| /************************************************************************ |
| * Copyright 2003 Digi International (www.digi.com) |
| * |
| * Copyright (C) 2004 IBM Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the |
| * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| * PURPOSE. See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, |
| * MA 02111-1307, USA. |
| * |
| * Contact Information: |
| * Scott H Kilau <Scott_Kilau@digi.com> |
| * Ananda Venkatarman <mansarov@us.ibm.com> |
| * Modifications: |
| * 01/19/06: changed jsm_input routine to use the dynamically allocated |
| * tty_buffer changes. Contributors: Scott Kilau and Ananda V. |
| ***********************************************************************/ |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/serial_reg.h> |
| #include <linux/delay.h> /* For udelay */ |
| #include <linux/pci.h> |
| |
| #include "jsm.h" |
| |
| static void jsm_carrier(struct jsm_channel *ch); |
| |
| static inline int jsm_get_mstat(struct jsm_channel *ch) |
| { |
| unsigned char mstat; |
| unsigned result; |
| |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| |
| mstat = (ch->ch_mostat | ch->ch_mistat); |
| |
| result = 0; |
| |
| if (mstat & UART_MCR_DTR) |
| result |= TIOCM_DTR; |
| if (mstat & UART_MCR_RTS) |
| result |= TIOCM_RTS; |
| if (mstat & UART_MSR_CTS) |
| result |= TIOCM_CTS; |
| if (mstat & UART_MSR_DSR) |
| result |= TIOCM_DSR; |
| if (mstat & UART_MSR_RI) |
| result |= TIOCM_RI; |
| if (mstat & UART_MSR_DCD) |
| result |= TIOCM_CD; |
| |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n"); |
| return result; |
| } |
| |
| static unsigned int jsm_tty_tx_empty(struct uart_port *port) |
| { |
| return TIOCSER_TEMT; |
| } |
| |
| /* |
| * Return modem signals to ld. |
| */ |
| static unsigned int jsm_tty_get_mctrl(struct uart_port *port) |
| { |
| int result; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); |
| |
| result = jsm_get_mstat(channel); |
| |
| if (result < 0) |
| return -ENXIO; |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| |
| return result; |
| } |
| |
| /* |
| * jsm_set_modem_info() |
| * |
| * Set modem signals, called by ld. |
| */ |
| static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| { |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); |
| |
| if (mctrl & TIOCM_RTS) |
| channel->ch_mostat |= UART_MCR_RTS; |
| else |
| channel->ch_mostat &= ~UART_MCR_RTS; |
| |
| if (mctrl & TIOCM_DTR) |
| channel->ch_mostat |= UART_MCR_DTR; |
| else |
| channel->ch_mostat &= ~UART_MCR_DTR; |
| |
| channel->ch_bd->bd_ops->assert_modem_signals(channel); |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| udelay(10); |
| } |
| |
| static void jsm_tty_start_tx(struct uart_port *port) |
| { |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); |
| |
| channel->ch_flags &= ~(CH_STOP); |
| jsm_tty_write(port); |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| } |
| |
| static void jsm_tty_stop_tx(struct uart_port *port) |
| { |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); |
| |
| channel->ch_flags |= (CH_STOP); |
| |
| jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| } |
| |
| static void jsm_tty_send_xchar(struct uart_port *port, char ch) |
| { |
| unsigned long lock_flags; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| struct ktermios *termios; |
| |
| spin_lock_irqsave(&port->lock, lock_flags); |
| termios = port->info->tty->termios; |
| if (ch == termios->c_cc[VSTART]) |
| channel->ch_bd->bd_ops->send_start_character(channel); |
| |
| if (ch == termios->c_cc[VSTOP]) |
| channel->ch_bd->bd_ops->send_stop_character(channel); |
| spin_unlock_irqrestore(&port->lock, lock_flags); |
| } |
| |
| static void jsm_tty_stop_rx(struct uart_port *port) |
| { |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| channel->ch_bd->bd_ops->disable_receiver(channel); |
| } |
| |
| static void jsm_tty_break(struct uart_port *port, int break_state) |
| { |
| unsigned long lock_flags; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| spin_lock_irqsave(&port->lock, lock_flags); |
| if (break_state == -1) |
| channel->ch_bd->bd_ops->send_break(channel); |
| else |
| channel->ch_bd->bd_ops->clear_break(channel, 0); |
| |
| spin_unlock_irqrestore(&port->lock, lock_flags); |
| } |
| |
| static int jsm_tty_open(struct uart_port *port) |
| { |
| struct jsm_board *brd; |
| int rc = 0; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| struct ktermios *termios; |
| |
| /* Get board pointer from our array of majors we have allocated */ |
| brd = channel->ch_bd; |
| |
| /* |
| * Allocate channel buffers for read/write/error. |
| * Set flag, so we don't get trounced on. |
| */ |
| channel->ch_flags |= (CH_OPENING); |
| |
| /* Drop locks, as malloc with GFP_KERNEL can sleep */ |
| |
| if (!channel->ch_rqueue) { |
| channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL); |
| if (!channel->ch_rqueue) { |
| jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, |
| "unable to allocate read queue buf"); |
| return -ENOMEM; |
| } |
| memset(channel->ch_rqueue, 0, RQUEUESIZE); |
| } |
| if (!channel->ch_equeue) { |
| channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL); |
| if (!channel->ch_equeue) { |
| jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, |
| "unable to allocate error queue buf"); |
| return -ENOMEM; |
| } |
| memset(channel->ch_equeue, 0, EQUEUESIZE); |
| } |
| if (!channel->ch_wqueue) { |
| channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL); |
| if (!channel->ch_wqueue) { |
| jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, |
| "unable to allocate write queue buf"); |
| return -ENOMEM; |
| } |
| memset(channel->ch_wqueue, 0, WQUEUESIZE); |
| } |
| |
| channel->ch_flags &= ~(CH_OPENING); |
| /* |
| * Initialize if neither terminal is open. |
| */ |
| jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, |
| "jsm_open: initializing channel in open...\n"); |
| |
| /* |
| * Flush input queues. |
| */ |
| channel->ch_r_head = channel->ch_r_tail = 0; |
| channel->ch_e_head = channel->ch_e_tail = 0; |
| channel->ch_w_head = channel->ch_w_tail = 0; |
| |
| brd->bd_ops->flush_uart_write(channel); |
| brd->bd_ops->flush_uart_read(channel); |
| |
| channel->ch_flags = 0; |
| channel->ch_cached_lsr = 0; |
| channel->ch_stops_sent = 0; |
| |
| termios = port->info->tty->termios; |
| channel->ch_c_cflag = termios->c_cflag; |
| channel->ch_c_iflag = termios->c_iflag; |
| channel->ch_c_oflag = termios->c_oflag; |
| channel->ch_c_lflag = termios->c_lflag; |
| channel->ch_startc = termios->c_cc[VSTART]; |
| channel->ch_stopc = termios->c_cc[VSTOP]; |
| |
| /* Tell UART to init itself */ |
| brd->bd_ops->uart_init(channel); |
| |
| /* |
| * Run param in case we changed anything |
| */ |
| brd->bd_ops->param(channel); |
| |
| jsm_carrier(channel); |
| |
| channel->ch_open_count++; |
| |
| jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| return rc; |
| } |
| |
| static void jsm_tty_close(struct uart_port *port) |
| { |
| struct jsm_board *bd; |
| struct ktermios *ts; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n"); |
| |
| bd = channel->ch_bd; |
| ts = channel->uart_port.info->tty->termios; |
| |
| channel->ch_flags &= ~(CH_STOPI); |
| |
| channel->ch_open_count--; |
| |
| /* |
| * If we have HUPCL set, lower DTR and RTS |
| */ |
| if (channel->ch_c_cflag & HUPCL) { |
| jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, |
| "Close. HUPCL set, dropping DTR/RTS\n"); |
| |
| /* Drop RTS/DTR */ |
| channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS); |
| bd->bd_ops->assert_modem_signals(channel); |
| } |
| |
| channel->ch_old_baud = 0; |
| |
| /* Turn off UART interrupts for this port */ |
| channel->ch_bd->bd_ops->uart_off(channel); |
| |
| jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n"); |
| } |
| |
| static void jsm_tty_set_termios(struct uart_port *port, |
| struct ktermios *termios, |
| struct ktermios *old_termios) |
| { |
| unsigned long lock_flags; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| spin_lock_irqsave(&port->lock, lock_flags); |
| channel->ch_c_cflag = termios->c_cflag; |
| channel->ch_c_iflag = termios->c_iflag; |
| channel->ch_c_oflag = termios->c_oflag; |
| channel->ch_c_lflag = termios->c_lflag; |
| channel->ch_startc = termios->c_cc[VSTART]; |
| channel->ch_stopc = termios->c_cc[VSTOP]; |
| |
| channel->ch_bd->bd_ops->param(channel); |
| jsm_carrier(channel); |
| spin_unlock_irqrestore(&port->lock, lock_flags); |
| } |
| |
| static const char *jsm_tty_type(struct uart_port *port) |
| { |
| return "jsm"; |
| } |
| |
| static void jsm_tty_release_port(struct uart_port *port) |
| { |
| } |
| |
| static int jsm_tty_request_port(struct uart_port *port) |
| { |
| return 0; |
| } |
| |
| static void jsm_config_port(struct uart_port *port, int flags) |
| { |
| port->type = PORT_JSM; |
| } |
| |
| static struct uart_ops jsm_ops = { |
| .tx_empty = jsm_tty_tx_empty, |
| .set_mctrl = jsm_tty_set_mctrl, |
| .get_mctrl = jsm_tty_get_mctrl, |
| .stop_tx = jsm_tty_stop_tx, |
| .start_tx = jsm_tty_start_tx, |
| .send_xchar = jsm_tty_send_xchar, |
| .stop_rx = jsm_tty_stop_rx, |
| .break_ctl = jsm_tty_break, |
| .startup = jsm_tty_open, |
| .shutdown = jsm_tty_close, |
| .set_termios = jsm_tty_set_termios, |
| .type = jsm_tty_type, |
| .release_port = jsm_tty_release_port, |
| .request_port = jsm_tty_request_port, |
| .config_port = jsm_config_port, |
| }; |
| |
| /* |
| * jsm_tty_init() |
| * |
| * Init the tty subsystem. Called once per board after board has been |
| * downloaded and init'ed. |
| */ |
| int jsm_tty_init(struct jsm_board *brd) |
| { |
| int i; |
| void __iomem *vaddr; |
| struct jsm_channel *ch; |
| |
| if (!brd) |
| return -ENXIO; |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); |
| |
| /* |
| * Initialize board structure elements. |
| */ |
| |
| brd->nasync = brd->maxports; |
| |
| /* |
| * Allocate channel memory that might not have been allocated |
| * when the driver was first loaded. |
| */ |
| for (i = 0; i < brd->nasync; i++) { |
| if (!brd->channels[i]) { |
| |
| /* |
| * Okay to malloc with GFP_KERNEL, we are not at |
| * interrupt context, and there are no locks held. |
| */ |
| brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL); |
| if (!brd->channels[i]) { |
| jsm_printk(CORE, ERR, &brd->pci_dev, |
| "%s:%d Unable to allocate memory for channel struct\n", |
| __FILE__, __LINE__); |
| } |
| memset(brd->channels[i], 0, sizeof(struct jsm_channel)); |
| } |
| } |
| |
| ch = brd->channels[0]; |
| vaddr = brd->re_map_membase; |
| |
| /* Set up channel variables */ |
| for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) { |
| |
| if (!brd->channels[i]) |
| continue; |
| |
| spin_lock_init(&ch->ch_lock); |
| |
| if (brd->bd_uart_offset == 0x200) |
| ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i); |
| |
| ch->ch_bd = brd; |
| ch->ch_portnum = i; |
| |
| /* .25 second delay */ |
| ch->ch_close_delay = 250; |
| |
| init_waitqueue_head(&ch->ch_flags_wait); |
| } |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); |
| return 0; |
| } |
| |
| int jsm_uart_port_init(struct jsm_board *brd) |
| { |
| int i; |
| struct jsm_channel *ch; |
| |
| if (!brd) |
| return -ENXIO; |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); |
| |
| /* |
| * Initialize board structure elements. |
| */ |
| |
| brd->nasync = brd->maxports; |
| |
| /* Set up channel variables */ |
| for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) { |
| |
| if (!brd->channels[i]) |
| continue; |
| |
| brd->channels[i]->uart_port.irq = brd->irq; |
| brd->channels[i]->uart_port.type = PORT_JSM; |
| brd->channels[i]->uart_port.iotype = UPIO_MEM; |
| brd->channels[i]->uart_port.membase = brd->re_map_membase; |
| brd->channels[i]->uart_port.fifosize = 16; |
| brd->channels[i]->uart_port.ops = &jsm_ops; |
| brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2; |
| if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port)) |
| printk(KERN_INFO "Added device failed\n"); |
| else |
| printk(KERN_INFO "Added device \n"); |
| } |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); |
| return 0; |
| } |
| |
| int jsm_remove_uart_port(struct jsm_board *brd) |
| { |
| int i; |
| struct jsm_channel *ch; |
| |
| if (!brd) |
| return -ENXIO; |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); |
| |
| /* |
| * Initialize board structure elements. |
| */ |
| |
| brd->nasync = brd->maxports; |
| |
| /* Set up channel variables */ |
| for (i = 0; i < brd->nasync; i++) { |
| |
| if (!brd->channels[i]) |
| continue; |
| |
| ch = brd->channels[i]; |
| |
| uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port); |
| } |
| |
| jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); |
| return 0; |
| } |
| |
| void jsm_input(struct jsm_channel *ch) |
| { |
| struct jsm_board *bd; |
| struct tty_struct *tp; |
| struct tty_ldisc *ld; |
| u32 rmask; |
| u16 head; |
| u16 tail; |
| int data_len; |
| unsigned long lock_flags; |
| int flip_len = 0; |
| int len = 0; |
| int n = 0; |
| int s = 0; |
| int i = 0; |
| |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| |
| if (!ch) |
| return; |
| |
| tp = ch->uart_port.info->tty; |
| |
| bd = ch->ch_bd; |
| if(!bd) |
| return; |
| |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| |
| /* |
| *Figure the number of characters in the buffer. |
| *Exit immediately if none. |
| */ |
| |
| rmask = RQUEUEMASK; |
| |
| head = ch->ch_r_head & rmask; |
| tail = ch->ch_r_tail & rmask; |
| |
| data_len = (head - tail) & rmask; |
| if (data_len == 0) { |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| return; |
| } |
| |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| |
| /* |
| *If the device is not open, or CREAD is off, flush |
| *input data and return immediately. |
| */ |
| if (!tp || |
| !(tp->termios->c_cflag & CREAD) ) { |
| |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum); |
| ch->ch_r_head = tail; |
| |
| /* Force queue flow control to be released, if needed */ |
| jsm_check_queue_flow_control(ch); |
| |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| return; |
| } |
| |
| /* |
| * If we are throttled, simply don't read any data. |
| */ |
| if (ch->ch_flags & CH_STOPI) { |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "Port %d throttled, not reading any data. head: %x tail: %x\n", |
| ch->ch_portnum, head, tail); |
| return; |
| } |
| |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n"); |
| |
| /* |
| * If the rxbuf is empty and we are not throttled, put as much |
| * as we can directly into the linux TTY buffer. |
| * |
| */ |
| flip_len = TTY_FLIPBUF_SIZE; |
| |
| len = min(data_len, flip_len); |
| len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt); |
| ld = tty_ldisc_ref(tp); |
| |
| /* |
| * If we were unable to get a reference to the ld, |
| * don't flush our buffer, and act like the ld doesn't |
| * have any space to put the data right now. |
| */ |
| if (!ld) { |
| len = 0; |
| } else { |
| /* |
| * If ld doesn't have a pointer to a receive_buf function, |
| * flush the data, then act like the ld doesn't have any |
| * space to put the data right now. |
| */ |
| if (!ld->receive_buf) { |
| ch->ch_r_head = ch->ch_r_tail; |
| len = 0; |
| } |
| } |
| |
| if (len <= 0) { |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n"); |
| if (ld) |
| tty_ldisc_deref(ld); |
| return; |
| } |
| |
| len = tty_buffer_request_room(tp, len); |
| n = len; |
| |
| /* |
| * n now contains the most amount of data we can copy, |
| * bounded either by the flip buffer size or the amount |
| * of data the card actually has pending... |
| */ |
| while (n) { |
| s = ((head >= tail) ? head : RQUEUESIZE) - tail; |
| s = min(s, n); |
| |
| if (s <= 0) |
| break; |
| |
| /* |
| * If conditions are such that ld needs to see all |
| * UART errors, we will have to walk each character |
| * and error byte and send them to the buffer one at |
| * a time. |
| */ |
| |
| if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) { |
| for (i = 0; i < s; i++) { |
| /* |
| * Give the Linux ld the flags in the |
| * format it likes. |
| */ |
| if (*(ch->ch_equeue +tail +i) & UART_LSR_BI) |
| tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_BREAK); |
| else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE) |
| tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY); |
| else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE) |
| tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME); |
| else |
| tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL); |
| } |
| } else { |
| tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ; |
| } |
| tail += s; |
| n -= s; |
| /* Flip queue if needed */ |
| tail &= rmask; |
| } |
| |
| ch->ch_r_tail = tail & rmask; |
| ch->ch_e_tail = tail & rmask; |
| jsm_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| |
| /* Tell the tty layer its okay to "eat" the data now */ |
| tty_flip_buffer_push(tp); |
| |
| if (ld) |
| tty_ldisc_deref(ld); |
| |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n"); |
| } |
| |
| static void jsm_carrier(struct jsm_channel *ch) |
| { |
| struct jsm_board *bd; |
| |
| int virt_carrier = 0; |
| int phys_carrier = 0; |
| |
| jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| if (!ch) |
| return; |
| |
| bd = ch->ch_bd; |
| |
| if (!bd) |
| return; |
| |
| if (ch->ch_mistat & UART_MSR_DCD) { |
| jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, |
| "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD); |
| phys_carrier = 1; |
| } |
| |
| if (ch->ch_c_cflag & CLOCAL) |
| virt_carrier = 1; |
| |
| jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, |
| "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier); |
| |
| /* |
| * Test for a VIRTUAL carrier transition to HIGH. |
| */ |
| if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) { |
| |
| /* |
| * When carrier rises, wake any threads waiting |
| * for carrier in the open routine. |
| */ |
| |
| jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, |
| "carrier: virt DCD rose\n"); |
| |
| if (waitqueue_active(&(ch->ch_flags_wait))) |
| wake_up_interruptible(&ch->ch_flags_wait); |
| } |
| |
| /* |
| * Test for a PHYSICAL carrier transition to HIGH. |
| */ |
| if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) { |
| |
| /* |
| * When carrier rises, wake any threads waiting |
| * for carrier in the open routine. |
| */ |
| |
| jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, |
| "carrier: physical DCD rose\n"); |
| |
| if (waitqueue_active(&(ch->ch_flags_wait))) |
| wake_up_interruptible(&ch->ch_flags_wait); |
| } |
| |
| /* |
| * Test for a PHYSICAL transition to low, so long as we aren't |
| * currently ignoring physical transitions (which is what "virtual |
| * carrier" indicates). |
| * |
| * The transition of the virtual carrier to low really doesn't |
| * matter... it really only means "ignore carrier state", not |
| * "make pretend that carrier is there". |
| */ |
| if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0) |
| && (phys_carrier == 0)) { |
| /* |
| * When carrier drops: |
| * |
| * Drop carrier on all open units. |
| * |
| * Flush queues, waking up any task waiting in the |
| * line discipline. |
| * |
| * Send a hangup to the control terminal. |
| * |
| * Enable all select calls. |
| */ |
| if (waitqueue_active(&(ch->ch_flags_wait))) |
| wake_up_interruptible(&ch->ch_flags_wait); |
| } |
| |
| /* |
| * Make sure that our cached values reflect the current reality. |
| */ |
| if (virt_carrier == 1) |
| ch->ch_flags |= CH_FCAR; |
| else |
| ch->ch_flags &= ~CH_FCAR; |
| |
| if (phys_carrier == 1) |
| ch->ch_flags |= CH_CD; |
| else |
| ch->ch_flags &= ~CH_CD; |
| } |
| |
| |
| void jsm_check_queue_flow_control(struct jsm_channel *ch) |
| { |
| struct board_ops *bd_ops = ch->ch_bd->bd_ops; |
| int qleft = 0; |
| |
| /* Store how much space we have left in the queue */ |
| if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0) |
| qleft += RQUEUEMASK + 1; |
| |
| /* |
| * Check to see if we should enforce flow control on our queue because |
| * the ld (or user) isn't reading data out of our queue fast enuf. |
| * |
| * NOTE: This is done based on what the current flow control of the |
| * port is set for. |
| * |
| * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt. |
| * This will cause the UART's FIFO to back up, and force |
| * the RTS signal to be dropped. |
| * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to |
| * the other side, in hopes it will stop sending data to us. |
| * 3) NONE - Nothing we can do. We will simply drop any extra data |
| * that gets sent into us when the queue fills up. |
| */ |
| if (qleft < 256) { |
| /* HWFLOW */ |
| if (ch->ch_c_cflag & CRTSCTS) { |
| if(!(ch->ch_flags & CH_RECEIVER_OFF)) { |
| bd_ops->disable_receiver(ch); |
| ch->ch_flags |= (CH_RECEIVER_OFF); |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n", |
| qleft); |
| } |
| } |
| /* SWFLOW */ |
| else if (ch->ch_c_iflag & IXOFF) { |
| if (ch->ch_stops_sent <= MAX_STOPS_SENT) { |
| bd_ops->send_stop_character(ch); |
| ch->ch_stops_sent++; |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "Sending stop char! Times sent: %x\n", ch->ch_stops_sent); |
| } |
| } |
| } |
| |
| /* |
| * Check to see if we should unenforce flow control because |
| * ld (or user) finally read enuf data out of our queue. |
| * |
| * NOTE: This is done based on what the current flow control of the |
| * port is set for. |
| * |
| * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt. |
| * This will cause the UART's FIFO to raise RTS back up, |
| * which will allow the other side to start sending data again. |
| * 2) SWFLOW (IXOFF) - Send a start character to |
| * the other side, so it will start sending data to us again. |
| * 3) NONE - Do nothing. Since we didn't do anything to turn off the |
| * other side, we don't need to do anything now. |
| */ |
| if (qleft > (RQUEUESIZE / 2)) { |
| /* HWFLOW */ |
| if (ch->ch_c_cflag & CRTSCTS) { |
| if (ch->ch_flags & CH_RECEIVER_OFF) { |
| bd_ops->enable_receiver(ch); |
| ch->ch_flags &= ~(CH_RECEIVER_OFF); |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n", |
| qleft); |
| } |
| } |
| /* SWFLOW */ |
| else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) { |
| ch->ch_stops_sent = 0; |
| bd_ops->send_start_character(ch); |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n"); |
| } |
| } |
| } |
| |
| /* |
| * jsm_tty_write() |
| * |
| * Take data from the user or kernel and send it out to the FEP. |
| * In here exists all the Transparent Print magic as well. |
| */ |
| int jsm_tty_write(struct uart_port *port) |
| { |
| int bufcount = 0, n = 0; |
| int data_count = 0,data_count1 =0; |
| u16 head; |
| u16 tail; |
| u16 tmask; |
| u32 remain; |
| int temp_tail = port->info->xmit.tail; |
| struct jsm_channel *channel = (struct jsm_channel *)port; |
| |
| tmask = WQUEUEMASK; |
| head = (channel->ch_w_head) & tmask; |
| tail = (channel->ch_w_tail) & tmask; |
| |
| if ((bufcount = tail - head - 1) < 0) |
| bufcount += WQUEUESIZE; |
| |
| n = bufcount; |
| |
| n = min(n, 56); |
| remain = WQUEUESIZE - head; |
| |
| data_count = 0; |
| if (n >= remain) { |
| n -= remain; |
| while ((port->info->xmit.head != temp_tail) && |
| (data_count < remain)) { |
| channel->ch_wqueue[head++] = |
| port->info->xmit.buf[temp_tail]; |
| |
| temp_tail++; |
| temp_tail &= (UART_XMIT_SIZE - 1); |
| data_count++; |
| } |
| if (data_count == remain) head = 0; |
| } |
| |
| data_count1 = 0; |
| if (n > 0) { |
| remain = n; |
| while ((port->info->xmit.head != temp_tail) && |
| (data_count1 < remain)) { |
| channel->ch_wqueue[head++] = |
| port->info->xmit.buf[temp_tail]; |
| |
| temp_tail++; |
| temp_tail &= (UART_XMIT_SIZE - 1); |
| data_count1++; |
| |
| } |
| } |
| |
| port->info->xmit.tail = temp_tail; |
| |
| data_count += data_count1; |
| if (data_count) { |
| head &= tmask; |
| channel->ch_w_head = head; |
| } |
| |
| if (data_count) { |
| channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel); |
| } |
| |
| return data_count; |
| } |