| /* |
| * Copyright © 2008,2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * Chris Wilson <chris@chris-wilson.co.uk> |
| * |
| */ |
| |
| #include "drmP.h" |
| #include "drm.h" |
| #include "i915_drm.h" |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include <linux/dma_remapping.h> |
| |
| struct change_domains { |
| uint32_t invalidate_domains; |
| uint32_t flush_domains; |
| uint32_t flush_rings; |
| uint32_t flips; |
| }; |
| |
| /* |
| * Set the next domain for the specified object. This |
| * may not actually perform the necessary flushing/invaliding though, |
| * as that may want to be batched with other set_domain operations |
| * |
| * This is (we hope) the only really tricky part of gem. The goal |
| * is fairly simple -- track which caches hold bits of the object |
| * and make sure they remain coherent. A few concrete examples may |
| * help to explain how it works. For shorthand, we use the notation |
| * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the |
| * a pair of read and write domain masks. |
| * |
| * Case 1: the batch buffer |
| * |
| * 1. Allocated |
| * 2. Written by CPU |
| * 3. Mapped to GTT |
| * 4. Read by GPU |
| * 5. Unmapped from GTT |
| * 6. Freed |
| * |
| * Let's take these a step at a time |
| * |
| * 1. Allocated |
| * Pages allocated from the kernel may still have |
| * cache contents, so we set them to (CPU, CPU) always. |
| * 2. Written by CPU (using pwrite) |
| * The pwrite function calls set_domain (CPU, CPU) and |
| * this function does nothing (as nothing changes) |
| * 3. Mapped by GTT |
| * This function asserts that the object is not |
| * currently in any GPU-based read or write domains |
| * 4. Read by GPU |
| * i915_gem_execbuffer calls set_domain (COMMAND, 0). |
| * As write_domain is zero, this function adds in the |
| * current read domains (CPU+COMMAND, 0). |
| * flush_domains is set to CPU. |
| * invalidate_domains is set to COMMAND |
| * clflush is run to get data out of the CPU caches |
| * then i915_dev_set_domain calls i915_gem_flush to |
| * emit an MI_FLUSH and drm_agp_chipset_flush |
| * 5. Unmapped from GTT |
| * i915_gem_object_unbind calls set_domain (CPU, CPU) |
| * flush_domains and invalidate_domains end up both zero |
| * so no flushing/invalidating happens |
| * 6. Freed |
| * yay, done |
| * |
| * Case 2: The shared render buffer |
| * |
| * 1. Allocated |
| * 2. Mapped to GTT |
| * 3. Read/written by GPU |
| * 4. set_domain to (CPU,CPU) |
| * 5. Read/written by CPU |
| * 6. Read/written by GPU |
| * |
| * 1. Allocated |
| * Same as last example, (CPU, CPU) |
| * 2. Mapped to GTT |
| * Nothing changes (assertions find that it is not in the GPU) |
| * 3. Read/written by GPU |
| * execbuffer calls set_domain (RENDER, RENDER) |
| * flush_domains gets CPU |
| * invalidate_domains gets GPU |
| * clflush (obj) |
| * MI_FLUSH and drm_agp_chipset_flush |
| * 4. set_domain (CPU, CPU) |
| * flush_domains gets GPU |
| * invalidate_domains gets CPU |
| * wait_rendering (obj) to make sure all drawing is complete. |
| * This will include an MI_FLUSH to get the data from GPU |
| * to memory |
| * clflush (obj) to invalidate the CPU cache |
| * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) |
| * 5. Read/written by CPU |
| * cache lines are loaded and dirtied |
| * 6. Read written by GPU |
| * Same as last GPU access |
| * |
| * Case 3: The constant buffer |
| * |
| * 1. Allocated |
| * 2. Written by CPU |
| * 3. Read by GPU |
| * 4. Updated (written) by CPU again |
| * 5. Read by GPU |
| * |
| * 1. Allocated |
| * (CPU, CPU) |
| * 2. Written by CPU |
| * (CPU, CPU) |
| * 3. Read by GPU |
| * (CPU+RENDER, 0) |
| * flush_domains = CPU |
| * invalidate_domains = RENDER |
| * clflush (obj) |
| * MI_FLUSH |
| * drm_agp_chipset_flush |
| * 4. Updated (written) by CPU again |
| * (CPU, CPU) |
| * flush_domains = 0 (no previous write domain) |
| * invalidate_domains = 0 (no new read domains) |
| * 5. Read by GPU |
| * (CPU+RENDER, 0) |
| * flush_domains = CPU |
| * invalidate_domains = RENDER |
| * clflush (obj) |
| * MI_FLUSH |
| * drm_agp_chipset_flush |
| */ |
| static void |
| i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *ring, |
| struct change_domains *cd) |
| { |
| uint32_t invalidate_domains = 0, flush_domains = 0; |
| |
| /* |
| * If the object isn't moving to a new write domain, |
| * let the object stay in multiple read domains |
| */ |
| if (obj->base.pending_write_domain == 0) |
| obj->base.pending_read_domains |= obj->base.read_domains; |
| |
| /* |
| * Flush the current write domain if |
| * the new read domains don't match. Invalidate |
| * any read domains which differ from the old |
| * write domain |
| */ |
| if (obj->base.write_domain && |
| (((obj->base.write_domain != obj->base.pending_read_domains || |
| obj->ring != ring)) || |
| (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) { |
| flush_domains |= obj->base.write_domain; |
| invalidate_domains |= |
| obj->base.pending_read_domains & ~obj->base.write_domain; |
| } |
| /* |
| * Invalidate any read caches which may have |
| * stale data. That is, any new read domains. |
| */ |
| invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains; |
| if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) |
| i915_gem_clflush_object(obj); |
| |
| if (obj->base.pending_write_domain) |
| cd->flips |= atomic_read(&obj->pending_flip); |
| |
| /* The actual obj->write_domain will be updated with |
| * pending_write_domain after we emit the accumulated flush for all |
| * of our domain changes in execbuffers (which clears objects' |
| * write_domains). So if we have a current write domain that we |
| * aren't changing, set pending_write_domain to that. |
| */ |
| if (flush_domains == 0 && obj->base.pending_write_domain == 0) |
| obj->base.pending_write_domain = obj->base.write_domain; |
| |
| cd->invalidate_domains |= invalidate_domains; |
| cd->flush_domains |= flush_domains; |
| if (flush_domains & I915_GEM_GPU_DOMAINS) |
| cd->flush_rings |= intel_ring_flag(obj->ring); |
| if (invalidate_domains & I915_GEM_GPU_DOMAINS) |
| cd->flush_rings |= intel_ring_flag(ring); |
| } |
| |
| struct eb_objects { |
| int and; |
| struct hlist_head buckets[0]; |
| }; |
| |
| static struct eb_objects * |
| eb_create(int size) |
| { |
| struct eb_objects *eb; |
| int count = PAGE_SIZE / sizeof(struct hlist_head) / 2; |
| while (count > size) |
| count >>= 1; |
| eb = kzalloc(count*sizeof(struct hlist_head) + |
| sizeof(struct eb_objects), |
| GFP_KERNEL); |
| if (eb == NULL) |
| return eb; |
| |
| eb->and = count - 1; |
| return eb; |
| } |
| |
| static void |
| eb_reset(struct eb_objects *eb) |
| { |
| memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head)); |
| } |
| |
| static void |
| eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj) |
| { |
| hlist_add_head(&obj->exec_node, |
| &eb->buckets[obj->exec_handle & eb->and]); |
| } |
| |
| static struct drm_i915_gem_object * |
| eb_get_object(struct eb_objects *eb, unsigned long handle) |
| { |
| struct hlist_head *head; |
| struct hlist_node *node; |
| struct drm_i915_gem_object *obj; |
| |
| head = &eb->buckets[handle & eb->and]; |
| hlist_for_each(node, head) { |
| obj = hlist_entry(node, struct drm_i915_gem_object, exec_node); |
| if (obj->exec_handle == handle) |
| return obj; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| eb_destroy(struct eb_objects *eb) |
| { |
| kfree(eb); |
| } |
| |
| static int |
| i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj, |
| struct eb_objects *eb, |
| struct drm_i915_gem_relocation_entry *reloc) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_gem_object *target_obj; |
| uint32_t target_offset; |
| int ret = -EINVAL; |
| |
| /* we've already hold a reference to all valid objects */ |
| target_obj = &eb_get_object(eb, reloc->target_handle)->base; |
| if (unlikely(target_obj == NULL)) |
| return -ENOENT; |
| |
| target_offset = to_intel_bo(target_obj)->gtt_offset; |
| |
| /* The target buffer should have appeared before us in the |
| * exec_object list, so it should have a GTT space bound by now. |
| */ |
| if (unlikely(target_offset == 0)) { |
| DRM_DEBUG("No GTT space found for object %d\n", |
| reloc->target_handle); |
| return ret; |
| } |
| |
| /* Validate that the target is in a valid r/w GPU domain */ |
| if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { |
| DRM_DEBUG("reloc with multiple write domains: " |
| "obj %p target %d offset %d " |
| "read %08x write %08x", |
| obj, reloc->target_handle, |
| (int) reloc->offset, |
| reloc->read_domains, |
| reloc->write_domain); |
| return ret; |
| } |
| if (unlikely((reloc->write_domain | reloc->read_domains) |
| & ~I915_GEM_GPU_DOMAINS)) { |
| DRM_DEBUG("reloc with read/write non-GPU domains: " |
| "obj %p target %d offset %d " |
| "read %08x write %08x", |
| obj, reloc->target_handle, |
| (int) reloc->offset, |
| reloc->read_domains, |
| reloc->write_domain); |
| return ret; |
| } |
| if (unlikely(reloc->write_domain && target_obj->pending_write_domain && |
| reloc->write_domain != target_obj->pending_write_domain)) { |
| DRM_DEBUG("Write domain conflict: " |
| "obj %p target %d offset %d " |
| "new %08x old %08x\n", |
| obj, reloc->target_handle, |
| (int) reloc->offset, |
| reloc->write_domain, |
| target_obj->pending_write_domain); |
| return ret; |
| } |
| |
| target_obj->pending_read_domains |= reloc->read_domains; |
| target_obj->pending_write_domain |= reloc->write_domain; |
| |
| /* If the relocation already has the right value in it, no |
| * more work needs to be done. |
| */ |
| if (target_offset == reloc->presumed_offset) |
| return 0; |
| |
| /* Check that the relocation address is valid... */ |
| if (unlikely(reloc->offset > obj->base.size - 4)) { |
| DRM_DEBUG("Relocation beyond object bounds: " |
| "obj %p target %d offset %d size %d.\n", |
| obj, reloc->target_handle, |
| (int) reloc->offset, |
| (int) obj->base.size); |
| return ret; |
| } |
| if (unlikely(reloc->offset & 3)) { |
| DRM_DEBUG("Relocation not 4-byte aligned: " |
| "obj %p target %d offset %d.\n", |
| obj, reloc->target_handle, |
| (int) reloc->offset); |
| return ret; |
| } |
| |
| reloc->delta += target_offset; |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) { |
| uint32_t page_offset = reloc->offset & ~PAGE_MASK; |
| char *vaddr; |
| |
| vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]); |
| *(uint32_t *)(vaddr + page_offset) = reloc->delta; |
| kunmap_atomic(vaddr); |
| } else { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t __iomem *reloc_entry; |
| void __iomem *reloc_page; |
| |
| /* We can't wait for rendering with pagefaults disabled */ |
| if (obj->active && in_atomic()) |
| return -EFAULT; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, 1); |
| if (ret) |
| return ret; |
| |
| /* Map the page containing the relocation we're going to perform. */ |
| reloc->offset += obj->gtt_offset; |
| reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, |
| reloc->offset & PAGE_MASK); |
| reloc_entry = (uint32_t __iomem *) |
| (reloc_page + (reloc->offset & ~PAGE_MASK)); |
| iowrite32(reloc->delta, reloc_entry); |
| io_mapping_unmap_atomic(reloc_page); |
| } |
| |
| /* and update the user's relocation entry */ |
| reloc->presumed_offset = target_offset; |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj, |
| struct eb_objects *eb) |
| { |
| struct drm_i915_gem_relocation_entry __user *user_relocs; |
| struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; |
| int i, ret; |
| |
| user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr; |
| for (i = 0; i < entry->relocation_count; i++) { |
| struct drm_i915_gem_relocation_entry reloc; |
| |
| if (__copy_from_user_inatomic(&reloc, |
| user_relocs+i, |
| sizeof(reloc))) |
| return -EFAULT; |
| |
| ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc); |
| if (ret) |
| return ret; |
| |
| if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset, |
| &reloc.presumed_offset, |
| sizeof(reloc.presumed_offset))) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj, |
| struct eb_objects *eb, |
| struct drm_i915_gem_relocation_entry *relocs) |
| { |
| const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; |
| int i, ret; |
| |
| for (i = 0; i < entry->relocation_count; i++) { |
| ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_execbuffer_relocate(struct drm_device *dev, |
| struct eb_objects *eb, |
| struct list_head *objects) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret = 0; |
| |
| /* This is the fast path and we cannot handle a pagefault whilst |
| * holding the struct mutex lest the user pass in the relocations |
| * contained within a mmaped bo. For in such a case we, the page |
| * fault handler would call i915_gem_fault() and we would try to |
| * acquire the struct mutex again. Obviously this is bad and so |
| * lockdep complains vehemently. |
| */ |
| pagefault_disable(); |
| list_for_each_entry(obj, objects, exec_list) { |
| ret = i915_gem_execbuffer_relocate_object(obj, eb); |
| if (ret) |
| break; |
| } |
| pagefault_enable(); |
| |
| return ret; |
| } |
| |
| #define __EXEC_OBJECT_HAS_FENCE (1<<31) |
| |
| static int |
| pin_and_fence_object(struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *ring) |
| { |
| struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; |
| bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; |
| bool need_fence, need_mappable; |
| int ret; |
| |
| need_fence = |
| has_fenced_gpu_access && |
| entry->flags & EXEC_OBJECT_NEEDS_FENCE && |
| obj->tiling_mode != I915_TILING_NONE; |
| need_mappable = |
| entry->relocation_count ? true : need_fence; |
| |
| ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); |
| if (ret) |
| return ret; |
| |
| if (has_fenced_gpu_access) { |
| if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) { |
| if (obj->tiling_mode) { |
| ret = i915_gem_object_get_fence(obj, ring); |
| if (ret) |
| goto err_unpin; |
| |
| entry->flags |= __EXEC_OBJECT_HAS_FENCE; |
| i915_gem_object_pin_fence(obj); |
| } else { |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| goto err_unpin; |
| } |
| obj->pending_fenced_gpu_access = true; |
| } |
| } |
| |
| entry->offset = obj->gtt_offset; |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin(obj); |
| return ret; |
| } |
| |
| static int |
| i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring, |
| struct drm_file *file, |
| struct list_head *objects) |
| { |
| drm_i915_private_t *dev_priv = ring->dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| int ret, retry; |
| bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; |
| struct list_head ordered_objects; |
| |
| INIT_LIST_HEAD(&ordered_objects); |
| while (!list_empty(objects)) { |
| struct drm_i915_gem_exec_object2 *entry; |
| bool need_fence, need_mappable; |
| |
| obj = list_first_entry(objects, |
| struct drm_i915_gem_object, |
| exec_list); |
| entry = obj->exec_entry; |
| |
| need_fence = |
| has_fenced_gpu_access && |
| entry->flags & EXEC_OBJECT_NEEDS_FENCE && |
| obj->tiling_mode != I915_TILING_NONE; |
| need_mappable = |
| entry->relocation_count ? true : need_fence; |
| |
| if (need_mappable) |
| list_move(&obj->exec_list, &ordered_objects); |
| else |
| list_move_tail(&obj->exec_list, &ordered_objects); |
| |
| obj->base.pending_read_domains = 0; |
| obj->base.pending_write_domain = 0; |
| } |
| list_splice(&ordered_objects, objects); |
| |
| /* Attempt to pin all of the buffers into the GTT. |
| * This is done in 3 phases: |
| * |
| * 1a. Unbind all objects that do not match the GTT constraints for |
| * the execbuffer (fenceable, mappable, alignment etc). |
| * 1b. Increment pin count for already bound objects. |
| * 2. Bind new objects. |
| * 3. Decrement pin count. |
| * |
| * This avoid unnecessary unbinding of later objects in order to makr |
| * room for the earlier objects *unless* we need to defragment. |
| */ |
| retry = 0; |
| do { |
| ret = 0; |
| |
| /* Unbind any ill-fitting objects or pin. */ |
| list_for_each_entry(obj, objects, exec_list) { |
| struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; |
| bool need_fence, need_mappable; |
| |
| if (!obj->gtt_space) |
| continue; |
| |
| need_fence = |
| has_fenced_gpu_access && |
| entry->flags & EXEC_OBJECT_NEEDS_FENCE && |
| obj->tiling_mode != I915_TILING_NONE; |
| need_mappable = |
| entry->relocation_count ? true : need_fence; |
| |
| if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) || |
| (need_mappable && !obj->map_and_fenceable)) |
| ret = i915_gem_object_unbind(obj); |
| else |
| ret = pin_and_fence_object(obj, ring); |
| if (ret) |
| goto err; |
| } |
| |
| /* Bind fresh objects */ |
| list_for_each_entry(obj, objects, exec_list) { |
| if (obj->gtt_space) |
| continue; |
| |
| ret = pin_and_fence_object(obj, ring); |
| if (ret) { |
| int ret_ignore; |
| |
| /* This can potentially raise a harmless |
| * -EINVAL if we failed to bind in the above |
| * call. It cannot raise -EINTR since we know |
| * that the bo is freshly bound and so will |
| * not need to be flushed or waited upon. |
| */ |
| ret_ignore = i915_gem_object_unbind(obj); |
| (void)ret_ignore; |
| WARN_ON(obj->gtt_space); |
| break; |
| } |
| } |
| |
| /* Decrement pin count for bound objects */ |
| list_for_each_entry(obj, objects, exec_list) { |
| struct drm_i915_gem_exec_object2 *entry; |
| |
| if (!obj->gtt_space) |
| continue; |
| |
| entry = obj->exec_entry; |
| if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { |
| i915_gem_object_unpin_fence(obj); |
| entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; |
| } |
| |
| i915_gem_object_unpin(obj); |
| |
| /* ... and ensure ppgtt mapping exist if needed. */ |
| if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) { |
| i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, |
| obj, obj->cache_level); |
| |
| obj->has_aliasing_ppgtt_mapping = 1; |
| } |
| } |
| |
| if (ret != -ENOSPC || retry > 1) |
| return ret; |
| |
| /* First attempt, just clear anything that is purgeable. |
| * Second attempt, clear the entire GTT. |
| */ |
| ret = i915_gem_evict_everything(ring->dev, retry == 0); |
| if (ret) |
| return ret; |
| |
| retry++; |
| } while (1); |
| |
| err: |
| list_for_each_entry_continue_reverse(obj, objects, exec_list) { |
| struct drm_i915_gem_exec_object2 *entry; |
| |
| if (!obj->gtt_space) |
| continue; |
| |
| entry = obj->exec_entry; |
| if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { |
| i915_gem_object_unpin_fence(obj); |
| entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; |
| } |
| |
| i915_gem_object_unpin(obj); |
| } |
| |
| return ret; |
| } |
| |
| static int |
| i915_gem_execbuffer_relocate_slow(struct drm_device *dev, |
| struct drm_file *file, |
| struct intel_ring_buffer *ring, |
| struct list_head *objects, |
| struct eb_objects *eb, |
| struct drm_i915_gem_exec_object2 *exec, |
| int count) |
| { |
| struct drm_i915_gem_relocation_entry *reloc; |
| struct drm_i915_gem_object *obj; |
| int *reloc_offset; |
| int i, total, ret; |
| |
| /* We may process another execbuffer during the unlock... */ |
| while (!list_empty(objects)) { |
| obj = list_first_entry(objects, |
| struct drm_i915_gem_object, |
| exec_list); |
| list_del_init(&obj->exec_list); |
| drm_gem_object_unreference(&obj->base); |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| total = 0; |
| for (i = 0; i < count; i++) |
| total += exec[i].relocation_count; |
| |
| reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset)); |
| reloc = drm_malloc_ab(total, sizeof(*reloc)); |
| if (reloc == NULL || reloc_offset == NULL) { |
| drm_free_large(reloc); |
| drm_free_large(reloc_offset); |
| mutex_lock(&dev->struct_mutex); |
| return -ENOMEM; |
| } |
| |
| total = 0; |
| for (i = 0; i < count; i++) { |
| struct drm_i915_gem_relocation_entry __user *user_relocs; |
| |
| user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr; |
| |
| if (copy_from_user(reloc+total, user_relocs, |
| exec[i].relocation_count * sizeof(*reloc))) { |
| ret = -EFAULT; |
| mutex_lock(&dev->struct_mutex); |
| goto err; |
| } |
| |
| reloc_offset[i] = total; |
| total += exec[i].relocation_count; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) { |
| mutex_lock(&dev->struct_mutex); |
| goto err; |
| } |
| |
| /* reacquire the objects */ |
| eb_reset(eb); |
| for (i = 0; i < count; i++) { |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, |
| exec[i].handle)); |
| if (&obj->base == NULL) { |
| DRM_DEBUG("Invalid object handle %d at index %d\n", |
| exec[i].handle, i); |
| ret = -ENOENT; |
| goto err; |
| } |
| |
| list_add_tail(&obj->exec_list, objects); |
| obj->exec_handle = exec[i].handle; |
| obj->exec_entry = &exec[i]; |
| eb_add_object(eb, obj); |
| } |
| |
| ret = i915_gem_execbuffer_reserve(ring, file, objects); |
| if (ret) |
| goto err; |
| |
| list_for_each_entry(obj, objects, exec_list) { |
| int offset = obj->exec_entry - exec; |
| ret = i915_gem_execbuffer_relocate_object_slow(obj, eb, |
| reloc + reloc_offset[offset]); |
| if (ret) |
| goto err; |
| } |
| |
| /* Leave the user relocations as are, this is the painfully slow path, |
| * and we want to avoid the complication of dropping the lock whilst |
| * having buffers reserved in the aperture and so causing spurious |
| * ENOSPC for random operations. |
| */ |
| |
| err: |
| drm_free_large(reloc); |
| drm_free_large(reloc_offset); |
| return ret; |
| } |
| |
| static int |
| i915_gem_execbuffer_flush(struct drm_device *dev, |
| uint32_t invalidate_domains, |
| uint32_t flush_domains, |
| uint32_t flush_rings) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int i, ret; |
| |
| if (flush_domains & I915_GEM_DOMAIN_CPU) |
| intel_gtt_chipset_flush(); |
| |
| if (flush_domains & I915_GEM_DOMAIN_GTT) |
| wmb(); |
| |
| if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) { |
| for (i = 0; i < I915_NUM_RINGS; i++) |
| if (flush_rings & (1 << i)) { |
| ret = i915_gem_flush_ring(&dev_priv->ring[i], |
| invalidate_domains, |
| flush_domains); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| intel_enable_semaphores(struct drm_device *dev) |
| { |
| if (INTEL_INFO(dev)->gen < 6) |
| return 0; |
| |
| if (i915_semaphores >= 0) |
| return i915_semaphores; |
| |
| /* Disable semaphores on SNB */ |
| if (INTEL_INFO(dev)->gen == 6) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *to) |
| { |
| struct intel_ring_buffer *from = obj->ring; |
| u32 seqno; |
| int ret, idx; |
| |
| if (from == NULL || to == from) |
| return 0; |
| |
| /* XXX gpu semaphores are implicated in various hard hangs on SNB */ |
| if (!intel_enable_semaphores(obj->base.dev)) |
| return i915_gem_object_wait_rendering(obj); |
| |
| idx = intel_ring_sync_index(from, to); |
| |
| seqno = obj->last_rendering_seqno; |
| if (seqno <= from->sync_seqno[idx]) |
| return 0; |
| |
| if (seqno == from->outstanding_lazy_request) { |
| struct drm_i915_gem_request *request; |
| |
| request = kzalloc(sizeof(*request), GFP_KERNEL); |
| if (request == NULL) |
| return -ENOMEM; |
| |
| ret = i915_add_request(from, NULL, request); |
| if (ret) { |
| kfree(request); |
| return ret; |
| } |
| |
| seqno = request->seqno; |
| } |
| |
| from->sync_seqno[idx] = seqno; |
| |
| return to->sync_to(to, from, seqno - 1); |
| } |
| |
| static int |
| i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips) |
| { |
| u32 plane, flip_mask; |
| int ret; |
| |
| /* Check for any pending flips. As we only maintain a flip queue depth |
| * of 1, we can simply insert a WAIT for the next display flip prior |
| * to executing the batch and avoid stalling the CPU. |
| */ |
| |
| for (plane = 0; flips >> plane; plane++) { |
| if (((flips >> plane) & 1) == 0) |
| continue; |
| |
| if (plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| |
| ret = intel_ring_begin(ring, 2); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| } |
| |
| return 0; |
| } |
| |
| |
| static int |
| i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring, |
| struct list_head *objects) |
| { |
| struct drm_i915_gem_object *obj; |
| struct change_domains cd; |
| int ret; |
| |
| memset(&cd, 0, sizeof(cd)); |
| list_for_each_entry(obj, objects, exec_list) |
| i915_gem_object_set_to_gpu_domain(obj, ring, &cd); |
| |
| if (cd.invalidate_domains | cd.flush_domains) { |
| ret = i915_gem_execbuffer_flush(ring->dev, |
| cd.invalidate_domains, |
| cd.flush_domains, |
| cd.flush_rings); |
| if (ret) |
| return ret; |
| } |
| |
| if (cd.flips) { |
| ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips); |
| if (ret) |
| return ret; |
| } |
| |
| list_for_each_entry(obj, objects, exec_list) { |
| ret = i915_gem_execbuffer_sync_rings(obj, ring); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) |
| { |
| return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0; |
| } |
| |
| static int |
| validate_exec_list(struct drm_i915_gem_exec_object2 *exec, |
| int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr; |
| int length; /* limited by fault_in_pages_readable() */ |
| |
| /* First check for malicious input causing overflow */ |
| if (exec[i].relocation_count > |
| INT_MAX / sizeof(struct drm_i915_gem_relocation_entry)) |
| return -EINVAL; |
| |
| length = exec[i].relocation_count * |
| sizeof(struct drm_i915_gem_relocation_entry); |
| if (!access_ok(VERIFY_READ, ptr, length)) |
| return -EFAULT; |
| |
| /* we may also need to update the presumed offsets */ |
| if (!access_ok(VERIFY_WRITE, ptr, length)) |
| return -EFAULT; |
| |
| if (fault_in_pages_readable(ptr, length)) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| i915_gem_execbuffer_move_to_active(struct list_head *objects, |
| struct intel_ring_buffer *ring, |
| u32 seqno) |
| { |
| struct drm_i915_gem_object *obj; |
| |
| list_for_each_entry(obj, objects, exec_list) { |
| u32 old_read = obj->base.read_domains; |
| u32 old_write = obj->base.write_domain; |
| |
| |
| obj->base.read_domains = obj->base.pending_read_domains; |
| obj->base.write_domain = obj->base.pending_write_domain; |
| obj->fenced_gpu_access = obj->pending_fenced_gpu_access; |
| |
| i915_gem_object_move_to_active(obj, ring, seqno); |
| if (obj->base.write_domain) { |
| obj->dirty = 1; |
| obj->pending_gpu_write = true; |
| list_move_tail(&obj->gpu_write_list, |
| &ring->gpu_write_list); |
| intel_mark_busy(ring->dev, obj); |
| } |
| |
| trace_i915_gem_object_change_domain(obj, old_read, old_write); |
| } |
| } |
| |
| static void |
| i915_gem_execbuffer_retire_commands(struct drm_device *dev, |
| struct drm_file *file, |
| struct intel_ring_buffer *ring) |
| { |
| struct drm_i915_gem_request *request; |
| u32 invalidate; |
| |
| /* |
| * Ensure that the commands in the batch buffer are |
| * finished before the interrupt fires. |
| * |
| * The sampler always gets flushed on i965 (sigh). |
| */ |
| invalidate = I915_GEM_DOMAIN_COMMAND; |
| if (INTEL_INFO(dev)->gen >= 4) |
| invalidate |= I915_GEM_DOMAIN_SAMPLER; |
| if (ring->flush(ring, invalidate, 0)) { |
| i915_gem_next_request_seqno(ring); |
| return; |
| } |
| |
| /* Add a breadcrumb for the completion of the batch buffer */ |
| request = kzalloc(sizeof(*request), GFP_KERNEL); |
| if (request == NULL || i915_add_request(ring, file, request)) { |
| i915_gem_next_request_seqno(ring); |
| kfree(request); |
| } |
| } |
| |
| static int |
| i915_reset_gen7_sol_offsets(struct drm_device *dev, |
| struct intel_ring_buffer *ring) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int ret, i; |
| |
| if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS]) |
| return 0; |
| |
| ret = intel_ring_begin(ring, 4 * 3); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < 4; i++) { |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i)); |
| intel_ring_emit(ring, 0); |
| } |
| |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_do_execbuffer(struct drm_device *dev, void *data, |
| struct drm_file *file, |
| struct drm_i915_gem_execbuffer2 *args, |
| struct drm_i915_gem_exec_object2 *exec) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct list_head objects; |
| struct eb_objects *eb; |
| struct drm_i915_gem_object *batch_obj; |
| struct drm_clip_rect *cliprects = NULL; |
| struct intel_ring_buffer *ring; |
| u32 exec_start, exec_len; |
| u32 seqno; |
| u32 mask; |
| int ret, mode, i; |
| |
| if (!i915_gem_check_execbuffer(args)) { |
| DRM_DEBUG("execbuf with invalid offset/length\n"); |
| return -EINVAL; |
| } |
| |
| ret = validate_exec_list(exec, args->buffer_count); |
| if (ret) |
| return ret; |
| |
| switch (args->flags & I915_EXEC_RING_MASK) { |
| case I915_EXEC_DEFAULT: |
| case I915_EXEC_RENDER: |
| ring = &dev_priv->ring[RCS]; |
| break; |
| case I915_EXEC_BSD: |
| if (!HAS_BSD(dev)) { |
| DRM_DEBUG("execbuf with invalid ring (BSD)\n"); |
| return -EINVAL; |
| } |
| ring = &dev_priv->ring[VCS]; |
| break; |
| case I915_EXEC_BLT: |
| if (!HAS_BLT(dev)) { |
| DRM_DEBUG("execbuf with invalid ring (BLT)\n"); |
| return -EINVAL; |
| } |
| ring = &dev_priv->ring[BCS]; |
| break; |
| default: |
| DRM_DEBUG("execbuf with unknown ring: %d\n", |
| (int)(args->flags & I915_EXEC_RING_MASK)); |
| return -EINVAL; |
| } |
| |
| mode = args->flags & I915_EXEC_CONSTANTS_MASK; |
| mask = I915_EXEC_CONSTANTS_MASK; |
| switch (mode) { |
| case I915_EXEC_CONSTANTS_REL_GENERAL: |
| case I915_EXEC_CONSTANTS_ABSOLUTE: |
| case I915_EXEC_CONSTANTS_REL_SURFACE: |
| if (ring == &dev_priv->ring[RCS] && |
| mode != dev_priv->relative_constants_mode) { |
| if (INTEL_INFO(dev)->gen < 4) |
| return -EINVAL; |
| |
| if (INTEL_INFO(dev)->gen > 5 && |
| mode == I915_EXEC_CONSTANTS_REL_SURFACE) |
| return -EINVAL; |
| |
| /* The HW changed the meaning on this bit on gen6 */ |
| if (INTEL_INFO(dev)->gen >= 6) |
| mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; |
| } |
| break; |
| default: |
| DRM_DEBUG("execbuf with unknown constants: %d\n", mode); |
| return -EINVAL; |
| } |
| |
| if (args->buffer_count < 1) { |
| DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); |
| return -EINVAL; |
| } |
| |
| if (args->num_cliprects != 0) { |
| if (ring != &dev_priv->ring[RCS]) { |
| DRM_DEBUG("clip rectangles are only valid with the render ring\n"); |
| return -EINVAL; |
| } |
| |
| cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects), |
| GFP_KERNEL); |
| if (cliprects == NULL) { |
| ret = -ENOMEM; |
| goto pre_mutex_err; |
| } |
| |
| if (copy_from_user(cliprects, |
| (struct drm_clip_rect __user *)(uintptr_t) |
| args->cliprects_ptr, |
| sizeof(*cliprects)*args->num_cliprects)) { |
| ret = -EFAULT; |
| goto pre_mutex_err; |
| } |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto pre_mutex_err; |
| |
| if (dev_priv->mm.suspended) { |
| mutex_unlock(&dev->struct_mutex); |
| ret = -EBUSY; |
| goto pre_mutex_err; |
| } |
| |
| eb = eb_create(args->buffer_count); |
| if (eb == NULL) { |
| mutex_unlock(&dev->struct_mutex); |
| ret = -ENOMEM; |
| goto pre_mutex_err; |
| } |
| |
| /* Look up object handles */ |
| INIT_LIST_HEAD(&objects); |
| for (i = 0; i < args->buffer_count; i++) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, |
| exec[i].handle)); |
| if (&obj->base == NULL) { |
| DRM_DEBUG("Invalid object handle %d at index %d\n", |
| exec[i].handle, i); |
| /* prevent error path from reading uninitialized data */ |
| ret = -ENOENT; |
| goto err; |
| } |
| |
| if (!list_empty(&obj->exec_list)) { |
| DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n", |
| obj, exec[i].handle, i); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| list_add_tail(&obj->exec_list, &objects); |
| obj->exec_handle = exec[i].handle; |
| obj->exec_entry = &exec[i]; |
| eb_add_object(eb, obj); |
| } |
| |
| /* take note of the batch buffer before we might reorder the lists */ |
| batch_obj = list_entry(objects.prev, |
| struct drm_i915_gem_object, |
| exec_list); |
| |
| /* Move the objects en-masse into the GTT, evicting if necessary. */ |
| ret = i915_gem_execbuffer_reserve(ring, file, &objects); |
| if (ret) |
| goto err; |
| |
| /* The objects are in their final locations, apply the relocations. */ |
| ret = i915_gem_execbuffer_relocate(dev, eb, &objects); |
| if (ret) { |
| if (ret == -EFAULT) { |
| ret = i915_gem_execbuffer_relocate_slow(dev, file, ring, |
| &objects, eb, |
| exec, |
| args->buffer_count); |
| BUG_ON(!mutex_is_locked(&dev->struct_mutex)); |
| } |
| if (ret) |
| goto err; |
| } |
| |
| /* Set the pending read domains for the batch buffer to COMMAND */ |
| if (batch_obj->base.pending_write_domain) { |
| DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); |
| ret = -EINVAL; |
| goto err; |
| } |
| batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND; |
| |
| ret = i915_gem_execbuffer_move_to_gpu(ring, &objects); |
| if (ret) |
| goto err; |
| |
| seqno = i915_gem_next_request_seqno(ring); |
| for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) { |
| if (seqno < ring->sync_seqno[i]) { |
| /* The GPU can not handle its semaphore value wrapping, |
| * so every billion or so execbuffers, we need to stall |
| * the GPU in order to reset the counters. |
| */ |
| ret = i915_gpu_idle(dev, true); |
| if (ret) |
| goto err; |
| |
| BUG_ON(ring->sync_seqno[i]); |
| } |
| } |
| |
| if (ring == &dev_priv->ring[RCS] && |
| mode != dev_priv->relative_constants_mode) { |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| goto err; |
| |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, INSTPM); |
| intel_ring_emit(ring, mask << 16 | mode); |
| intel_ring_advance(ring); |
| |
| dev_priv->relative_constants_mode = mode; |
| } |
| |
| if (args->flags & I915_EXEC_GEN7_SOL_RESET) { |
| ret = i915_reset_gen7_sol_offsets(dev, ring); |
| if (ret) |
| goto err; |
| } |
| |
| trace_i915_gem_ring_dispatch(ring, seqno); |
| |
| exec_start = batch_obj->gtt_offset + args->batch_start_offset; |
| exec_len = args->batch_len; |
| if (cliprects) { |
| for (i = 0; i < args->num_cliprects; i++) { |
| ret = i915_emit_box(dev, &cliprects[i], |
| args->DR1, args->DR4); |
| if (ret) |
| goto err; |
| |
| ret = ring->dispatch_execbuffer(ring, |
| exec_start, exec_len); |
| if (ret) |
| goto err; |
| } |
| } else { |
| ret = ring->dispatch_execbuffer(ring, exec_start, exec_len); |
| if (ret) |
| goto err; |
| } |
| |
| i915_gem_execbuffer_move_to_active(&objects, ring, seqno); |
| i915_gem_execbuffer_retire_commands(dev, file, ring); |
| |
| err: |
| eb_destroy(eb); |
| while (!list_empty(&objects)) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = list_first_entry(&objects, |
| struct drm_i915_gem_object, |
| exec_list); |
| list_del_init(&obj->exec_list); |
| drm_gem_object_unreference(&obj->base); |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| pre_mutex_err: |
| kfree(cliprects); |
| return ret; |
| } |
| |
| /* |
| * Legacy execbuffer just creates an exec2 list from the original exec object |
| * list array and passes it to the real function. |
| */ |
| int |
| i915_gem_execbuffer(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_execbuffer *args = data; |
| struct drm_i915_gem_execbuffer2 exec2; |
| struct drm_i915_gem_exec_object *exec_list = NULL; |
| struct drm_i915_gem_exec_object2 *exec2_list = NULL; |
| int ret, i; |
| |
| if (args->buffer_count < 1) { |
| DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); |
| return -EINVAL; |
| } |
| |
| /* Copy in the exec list from userland */ |
| exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); |
| exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); |
| if (exec_list == NULL || exec2_list == NULL) { |
| DRM_DEBUG("Failed to allocate exec list for %d buffers\n", |
| args->buffer_count); |
| drm_free_large(exec_list); |
| drm_free_large(exec2_list); |
| return -ENOMEM; |
| } |
| ret = copy_from_user(exec_list, |
| (struct drm_i915_relocation_entry __user *) |
| (uintptr_t) args->buffers_ptr, |
| sizeof(*exec_list) * args->buffer_count); |
| if (ret != 0) { |
| DRM_DEBUG("copy %d exec entries failed %d\n", |
| args->buffer_count, ret); |
| drm_free_large(exec_list); |
| drm_free_large(exec2_list); |
| return -EFAULT; |
| } |
| |
| for (i = 0; i < args->buffer_count; i++) { |
| exec2_list[i].handle = exec_list[i].handle; |
| exec2_list[i].relocation_count = exec_list[i].relocation_count; |
| exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; |
| exec2_list[i].alignment = exec_list[i].alignment; |
| exec2_list[i].offset = exec_list[i].offset; |
| if (INTEL_INFO(dev)->gen < 4) |
| exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; |
| else |
| exec2_list[i].flags = 0; |
| } |
| |
| exec2.buffers_ptr = args->buffers_ptr; |
| exec2.buffer_count = args->buffer_count; |
| exec2.batch_start_offset = args->batch_start_offset; |
| exec2.batch_len = args->batch_len; |
| exec2.DR1 = args->DR1; |
| exec2.DR4 = args->DR4; |
| exec2.num_cliprects = args->num_cliprects; |
| exec2.cliprects_ptr = args->cliprects_ptr; |
| exec2.flags = I915_EXEC_RENDER; |
| |
| ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list); |
| if (!ret) { |
| /* Copy the new buffer offsets back to the user's exec list. */ |
| for (i = 0; i < args->buffer_count; i++) |
| exec_list[i].offset = exec2_list[i].offset; |
| /* ... and back out to userspace */ |
| ret = copy_to_user((struct drm_i915_relocation_entry __user *) |
| (uintptr_t) args->buffers_ptr, |
| exec_list, |
| sizeof(*exec_list) * args->buffer_count); |
| if (ret) { |
| ret = -EFAULT; |
| DRM_DEBUG("failed to copy %d exec entries " |
| "back to user (%d)\n", |
| args->buffer_count, ret); |
| } |
| } |
| |
| drm_free_large(exec_list); |
| drm_free_large(exec2_list); |
| return ret; |
| } |
| |
| int |
| i915_gem_execbuffer2(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_execbuffer2 *args = data; |
| struct drm_i915_gem_exec_object2 *exec2_list = NULL; |
| int ret; |
| |
| if (args->buffer_count < 1) { |
| DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); |
| return -EINVAL; |
| } |
| |
| exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count, |
| GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); |
| if (exec2_list == NULL) |
| exec2_list = drm_malloc_ab(sizeof(*exec2_list), |
| args->buffer_count); |
| if (exec2_list == NULL) { |
| DRM_DEBUG("Failed to allocate exec list for %d buffers\n", |
| args->buffer_count); |
| return -ENOMEM; |
| } |
| ret = copy_from_user(exec2_list, |
| (struct drm_i915_relocation_entry __user *) |
| (uintptr_t) args->buffers_ptr, |
| sizeof(*exec2_list) * args->buffer_count); |
| if (ret != 0) { |
| DRM_DEBUG("copy %d exec entries failed %d\n", |
| args->buffer_count, ret); |
| drm_free_large(exec2_list); |
| return -EFAULT; |
| } |
| |
| ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list); |
| if (!ret) { |
| /* Copy the new buffer offsets back to the user's exec list. */ |
| ret = copy_to_user((struct drm_i915_relocation_entry __user *) |
| (uintptr_t) args->buffers_ptr, |
| exec2_list, |
| sizeof(*exec2_list) * args->buffer_count); |
| if (ret) { |
| ret = -EFAULT; |
| DRM_DEBUG("failed to copy %d exec entries " |
| "back to user (%d)\n", |
| args->buffer_count, ret); |
| } |
| } |
| |
| drm_free_large(exec2_list); |
| return ret; |
| } |