| /* |
| * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org> |
| * Copyright (C) 2003 Red Hat <alan@redhat.com> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/major.h> |
| #include <linux/errno.h> |
| #include <linux/genhd.h> |
| #include <linux/blkpg.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/hdreg.h> |
| #include <linux/ide.h> |
| #include <linux/bitops.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| /* |
| * Conventional PIO operations for ATA devices |
| */ |
| |
| static u8 ide_inb (unsigned long port) |
| { |
| return (u8) inb(port); |
| } |
| |
| static u16 ide_inw (unsigned long port) |
| { |
| return (u16) inw(port); |
| } |
| |
| static void ide_insw (unsigned long port, void *addr, u32 count) |
| { |
| insw(port, addr, count); |
| } |
| |
| static void ide_insl (unsigned long port, void *addr, u32 count) |
| { |
| insl(port, addr, count); |
| } |
| |
| static void ide_outb (u8 val, unsigned long port) |
| { |
| outb(val, port); |
| } |
| |
| static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) |
| { |
| outb(addr, port); |
| } |
| |
| static void ide_outw (u16 val, unsigned long port) |
| { |
| outw(val, port); |
| } |
| |
| static void ide_outsw (unsigned long port, void *addr, u32 count) |
| { |
| outsw(port, addr, count); |
| } |
| |
| static void ide_outsl (unsigned long port, void *addr, u32 count) |
| { |
| outsl(port, addr, count); |
| } |
| |
| void default_hwif_iops (ide_hwif_t *hwif) |
| { |
| hwif->OUTB = ide_outb; |
| hwif->OUTBSYNC = ide_outbsync; |
| hwif->OUTW = ide_outw; |
| hwif->OUTSW = ide_outsw; |
| hwif->OUTSL = ide_outsl; |
| hwif->INB = ide_inb; |
| hwif->INW = ide_inw; |
| hwif->INSW = ide_insw; |
| hwif->INSL = ide_insl; |
| } |
| |
| /* |
| * MMIO operations, typically used for SATA controllers |
| */ |
| |
| static u8 ide_mm_inb (unsigned long port) |
| { |
| return (u8) readb((void __iomem *) port); |
| } |
| |
| static u16 ide_mm_inw (unsigned long port) |
| { |
| return (u16) readw((void __iomem *) port); |
| } |
| |
| static void ide_mm_insw (unsigned long port, void *addr, u32 count) |
| { |
| __ide_mm_insw((void __iomem *) port, addr, count); |
| } |
| |
| static void ide_mm_insl (unsigned long port, void *addr, u32 count) |
| { |
| __ide_mm_insl((void __iomem *) port, addr, count); |
| } |
| |
| static void ide_mm_outb (u8 value, unsigned long port) |
| { |
| writeb(value, (void __iomem *) port); |
| } |
| |
| static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) |
| { |
| writeb(value, (void __iomem *) port); |
| } |
| |
| static void ide_mm_outw (u16 value, unsigned long port) |
| { |
| writew(value, (void __iomem *) port); |
| } |
| |
| static void ide_mm_outsw (unsigned long port, void *addr, u32 count) |
| { |
| __ide_mm_outsw((void __iomem *) port, addr, count); |
| } |
| |
| static void ide_mm_outsl (unsigned long port, void *addr, u32 count) |
| { |
| __ide_mm_outsl((void __iomem *) port, addr, count); |
| } |
| |
| void default_hwif_mmiops (ide_hwif_t *hwif) |
| { |
| hwif->OUTB = ide_mm_outb; |
| /* Most systems will need to override OUTBSYNC, alas however |
| this one is controller specific! */ |
| hwif->OUTBSYNC = ide_mm_outbsync; |
| hwif->OUTW = ide_mm_outw; |
| hwif->OUTSW = ide_mm_outsw; |
| hwif->OUTSL = ide_mm_outsl; |
| hwif->INB = ide_mm_inb; |
| hwif->INW = ide_mm_inw; |
| hwif->INSW = ide_mm_insw; |
| hwif->INSL = ide_mm_insl; |
| } |
| |
| EXPORT_SYMBOL(default_hwif_mmiops); |
| |
| void SELECT_DRIVE (ide_drive_t *drive) |
| { |
| if (HWIF(drive)->selectproc) |
| HWIF(drive)->selectproc(drive); |
| HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); |
| } |
| |
| void SELECT_MASK (ide_drive_t *drive, int mask) |
| { |
| if (HWIF(drive)->maskproc) |
| HWIF(drive)->maskproc(drive, mask); |
| } |
| |
| /* |
| * Some localbus EIDE interfaces require a special access sequence |
| * when using 32-bit I/O instructions to transfer data. We call this |
| * the "vlb_sync" sequence, which consists of three successive reads |
| * of the sector count register location, with interrupts disabled |
| * to ensure that the reads all happen together. |
| */ |
| static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) |
| { |
| (void) HWIF(drive)->INB(port); |
| (void) HWIF(drive)->INB(port); |
| (void) HWIF(drive)->INB(port); |
| } |
| |
| /* |
| * This is used for most PIO data transfers *from* the IDE interface |
| */ |
| static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 io_32bit = drive->io_32bit; |
| |
| if (io_32bit) { |
| if (io_32bit & 2) { |
| unsigned long flags; |
| local_irq_save(flags); |
| ata_vlb_sync(drive, IDE_NSECTOR_REG); |
| hwif->INSL(IDE_DATA_REG, buffer, wcount); |
| local_irq_restore(flags); |
| } else |
| hwif->INSL(IDE_DATA_REG, buffer, wcount); |
| } else { |
| hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); |
| } |
| } |
| |
| /* |
| * This is used for most PIO data transfers *to* the IDE interface |
| */ |
| static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 io_32bit = drive->io_32bit; |
| |
| if (io_32bit) { |
| if (io_32bit & 2) { |
| unsigned long flags; |
| local_irq_save(flags); |
| ata_vlb_sync(drive, IDE_NSECTOR_REG); |
| hwif->OUTSL(IDE_DATA_REG, buffer, wcount); |
| local_irq_restore(flags); |
| } else |
| hwif->OUTSL(IDE_DATA_REG, buffer, wcount); |
| } else { |
| hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); |
| } |
| } |
| |
| /* |
| * The following routines are mainly used by the ATAPI drivers. |
| * |
| * These routines will round up any request for an odd number of bytes, |
| * so if an odd bytecount is specified, be sure that there's at least one |
| * extra byte allocated for the buffer. |
| */ |
| |
| static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| ++bytecount; |
| #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) |
| if (MACH_IS_ATARI || MACH_IS_Q40) { |
| /* Atari has a byte-swapped IDE interface */ |
| insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); |
| return; |
| } |
| #endif /* CONFIG_ATARI || CONFIG_Q40 */ |
| hwif->ata_input_data(drive, buffer, bytecount / 4); |
| if ((bytecount & 0x03) >= 2) |
| hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); |
| } |
| |
| static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| ++bytecount; |
| #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) |
| if (MACH_IS_ATARI || MACH_IS_Q40) { |
| /* Atari has a byte-swapped IDE interface */ |
| outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); |
| return; |
| } |
| #endif /* CONFIG_ATARI || CONFIG_Q40 */ |
| hwif->ata_output_data(drive, buffer, bytecount / 4); |
| if ((bytecount & 0x03) >= 2) |
| hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); |
| } |
| |
| void default_hwif_transport(ide_hwif_t *hwif) |
| { |
| hwif->ata_input_data = ata_input_data; |
| hwif->ata_output_data = ata_output_data; |
| hwif->atapi_input_bytes = atapi_input_bytes; |
| hwif->atapi_output_bytes = atapi_output_bytes; |
| } |
| |
| void ide_fix_driveid (struct hd_driveid *id) |
| { |
| #ifndef __LITTLE_ENDIAN |
| # ifdef __BIG_ENDIAN |
| int i; |
| u16 *stringcast; |
| |
| id->config = __le16_to_cpu(id->config); |
| id->cyls = __le16_to_cpu(id->cyls); |
| id->reserved2 = __le16_to_cpu(id->reserved2); |
| id->heads = __le16_to_cpu(id->heads); |
| id->track_bytes = __le16_to_cpu(id->track_bytes); |
| id->sector_bytes = __le16_to_cpu(id->sector_bytes); |
| id->sectors = __le16_to_cpu(id->sectors); |
| id->vendor0 = __le16_to_cpu(id->vendor0); |
| id->vendor1 = __le16_to_cpu(id->vendor1); |
| id->vendor2 = __le16_to_cpu(id->vendor2); |
| stringcast = (u16 *)&id->serial_no[0]; |
| for (i = 0; i < (20/2); i++) |
| stringcast[i] = __le16_to_cpu(stringcast[i]); |
| id->buf_type = __le16_to_cpu(id->buf_type); |
| id->buf_size = __le16_to_cpu(id->buf_size); |
| id->ecc_bytes = __le16_to_cpu(id->ecc_bytes); |
| stringcast = (u16 *)&id->fw_rev[0]; |
| for (i = 0; i < (8/2); i++) |
| stringcast[i] = __le16_to_cpu(stringcast[i]); |
| stringcast = (u16 *)&id->model[0]; |
| for (i = 0; i < (40/2); i++) |
| stringcast[i] = __le16_to_cpu(stringcast[i]); |
| id->dword_io = __le16_to_cpu(id->dword_io); |
| id->reserved50 = __le16_to_cpu(id->reserved50); |
| id->field_valid = __le16_to_cpu(id->field_valid); |
| id->cur_cyls = __le16_to_cpu(id->cur_cyls); |
| id->cur_heads = __le16_to_cpu(id->cur_heads); |
| id->cur_sectors = __le16_to_cpu(id->cur_sectors); |
| id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0); |
| id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1); |
| id->lba_capacity = __le32_to_cpu(id->lba_capacity); |
| id->dma_1word = __le16_to_cpu(id->dma_1word); |
| id->dma_mword = __le16_to_cpu(id->dma_mword); |
| id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); |
| id->eide_dma_min = __le16_to_cpu(id->eide_dma_min); |
| id->eide_dma_time = __le16_to_cpu(id->eide_dma_time); |
| id->eide_pio = __le16_to_cpu(id->eide_pio); |
| id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); |
| for (i = 0; i < 2; ++i) |
| id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); |
| for (i = 0; i < 4; ++i) |
| id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); |
| id->queue_depth = __le16_to_cpu(id->queue_depth); |
| for (i = 0; i < 4; ++i) |
| id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); |
| id->major_rev_num = __le16_to_cpu(id->major_rev_num); |
| id->minor_rev_num = __le16_to_cpu(id->minor_rev_num); |
| id->command_set_1 = __le16_to_cpu(id->command_set_1); |
| id->command_set_2 = __le16_to_cpu(id->command_set_2); |
| id->cfsse = __le16_to_cpu(id->cfsse); |
| id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1); |
| id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2); |
| id->csf_default = __le16_to_cpu(id->csf_default); |
| id->dma_ultra = __le16_to_cpu(id->dma_ultra); |
| id->trseuc = __le16_to_cpu(id->trseuc); |
| id->trsEuc = __le16_to_cpu(id->trsEuc); |
| id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues); |
| id->mprc = __le16_to_cpu(id->mprc); |
| id->hw_config = __le16_to_cpu(id->hw_config); |
| id->acoustic = __le16_to_cpu(id->acoustic); |
| id->msrqs = __le16_to_cpu(id->msrqs); |
| id->sxfert = __le16_to_cpu(id->sxfert); |
| id->sal = __le16_to_cpu(id->sal); |
| id->spg = __le32_to_cpu(id->spg); |
| id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); |
| for (i = 0; i < 22; i++) |
| id->words104_125[i] = __le16_to_cpu(id->words104_125[i]); |
| id->last_lun = __le16_to_cpu(id->last_lun); |
| id->word127 = __le16_to_cpu(id->word127); |
| id->dlf = __le16_to_cpu(id->dlf); |
| id->csfo = __le16_to_cpu(id->csfo); |
| for (i = 0; i < 26; i++) |
| id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); |
| id->word156 = __le16_to_cpu(id->word156); |
| for (i = 0; i < 3; i++) |
| id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); |
| id->cfa_power = __le16_to_cpu(id->cfa_power); |
| for (i = 0; i < 14; i++) |
| id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); |
| for (i = 0; i < 31; i++) |
| id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); |
| for (i = 0; i < 48; i++) |
| id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); |
| id->integrity_word = __le16_to_cpu(id->integrity_word); |
| # else |
| # error "Please fix <asm/byteorder.h>" |
| # endif |
| #endif |
| } |
| |
| /* |
| * ide_fixstring() cleans up and (optionally) byte-swaps a text string, |
| * removing leading/trailing blanks and compressing internal blanks. |
| * It is primarily used to tidy up the model name/number fields as |
| * returned by the WIN_[P]IDENTIFY commands. |
| */ |
| |
| void ide_fixstring (u8 *s, const int bytecount, const int byteswap) |
| { |
| u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ |
| |
| if (byteswap) { |
| /* convert from big-endian to host byte order */ |
| for (p = end ; p != s;) { |
| unsigned short *pp = (unsigned short *) (p -= 2); |
| *pp = ntohs(*pp); |
| } |
| } |
| /* strip leading blanks */ |
| while (s != end && *s == ' ') |
| ++s; |
| /* compress internal blanks and strip trailing blanks */ |
| while (s != end && *s) { |
| if (*s++ != ' ' || (s != end && *s && *s != ' ')) |
| *p++ = *(s-1); |
| } |
| /* wipe out trailing garbage */ |
| while (p != end) |
| *p++ = '\0'; |
| } |
| |
| EXPORT_SYMBOL(ide_fixstring); |
| |
| /* |
| * Needed for PCI irq sharing |
| */ |
| int drive_is_ready (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 stat = 0; |
| |
| if (drive->waiting_for_dma) |
| return hwif->ide_dma_test_irq(drive); |
| |
| #if 0 |
| /* need to guarantee 400ns since last command was issued */ |
| udelay(1); |
| #endif |
| |
| /* |
| * We do a passive status test under shared PCI interrupts on |
| * cards that truly share the ATA side interrupt, but may also share |
| * an interrupt with another pci card/device. We make no assumptions |
| * about possible isa-pnp and pci-pnp issues yet. |
| */ |
| if (IDE_CONTROL_REG) |
| stat = ide_read_altstatus(drive); |
| else |
| /* Note: this may clear a pending IRQ!! */ |
| stat = ide_read_status(drive); |
| |
| if (stat & BUSY_STAT) |
| /* drive busy: definitely not interrupting */ |
| return 0; |
| |
| /* drive ready: *might* be interrupting */ |
| return 1; |
| } |
| |
| EXPORT_SYMBOL(drive_is_ready); |
| |
| /* |
| * This routine busy-waits for the drive status to be not "busy". |
| * It then checks the status for all of the "good" bits and none |
| * of the "bad" bits, and if all is okay it returns 0. All other |
| * cases return error -- caller may then invoke ide_error(). |
| * |
| * This routine should get fixed to not hog the cpu during extra long waits.. |
| * That could be done by busy-waiting for the first jiffy or two, and then |
| * setting a timer to wake up at half second intervals thereafter, |
| * until timeout is achieved, before timing out. |
| */ |
| static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) |
| { |
| unsigned long flags; |
| int i; |
| u8 stat; |
| |
| udelay(1); /* spec allows drive 400ns to assert "BUSY" */ |
| stat = ide_read_status(drive); |
| |
| if (stat & BUSY_STAT) { |
| local_irq_set(flags); |
| timeout += jiffies; |
| while ((stat = ide_read_status(drive)) & BUSY_STAT) { |
| if (time_after(jiffies, timeout)) { |
| /* |
| * One last read after the timeout in case |
| * heavy interrupt load made us not make any |
| * progress during the timeout.. |
| */ |
| stat = ide_read_status(drive); |
| if (!(stat & BUSY_STAT)) |
| break; |
| |
| local_irq_restore(flags); |
| *rstat = stat; |
| return -EBUSY; |
| } |
| } |
| local_irq_restore(flags); |
| } |
| /* |
| * Allow status to settle, then read it again. |
| * A few rare drives vastly violate the 400ns spec here, |
| * so we'll wait up to 10usec for a "good" status |
| * rather than expensively fail things immediately. |
| * This fix courtesy of Matthew Faupel & Niccolo Rigacci. |
| */ |
| for (i = 0; i < 10; i++) { |
| udelay(1); |
| stat = ide_read_status(drive); |
| |
| if (OK_STAT(stat, good, bad)) { |
| *rstat = stat; |
| return 0; |
| } |
| } |
| *rstat = stat; |
| return -EFAULT; |
| } |
| |
| /* |
| * In case of error returns error value after doing "*startstop = ide_error()". |
| * The caller should return the updated value of "startstop" in this case, |
| * "startstop" is unchanged when the function returns 0. |
| */ |
| int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) |
| { |
| int err; |
| u8 stat; |
| |
| /* bail early if we've exceeded max_failures */ |
| if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| *startstop = ide_stopped; |
| return 1; |
| } |
| |
| err = __ide_wait_stat(drive, good, bad, timeout, &stat); |
| |
| if (err) { |
| char *s = (err == -EBUSY) ? "status timeout" : "status error"; |
| *startstop = ide_error(drive, s, stat); |
| } |
| |
| return err; |
| } |
| |
| EXPORT_SYMBOL(ide_wait_stat); |
| |
| /** |
| * ide_in_drive_list - look for drive in black/white list |
| * @id: drive identifier |
| * @drive_table: list to inspect |
| * |
| * Look for a drive in the blacklist and the whitelist tables |
| * Returns 1 if the drive is found in the table. |
| */ |
| |
| int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) |
| { |
| for ( ; drive_table->id_model; drive_table++) |
| if ((!strcmp(drive_table->id_model, id->model)) && |
| (!drive_table->id_firmware || |
| strstr(id->fw_rev, drive_table->id_firmware))) |
| return 1; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_in_drive_list); |
| |
| /* |
| * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. |
| * We list them here and depend on the device side cable detection for them. |
| * |
| * Some optical devices with the buggy firmwares have the same problem. |
| */ |
| static const struct drive_list_entry ivb_list[] = { |
| { "QUANTUM FIREBALLlct10 05" , "A03.0900" }, |
| { "TSSTcorp CDDVDW SH-S202J" , "SB00" }, |
| { "TSSTcorp CDDVDW SH-S202J" , "SB01" }, |
| { "TSSTcorp CDDVDW SH-S202N" , "SB00" }, |
| { "TSSTcorp CDDVDW SH-S202N" , "SB01" }, |
| { NULL , NULL } |
| }; |
| |
| /* |
| * All hosts that use the 80c ribbon must use! |
| * The name is derived from upper byte of word 93 and the 80c ribbon. |
| */ |
| u8 eighty_ninty_three (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct hd_driveid *id = drive->id; |
| int ivb = ide_in_drive_list(id, ivb_list); |
| |
| if (hwif->cbl == ATA_CBL_PATA40_SHORT) |
| return 1; |
| |
| if (ivb) |
| printk(KERN_DEBUG "%s: skipping word 93 validity check\n", |
| drive->name); |
| |
| if (ide_dev_is_sata(id) && !ivb) |
| return 1; |
| |
| if (hwif->cbl != ATA_CBL_PATA80 && !ivb) |
| goto no_80w; |
| |
| /* |
| * FIXME: |
| * - change master/slave IDENTIFY order |
| * - force bit13 (80c cable present) check also for !ivb devices |
| * (unless the slave device is pre-ATA3) |
| */ |
| if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000))) |
| return 1; |
| |
| no_80w: |
| if (drive->udma33_warned == 1) |
| return 0; |
| |
| printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " |
| "limiting max speed to UDMA33\n", |
| drive->name, |
| hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); |
| |
| drive->udma33_warned = 1; |
| |
| return 0; |
| } |
| |
| int ide_driveid_update(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct hd_driveid *id; |
| unsigned long timeout, flags; |
| u8 stat; |
| |
| /* |
| * Re-read drive->id for possible DMA mode |
| * change (copied from ide-probe.c) |
| */ |
| |
| SELECT_MASK(drive, 1); |
| ide_set_irq(drive, 1); |
| msleep(50); |
| hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); |
| timeout = jiffies + WAIT_WORSTCASE; |
| do { |
| if (time_after(jiffies, timeout)) { |
| SELECT_MASK(drive, 0); |
| return 0; /* drive timed-out */ |
| } |
| |
| msleep(50); /* give drive a breather */ |
| stat = ide_read_altstatus(drive); |
| } while (stat & BUSY_STAT); |
| |
| msleep(50); /* wait for IRQ and DRQ_STAT */ |
| stat = ide_read_status(drive); |
| |
| if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) { |
| SELECT_MASK(drive, 0); |
| printk("%s: CHECK for good STATUS\n", drive->name); |
| return 0; |
| } |
| local_irq_save(flags); |
| SELECT_MASK(drive, 0); |
| id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); |
| if (!id) { |
| local_irq_restore(flags); |
| return 0; |
| } |
| hwif->ata_input_data(drive, id, SECTOR_WORDS); |
| (void)ide_read_status(drive); /* clear drive IRQ */ |
| local_irq_enable(); |
| local_irq_restore(flags); |
| ide_fix_driveid(id); |
| if (id) { |
| drive->id->dma_ultra = id->dma_ultra; |
| drive->id->dma_mword = id->dma_mword; |
| drive->id->dma_1word = id->dma_1word; |
| /* anything more ? */ |
| kfree(id); |
| |
| if (drive->using_dma && ide_id_dma_bug(drive)) |
| ide_dma_off(drive); |
| } |
| |
| return 1; |
| } |
| |
| int ide_config_drive_speed(ide_drive_t *drive, u8 speed) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| int error = 0; |
| u8 stat; |
| |
| // while (HWGROUP(drive)->busy) |
| // msleep(50); |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA |
| if (hwif->dma_host_set) /* check if host supports DMA */ |
| hwif->dma_host_set(drive, 0); |
| #endif |
| |
| /* Skip setting PIO flow-control modes on pre-EIDE drives */ |
| if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08)) |
| goto skip; |
| |
| /* |
| * Don't use ide_wait_cmd here - it will |
| * attempt to set_geometry and recalibrate, |
| * but for some reason these don't work at |
| * this point (lost interrupt). |
| */ |
| /* |
| * Select the drive, and issue the SETFEATURES command |
| */ |
| disable_irq_nosync(hwif->irq); |
| |
| /* |
| * FIXME: we race against the running IRQ here if |
| * this is called from non IRQ context. If we use |
| * disable_irq() we hang on the error path. Work |
| * is needed. |
| */ |
| |
| udelay(1); |
| SELECT_DRIVE(drive); |
| SELECT_MASK(drive, 0); |
| udelay(1); |
| ide_set_irq(drive, 0); |
| hwif->OUTB(speed, IDE_NSECTOR_REG); |
| hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); |
| hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG); |
| if (drive->quirk_list == 2) |
| ide_set_irq(drive, 1); |
| |
| error = __ide_wait_stat(drive, drive->ready_stat, |
| BUSY_STAT|DRQ_STAT|ERR_STAT, |
| WAIT_CMD, &stat); |
| |
| SELECT_MASK(drive, 0); |
| |
| enable_irq(hwif->irq); |
| |
| if (error) { |
| (void) ide_dump_status(drive, "set_drive_speed_status", stat); |
| return error; |
| } |
| |
| drive->id->dma_ultra &= ~0xFF00; |
| drive->id->dma_mword &= ~0x0F00; |
| drive->id->dma_1word &= ~0x0F00; |
| |
| skip: |
| #ifdef CONFIG_BLK_DEV_IDEDMA |
| if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) && |
| drive->using_dma) |
| hwif->dma_host_set(drive, 1); |
| else if (hwif->dma_host_set) /* check if host supports DMA */ |
| ide_dma_off_quietly(drive); |
| #endif |
| |
| switch(speed) { |
| case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; |
| case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; |
| case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; |
| case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; |
| case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; |
| case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; |
| case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; |
| case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; |
| case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; |
| case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; |
| case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; |
| case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; |
| case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; |
| case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; |
| default: break; |
| } |
| if (!drive->init_speed) |
| drive->init_speed = speed; |
| drive->current_speed = speed; |
| return error; |
| } |
| |
| /* |
| * This should get invoked any time we exit the driver to |
| * wait for an interrupt response from a drive. handler() points |
| * at the appropriate code to handle the next interrupt, and a |
| * timer is started to prevent us from waiting forever in case |
| * something goes wrong (see the ide_timer_expiry() handler later on). |
| * |
| * See also ide_execute_command |
| */ |
| static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| unsigned int timeout, ide_expiry_t *expiry) |
| { |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| |
| BUG_ON(hwgroup->handler); |
| hwgroup->handler = handler; |
| hwgroup->expiry = expiry; |
| hwgroup->timer.expires = jiffies + timeout; |
| hwgroup->req_gen_timer = hwgroup->req_gen; |
| add_timer(&hwgroup->timer); |
| } |
| |
| void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| unsigned int timeout, ide_expiry_t *expiry) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&ide_lock, flags); |
| __ide_set_handler(drive, handler, timeout, expiry); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| EXPORT_SYMBOL(ide_set_handler); |
| |
| /** |
| * ide_execute_command - execute an IDE command |
| * @drive: IDE drive to issue the command against |
| * @command: command byte to write |
| * @handler: handler for next phase |
| * @timeout: timeout for command |
| * @expiry: handler to run on timeout |
| * |
| * Helper function to issue an IDE command. This handles the |
| * atomicity requirements, command timing and ensures that the |
| * handler and IRQ setup do not race. All IDE command kick off |
| * should go via this function or do equivalent locking. |
| */ |
| |
| void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler, |
| unsigned timeout, ide_expiry_t *expiry) |
| { |
| unsigned long flags; |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| __ide_set_handler(drive, handler, timeout, expiry); |
| hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); |
| /* |
| * Drive takes 400nS to respond, we must avoid the IRQ being |
| * serviced before that. |
| * |
| * FIXME: we could skip this delay with care on non shared devices |
| */ |
| ndelay(400); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| EXPORT_SYMBOL(ide_execute_command); |
| |
| |
| /* needed below */ |
| static ide_startstop_t do_reset1 (ide_drive_t *, int); |
| |
| /* |
| * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| * during an atapi drive reset operation. If the drive has not yet responded, |
| * and we have not yet hit our maximum waiting time, then the timer is restarted |
| * for another 50ms. |
| */ |
| static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) |
| { |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| u8 stat; |
| |
| SELECT_DRIVE(drive); |
| udelay (10); |
| stat = ide_read_status(drive); |
| |
| if (OK_STAT(stat, 0, BUSY_STAT)) |
| printk("%s: ATAPI reset complete\n", drive->name); |
| else { |
| if (time_before(jiffies, hwgroup->poll_timeout)) { |
| ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| /* continue polling */ |
| return ide_started; |
| } |
| /* end of polling */ |
| hwgroup->polling = 0; |
| printk("%s: ATAPI reset timed-out, status=0x%02x\n", |
| drive->name, stat); |
| /* do it the old fashioned way */ |
| return do_reset1(drive, 1); |
| } |
| /* done polling */ |
| hwgroup->polling = 0; |
| hwgroup->resetting = 0; |
| return ide_stopped; |
| } |
| |
| /* |
| * reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| * during an ide reset operation. If the drives have not yet responded, |
| * and we have not yet hit our maximum waiting time, then the timer is restarted |
| * for another 50ms. |
| */ |
| static ide_startstop_t reset_pollfunc (ide_drive_t *drive) |
| { |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 tmp; |
| |
| if (hwif->reset_poll != NULL) { |
| if (hwif->reset_poll(drive)) { |
| printk(KERN_ERR "%s: host reset_poll failure for %s.\n", |
| hwif->name, drive->name); |
| return ide_stopped; |
| } |
| } |
| |
| tmp = ide_read_status(drive); |
| |
| if (!OK_STAT(tmp, 0, BUSY_STAT)) { |
| if (time_before(jiffies, hwgroup->poll_timeout)) { |
| ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| /* continue polling */ |
| return ide_started; |
| } |
| printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); |
| drive->failures++; |
| } else { |
| printk("%s: reset: ", hwif->name); |
| tmp = ide_read_error(drive); |
| |
| if (tmp == 1) { |
| printk("success\n"); |
| drive->failures = 0; |
| } else { |
| drive->failures++; |
| printk("master: "); |
| switch (tmp & 0x7f) { |
| case 1: printk("passed"); |
| break; |
| case 2: printk("formatter device error"); |
| break; |
| case 3: printk("sector buffer error"); |
| break; |
| case 4: printk("ECC circuitry error"); |
| break; |
| case 5: printk("controlling MPU error"); |
| break; |
| default:printk("error (0x%02x?)", tmp); |
| } |
| if (tmp & 0x80) |
| printk("; slave: failed"); |
| printk("\n"); |
| } |
| } |
| hwgroup->polling = 0; /* done polling */ |
| hwgroup->resetting = 0; /* done reset attempt */ |
| return ide_stopped; |
| } |
| |
| static void ide_disk_pre_reset(ide_drive_t *drive) |
| { |
| int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; |
| |
| drive->special.all = 0; |
| drive->special.b.set_geometry = legacy; |
| drive->special.b.recalibrate = legacy; |
| drive->mult_count = 0; |
| if (!drive->keep_settings && !drive->using_dma) |
| drive->mult_req = 0; |
| if (drive->mult_req != drive->mult_count) |
| drive->special.b.set_multmode = 1; |
| } |
| |
| static void pre_reset(ide_drive_t *drive) |
| { |
| if (drive->media == ide_disk) |
| ide_disk_pre_reset(drive); |
| else |
| drive->post_reset = 1; |
| |
| if (drive->using_dma) { |
| if (drive->crc_count) |
| ide_check_dma_crc(drive); |
| else |
| ide_dma_off(drive); |
| } |
| |
| if (!drive->keep_settings) { |
| if (!drive->using_dma) { |
| drive->unmask = 0; |
| drive->io_32bit = 0; |
| } |
| return; |
| } |
| |
| if (HWIF(drive)->pre_reset != NULL) |
| HWIF(drive)->pre_reset(drive); |
| |
| if (drive->current_speed != 0xff) |
| drive->desired_speed = drive->current_speed; |
| drive->current_speed = 0xff; |
| } |
| |
| /* |
| * do_reset1() attempts to recover a confused drive by resetting it. |
| * Unfortunately, resetting a disk drive actually resets all devices on |
| * the same interface, so it can really be thought of as resetting the |
| * interface rather than resetting the drive. |
| * |
| * ATAPI devices have their own reset mechanism which allows them to be |
| * individually reset without clobbering other devices on the same interface. |
| * |
| * Unfortunately, the IDE interface does not generate an interrupt to let |
| * us know when the reset operation has finished, so we must poll for this. |
| * Equally poor, though, is the fact that this may a very long time to complete, |
| * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, |
| * we set a timer to poll at 50ms intervals. |
| */ |
| static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) |
| { |
| unsigned int unit; |
| unsigned long flags; |
| ide_hwif_t *hwif; |
| ide_hwgroup_t *hwgroup; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| hwif = HWIF(drive); |
| hwgroup = HWGROUP(drive); |
| |
| /* We must not reset with running handlers */ |
| BUG_ON(hwgroup->handler != NULL); |
| |
| /* For an ATAPI device, first try an ATAPI SRST. */ |
| if (drive->media != ide_disk && !do_not_try_atapi) { |
| hwgroup->resetting = 1; |
| pre_reset(drive); |
| SELECT_DRIVE(drive); |
| udelay (20); |
| hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG); |
| ndelay(400); |
| hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| hwgroup->polling = 1; |
| __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ide_started; |
| } |
| |
| /* |
| * First, reset any device state data we were maintaining |
| * for any of the drives on this interface. |
| */ |
| for (unit = 0; unit < MAX_DRIVES; ++unit) |
| pre_reset(&hwif->drives[unit]); |
| |
| if (!IDE_CONTROL_REG) { |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ide_stopped; |
| } |
| |
| hwgroup->resetting = 1; |
| /* |
| * Note that we also set nIEN while resetting the device, |
| * to mask unwanted interrupts from the interface during the reset. |
| * However, due to the design of PC hardware, this will cause an |
| * immediate interrupt due to the edge transition it produces. |
| * This single interrupt gives us a "fast poll" for drives that |
| * recover from reset very quickly, saving us the first 50ms wait time. |
| */ |
| /* set SRST and nIEN */ |
| hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); |
| /* more than enough time */ |
| udelay(10); |
| if (drive->quirk_list == 2) { |
| /* clear SRST and nIEN */ |
| hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); |
| } else { |
| /* clear SRST, leave nIEN */ |
| hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); |
| } |
| /* more than enough time */ |
| udelay(10); |
| hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| hwgroup->polling = 1; |
| __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| |
| /* |
| * Some weird controller like resetting themselves to a strange |
| * state when the disks are reset this way. At least, the Winbond |
| * 553 documentation says that |
| */ |
| if (hwif->resetproc) |
| hwif->resetproc(drive); |
| |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ide_started; |
| } |
| |
| /* |
| * ide_do_reset() is the entry point to the drive/interface reset code. |
| */ |
| |
| ide_startstop_t ide_do_reset (ide_drive_t *drive) |
| { |
| return do_reset1(drive, 0); |
| } |
| |
| EXPORT_SYMBOL(ide_do_reset); |
| |
| /* |
| * ide_wait_not_busy() waits for the currently selected device on the hwif |
| * to report a non-busy status, see comments in ide_probe_port(). |
| */ |
| int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) |
| { |
| u8 stat = 0; |
| |
| while(timeout--) { |
| /* |
| * Turn this into a schedule() sleep once I'm sure |
| * about locking issues (2.5 work ?). |
| */ |
| mdelay(1); |
| stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| if ((stat & BUSY_STAT) == 0) |
| return 0; |
| /* |
| * Assume a value of 0xff means nothing is connected to |
| * the interface and it doesn't implement the pull-down |
| * resistor on D7. |
| */ |
| if (stat == 0xff) |
| return -ENODEV; |
| touch_softlockup_watchdog(); |
| touch_nmi_watchdog(); |
| } |
| return -EBUSY; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_wait_not_busy); |
| |