ |
| ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); |
| if (!ANACtable) { |
| printk(KERN_WARNING "INFTL: allocation of ANACtable " |
| "failed (%zd bytes)\n", |
| s->nb_blocks * sizeof(u8)); |
| return -ENOMEM; |
| } |
| |
| /* |
| * First pass is to explore each physical unit, and construct the |
| * virtual chains that exist (newest physical unit goes into VUtable). |
| * Any block that is in any way invalid will be left in the |
| * NOTEXPLORED state. Then at the end we will try to format it and |
| * mark it as free. |
| */ |
| pr_debug("INFTL: pass 1, explore each unit\n"); |
| for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { |
| if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) |
| continue; |
| |
| do_format_chain = 0; |
| first_logical_block = BLOCK_NIL; |
| last_block = BLOCK_NIL; |
| block = first_block; |
| |
| for (chain_length = 0; ; chain_length++) { |
| |
| if ((chain_length == 0) && |
| (s->PUtable[block] != BLOCK_NOTEXPLORED)) { |
| /* Nothing to do here, onto next block */ |
| break; |
| } |
| |
| if (inftl_read_oob(mtd, block * s->EraseSize + 8, |
| 8, &retlen, (char *)&h0) < 0 || |
| inftl_read_oob(mtd, block * s->EraseSize + |
| 2 * SECTORSIZE + 8, 8, &retlen, |
| (char *)&h1) < 0) { |
| /* Should never happen? */ |
| do_format_chain++; |
| break; |
| } |
| |
| logical_block = le16_to_cpu(h0.virtualUnitNo); |
| prev_block = le16_to_cpu(h0.prevUnitNo); |
| erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); |
| ANACtable[block] = h0.ANAC; |
| |
| /* Previous block is relative to start of Partition */ |
| if (prev_block < s->nb_blocks) |
| prev_block += s->firstEUN; |
| |
| /* Already explored partial chain? */ |
| if (s->PUtable[block] != BLOCK_NOTEXPLORED) { |
| /* Check if chain for this logical */ |
| if (logical_block == first_logical_block) { |
| if (last_block != BLOCK_NIL) |
| s->PUtable[last_block] = block; |
| } |
| break; |
| } |
| |
| /* Check for invalid block */ |
| if (erase_mark != ERASE_MARK) { |
| printk(KERN_WARNING "INFTL: corrupt block %d " |
| "in chain %d, chain length %d, erase " |
| "mark 0x%x?\n", block, first_block, |
| chain_length, erase_mark); |
| /* |
| * Assume end of chain, probably incomplete |
| * fold/erase... |
| */ |
| if (chain_length == 0) |
| do_format_chain++; |
| break; |
| } |
| |
| /* Check for it being free already then... */ |
| if ((logical_block == BLOCK_FREE) || |
| (logical_block == BLOCK_NIL)) { |
| s->PUtable[block] = BLOCK_FREE; |
| break; |
| } |
| |
| /* Sanity checks on block numbers */ |
| if ((logical_block >= s->nb_blocks) || |
| ((prev_block >= s->nb_blocks) && |
| (prev_block != BLOCK_NIL))) { |
| if (chain_length > 0) { |
| printk(KERN_WARNING "INFTL: corrupt " |
| "block %d in chain %d?\n", |
| block, first_block); |
| do_format_chain++; |
| } |
| break; |
| } |
| |
| if (first_logical_block == BLOCK_NIL) { |
| first_logical_block = logical_block; |
| } else { |
| if (first_logical_block != logical_block) { |
| /* Normal for folded chain... */ |
| break; |
| } |
| } |
| |
| /* |
| * Current block is valid, so if we followed a virtual |
| * chain to get here then we can set the previous |
| * block pointer in our PUtable now. Then move onto |
| * the previous block in the chain. |
| */ |
| s->PUtable[block] = BLOCK_NIL; |
| if (last_block != BLOCK_NIL) |
| s->PUtable[last_block] = block; |
| last_block = block; |
| block = prev_block; |
| |
| /* Check for end of chain */ |
| if (block == BLOCK_NIL) |
| break; |
| |
| /* Validate next block before following it... */ |
| if (block > s->lastEUN) { |
| printk(KERN_WARNING "INFTL: invalid previous " |
| "block %d in chain %d?\n", block, |
| first_block); |
| do_format_chain++; |
| break; |
| } |
| } |
| |
| if (do_format_chain) { |
| format_chain(s, first_block); |
| continue; |
| } |
| |
| /* |
| * Looks like a valid chain then. It may not really be the |
| * newest block in the chain, but it is the newest we have |
| * found so far. We might update it in later iterations of |
| * this loop if we find something newer. |
| */ |
| s->VUtable[first_logical_block] = first_block; |
| logical_block = BLOCK_NIL; |
| } |
| |
| INFTL_dumptables(s); |
| |
| /* |
| * Second pass, check for infinite loops in chains. These are |
| * possible because we don't update the previous pointers when |
| * we fold chains. No big deal, just fix them up in PUtable. |
| */ |
| pr_debug("INFTL: pass 2, validate virtual chains\n"); |
| for (logical_block = 0; logical_block < s->numvunits; logical_block++) { |
| block = s->VUtable[logical_block]; |
| last_block = BLOCK_NIL; |
| |
| /* Check for free/reserved/nil */ |
| if (block >= BLOCK_RESERVED) |
| continue; |
| |
| ANAC = ANACtable[block]; |
| for (i = 0; i < s->numvunits; i++) { |
| if (s->PUtable[block] == BLOCK_NIL) |
| break; |
| if (s->PUtable[block] > s->lastEUN) { |
| printk(KERN_WARNING "INFTL: invalid prev %d, " |
| "in virtual chain %d\n", |
| s->PUtable[block], logical_block); |
| s->PUtable[block] = BLOCK_NIL; |
| |
| } |
| if (ANACtable[block] != ANAC) { |
| /* |
| * Chain must point back to itself. This is ok, |
| * but we will need adjust the tables with this |
| * newest block and oldest block. |
| */ |
| s->VUtable[logical_block] = block; |
| s->PUtable[last_block] = BLOCK_NIL; |
| break; |
| } |
| |
| ANAC--; |
| last_block = block; |
| block = s->PUtable[block]; |
| } |
| |
| if (i >= s->nb_blocks) { |
| /* |
| * Uhoo, infinite chain with valid ANACS! |
| * Format whole chain... |
| */ |
| format_chain(s, first_block); |
| } |
| } |
| |
| INFTL_dumptables(s); |
| INFTL_dumpVUchains(s); |
| |
| /* |
| * Third pass, format unreferenced blocks and init free block count. |
| */ |
| s->numfreeEUNs = 0; |
| s->LastFreeEUN = BLOCK_NIL; |
| |
| pr_debug("INFTL: pass 3, format unused blocks\n"); |
| for (block = s->firstEUN; block <= s->lastEUN; block++) { |
| if (s->PUtable[block] == BLOCK_NOTEXPLORED) { |
| printk("INFTL: unreferenced block %d, formatting it\n", |
| block); |
| if (INFTL_formatblock(s, block) < 0) |
| s->PUtable[block] = BLOCK_RESERVED; |
| else |
| s->PUtable[block] = BLOCK_FREE; |
| } |
| if (s->PUtable[block] == BLOCK_FREE) { |
| s->numfreeEUNs++; |
| if (s->LastFreeEUN == BLOCK_NIL) |
| s->LastFreeEUN = block; |
| } |
| } |
| |
| kfree(ANACtable); |
| return 0; |
| } |