| /* |
| Copyright (C) 2004 - 2007 rt2x00 SourceForge Project |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2500pci |
| Abstract: rt2500pci device specific routines. |
| Supported chipsets: RT2560. |
| */ |
| |
| /* |
| * Set enviroment defines for rt2x00.h |
| */ |
| #define DRV_NAME "rt2500pci" |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/eeprom_93cx6.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00pci.h" |
| #include "rt2500pci.h" |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2x00pci_register_read and rt2x00pci_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| */ |
| static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| unsigned int i; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2x00pci_register_read(rt2x00dev, BBPCSR, ®); |
| if (!rt2x00_get_field32(reg, BBPCSR_BUSY)) |
| break; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| return reg; |
| } |
| |
| static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| /* |
| * Wait until the BBP becomes ready. |
| */ |
| reg = rt2500pci_bbp_check(rt2x00dev); |
| if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { |
| ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n"); |
| return; |
| } |
| |
| /* |
| * Write the data into the BBP. |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, BBPCSR_VALUE, value); |
| rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); |
| |
| rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); |
| } |
| |
| static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| /* |
| * Wait until the BBP becomes ready. |
| */ |
| reg = rt2500pci_bbp_check(rt2x00dev); |
| if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { |
| ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n"); |
| return; |
| } |
| |
| /* |
| * Write the request into the BBP. |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); |
| |
| rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); |
| |
| /* |
| * Wait until the BBP becomes ready. |
| */ |
| reg = rt2500pci_bbp_check(rt2x00dev); |
| if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { |
| ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n"); |
| *value = 0xff; |
| return; |
| } |
| |
| *value = rt2x00_get_field32(reg, BBPCSR_VALUE); |
| } |
| |
| static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| unsigned int i; |
| |
| if (!word) |
| return; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2x00pci_register_read(rt2x00dev, RFCSR, ®); |
| if (!rt2x00_get_field32(reg, RFCSR_BUSY)) |
| goto rf_write; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n"); |
| return; |
| |
| rf_write: |
| reg = 0; |
| rt2x00_set_field32(®, RFCSR_VALUE, value); |
| rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); |
| rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); |
| rt2x00_set_field32(®, RFCSR_BUSY, 1); |
| |
| rt2x00pci_register_write(rt2x00dev, RFCSR, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR21, ®); |
| |
| eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); |
| eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); |
| eeprom->reg_data_clock = |
| !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); |
| eeprom->reg_chip_select = |
| !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); |
| } |
| |
| static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg = 0; |
| |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, |
| !!eeprom->reg_data_clock); |
| rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, |
| !!eeprom->reg_chip_select); |
| |
| rt2x00pci_register_write(rt2x00dev, CSR21, reg); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) ) |
| |
| static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u32 *data) |
| { |
| rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data); |
| } |
| |
| static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u32 data) |
| { |
| rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data); |
| } |
| |
| static const struct rt2x00debug rt2500pci_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2500pci_read_csr, |
| .write = rt2500pci_write_csr, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt2500pci_bbp_read, |
| .write = rt2500pci_bbp_write, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt2500pci_rf_write, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| #ifdef CONFIG_RT2500PCI_RFKILL |
| static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®); |
| return rt2x00_get_field32(reg, GPIOCSR_BIT0); |
| } |
| #else |
| #define rt2500pci_rfkill_poll NULL |
| #endif /* CONFIG_RT2500PCI_RFKILL */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, |
| __le32 *mac) |
| { |
| rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac, |
| (2 * sizeof(__le32))); |
| } |
| |
| static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, |
| __le32 *bssid) |
| { |
| rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid, |
| (2 * sizeof(__le32))); |
| } |
| |
| static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type, |
| const int tsf_sync) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_write(rt2x00dev, CSR14, 0); |
| |
| /* |
| * Enable beacon config |
| */ |
| rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®); |
| rt2x00_set_field32(®, BCNCSR1_PRELOAD, |
| PREAMBLE + get_duration(IEEE80211_HEADER, 20)); |
| rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, |
| rt2x00lib_get_ring(rt2x00dev, |
| IEEE80211_TX_QUEUE_BEACON) |
| ->tx_params.cw_min); |
| rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg); |
| |
| /* |
| * Enable synchronisation. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CSR14, ®); |
| rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); |
| rt2x00_set_field32(®, CSR14_TBCN, 1); |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| rt2x00_set_field32(®, CSR14_TSF_SYNC, tsf_sync); |
| rt2x00pci_register_write(rt2x00dev, CSR14, reg); |
| } |
| |
| static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev, |
| const int short_preamble, |
| const int ack_timeout, |
| const int ack_consume_time) |
| { |
| int preamble_mask; |
| u32 reg; |
| |
| /* |
| * When short preamble is enabled, we should set bit 0x08 |
| */ |
| preamble_mask = short_preamble << 3; |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); |
| rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, ack_timeout); |
| rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, ack_consume_time); |
| rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARCSR2, ®); |
| rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10)); |
| rt2x00pci_register_write(rt2x00dev, ARCSR2, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARCSR3, ®); |
| rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20)); |
| rt2x00pci_register_write(rt2x00dev, ARCSR3, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARCSR4, ®); |
| rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55)); |
| rt2x00pci_register_write(rt2x00dev, ARCSR4, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARCSR5, ®); |
| rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110)); |
| rt2x00pci_register_write(rt2x00dev, ARCSR5, reg); |
| } |
| |
| static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev, |
| const int basic_rate_mask) |
| { |
| rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask); |
| } |
| |
| static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct rf_channel *rf, const int txpower) |
| { |
| u8 r70; |
| |
| /* |
| * Set TXpower. |
| */ |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| |
| /* |
| * Switch on tuning bits. |
| * For RT2523 devices we do not need to update the R1 register. |
| */ |
| if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) |
| rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); |
| rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); |
| |
| /* |
| * For RT2525 we should first set the channel to half band higher. |
| */ |
| if (rt2x00_rf(&rt2x00dev->chip, RF2525)) { |
| static const u32 vals[] = { |
| 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, |
| 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, |
| 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, |
| 0x00080d2e, 0x00080d3a |
| }; |
| |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| if (rf->rf4) |
| rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| if (rf->rf4) |
| rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| /* |
| * Channel 14 requires the Japan filter bit to be set. |
| */ |
| r70 = 0x46; |
| rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); |
| rt2500pci_bbp_write(rt2x00dev, 70, r70); |
| |
| msleep(1); |
| |
| /* |
| * Switch off tuning bits. |
| * For RT2523 devices we do not need to update the R1 register. |
| */ |
| if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) { |
| rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| } |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| |
| /* |
| * Clear false CRC during channel switch. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1); |
| } |
| |
| static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| u32 rf3; |
| |
| rt2x00_rf_read(rt2x00dev, 3, &rf3); |
| rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| rt2500pci_rf_write(rt2x00dev, 3, rf3); |
| } |
| |
| static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u32 reg; |
| u8 r14; |
| u8 r2; |
| |
| rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®); |
| rt2500pci_bbp_read(rt2x00dev, 14, &r14); |
| rt2500pci_bbp_read(rt2x00dev, 2, &r2); |
| |
| /* |
| * Configure the TX antenna. |
| */ |
| switch (ant->tx) { |
| case ANTENNA_A: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); |
| rt2x00_set_field32(®, BBPCSR1_CCK, 0); |
| rt2x00_set_field32(®, BBPCSR1_OFDM, 0); |
| break; |
| case ANTENNA_HW_DIVERSITY: |
| case ANTENNA_SW_DIVERSITY: |
| /* |
| * NOTE: We should never come here because rt2x00lib is |
| * supposed to catch this and send us the correct antenna |
| * explicitely. However we are nog going to bug about this. |
| * Instead, just default to antenna B. |
| */ |
| case ANTENNA_B: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); |
| rt2x00_set_field32(®, BBPCSR1_CCK, 2); |
| rt2x00_set_field32(®, BBPCSR1_OFDM, 2); |
| break; |
| } |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_A: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); |
| break; |
| case ANTENNA_HW_DIVERSITY: |
| case ANTENNA_SW_DIVERSITY: |
| /* |
| * NOTE: We should never come here because rt2x00lib is |
| * supposed to catch this and send us the correct antenna |
| * explicitely. However we are nog going to bug about this. |
| * Instead, just default to antenna B. |
| */ |
| case ANTENNA_B: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); |
| break; |
| } |
| |
| /* |
| * RT2525E and RT5222 need to flip TX I/Q |
| */ |
| if (rt2x00_rf(&rt2x00dev->chip, RF2525E) || |
| rt2x00_rf(&rt2x00dev->chip, RF5222)) { |
| rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); |
| rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); |
| rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); |
| |
| /* |
| * RT2525E does not need RX I/Q Flip. |
| */ |
| if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) |
| rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); |
| } else { |
| rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); |
| rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); |
| } |
| |
| rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg); |
| rt2500pci_bbp_write(rt2x00dev, 14, r14); |
| rt2500pci_bbp_write(rt2x00dev, 2, r2); |
| } |
| |
| static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR11, ®); |
| rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time); |
| rt2x00pci_register_write(rt2x00dev, CSR11, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR18, ®); |
| rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs); |
| rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs); |
| rt2x00pci_register_write(rt2x00dev, CSR18, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR19, ®); |
| rt2x00_set_field32(®, CSR19_DIFS, libconf->difs); |
| rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs); |
| rt2x00pci_register_write(rt2x00dev, CSR19, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); |
| rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); |
| rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); |
| rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR12, ®); |
| rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, |
| libconf->conf->beacon_int * 16); |
| rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, |
| libconf->conf->beacon_int * 16); |
| rt2x00pci_register_write(rt2x00dev, CSR12, reg); |
| } |
| |
| static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, |
| const unsigned int flags, |
| struct rt2x00lib_conf *libconf) |
| { |
| if (flags & CONFIG_UPDATE_PHYMODE) |
| rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates); |
| if (flags & CONFIG_UPDATE_CHANNEL) |
| rt2500pci_config_channel(rt2x00dev, &libconf->rf, |
| libconf->conf->power_level); |
| if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL)) |
| rt2500pci_config_txpower(rt2x00dev, |
| libconf->conf->power_level); |
| if (flags & CONFIG_UPDATE_ANTENNA) |
| rt2500pci_config_antenna(rt2x00dev, &libconf->ant); |
| if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT)) |
| rt2500pci_config_duration(rt2x00dev, libconf); |
| } |
| |
| /* |
| * LED functions. |
| */ |
| static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, LEDCSR, ®); |
| |
| rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70); |
| rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30); |
| rt2x00_set_field32(®, LEDCSR_LINK, |
| (rt2x00dev->led_mode != LED_MODE_ASUS)); |
| rt2x00_set_field32(®, LEDCSR_ACTIVITY, |
| (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY)); |
| rt2x00pci_register_write(rt2x00dev, LEDCSR, reg); |
| } |
| |
| static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, LEDCSR, ®); |
| rt2x00_set_field32(®, LEDCSR_LINK, 0); |
| rt2x00_set_field32(®, LEDCSR_ACTIVITY, 0); |
| rt2x00pci_register_write(rt2x00dev, LEDCSR, reg); |
| } |
| |
| /* |
| * Link tuning |
| */ |
| static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CNT0, ®); |
| qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); |
| |
| /* |
| * Update False CCA count from register. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CNT3, ®); |
| qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); |
| } |
| |
| static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2500pci_bbp_write(rt2x00dev, 17, 0x48); |
| rt2x00dev->link.vgc_level = 0x48; |
| } |
| |
| static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev) |
| { |
| int rssi = rt2x00_get_link_rssi(&rt2x00dev->link); |
| u8 r17; |
| |
| /* |
| * To prevent collisions with MAC ASIC on chipsets |
| * up to version C the link tuning should halt after 20 |
| * seconds. |
| */ |
| if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D && |
| rt2x00dev->link.count > 20) |
| return; |
| |
| rt2500pci_bbp_read(rt2x00dev, 17, &r17); |
| |
| /* |
| * Chipset versions C and lower should directly continue |
| * to the dynamic CCA tuning. |
| */ |
| if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D) |
| goto dynamic_cca_tune; |
| |
| /* |
| * A too low RSSI will cause too much false CCA which will |
| * then corrupt the R17 tuning. To remidy this the tuning should |
| * be stopped (While making sure the R17 value will not exceed limits) |
| */ |
| if (rssi < -80 && rt2x00dev->link.count > 20) { |
| if (r17 >= 0x41) { |
| r17 = rt2x00dev->link.vgc_level; |
| rt2500pci_bbp_write(rt2x00dev, 17, r17); |
| } |
| return; |
| } |
| |
| /* |
| * Special big-R17 for short distance |
| */ |
| if (rssi >= -58) { |
| if (r17 != 0x50) |
| rt2500pci_bbp_write(rt2x00dev, 17, 0x50); |
| return; |
| } |
| |
| /* |
| * Special mid-R17 for middle distance |
| */ |
| if (rssi >= -74) { |
| if (r17 != 0x41) |
| rt2500pci_bbp_write(rt2x00dev, 17, 0x41); |
| return; |
| } |
| |
| /* |
| * Leave short or middle distance condition, restore r17 |
| * to the dynamic tuning range. |
| */ |
| if (r17 >= 0x41) { |
| rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level); |
| return; |
| } |
| |
| dynamic_cca_tune: |
| |
| /* |
| * R17 is inside the dynamic tuning range, |
| * start tuning the link based on the false cca counter. |
| */ |
| if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) { |
| rt2500pci_bbp_write(rt2x00dev, 17, ++r17); |
| rt2x00dev->link.vgc_level = r17; |
| } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) { |
| rt2500pci_bbp_write(rt2x00dev, 17, --r17); |
| rt2x00dev->link.vgc_level = r17; |
| } |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_ring *ring = rt2x00dev->rx; |
| __le32 *rxd; |
| unsigned int i; |
| u32 word; |
| |
| memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring)); |
| |
| for (i = 0; i < ring->stats.limit; i++) { |
| rxd = ring->entry[i].priv; |
| |
| rt2x00_desc_read(rxd, 1, &word); |
| rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, |
| ring->entry[i].data_dma); |
| rt2x00_desc_write(rxd, 1, word); |
| |
| rt2x00_desc_read(rxd, 0, &word); |
| rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); |
| rt2x00_desc_write(rxd, 0, word); |
| } |
| |
| rt2x00_ring_index_clear(rt2x00dev->rx); |
| } |
| |
| static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue) |
| { |
| struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue); |
| __le32 *txd; |
| unsigned int i; |
| u32 word; |
| |
| memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring)); |
| |
| for (i = 0; i < ring->stats.limit; i++) { |
| txd = ring->entry[i].priv; |
| |
| rt2x00_desc_read(txd, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, |
| ring->entry[i].data_dma); |
| rt2x00_desc_write(txd, 1, word); |
| |
| rt2x00_desc_read(txd, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 0); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); |
| rt2x00_desc_write(txd, 0, word); |
| } |
| |
| rt2x00_ring_index_clear(ring); |
| } |
| |
| static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| /* |
| * Initialize rings. |
| */ |
| rt2500pci_init_rxring(rt2x00dev); |
| rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); |
| rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1); |
| rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON); |
| rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); |
| |
| /* |
| * Initialize registers. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXCSR2, ®); |
| rt2x00_set_field32(®, TXCSR2_TXD_SIZE, |
| rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size); |
| rt2x00_set_field32(®, TXCSR2_NUM_TXD, |
| rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit); |
| rt2x00_set_field32(®, TXCSR2_NUM_ATIM, |
| rt2x00dev->bcn[1].stats.limit); |
| rt2x00_set_field32(®, TXCSR2_NUM_PRIO, |
| rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit); |
| rt2x00pci_register_write(rt2x00dev, TXCSR2, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR3, ®); |
| rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, |
| rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma); |
| rt2x00pci_register_write(rt2x00dev, TXCSR3, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR5, ®); |
| rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, |
| rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma); |
| rt2x00pci_register_write(rt2x00dev, TXCSR5, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR4, ®); |
| rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, |
| rt2x00dev->bcn[1].data_dma); |
| rt2x00pci_register_write(rt2x00dev, TXCSR4, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR6, ®); |
| rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, |
| rt2x00dev->bcn[0].data_dma); |
| rt2x00pci_register_write(rt2x00dev, TXCSR6, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RXCSR1, ®); |
| rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); |
| rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit); |
| rt2x00pci_register_write(rt2x00dev, RXCSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RXCSR2, ®); |
| rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, |
| rt2x00dev->rx->data_dma); |
| rt2x00pci_register_write(rt2x00dev, RXCSR2, reg); |
| |
| return 0; |
| } |
| |
| static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002); |
| rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002); |
| rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002); |
| rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002); |
| |
| rt2x00pci_register_read(rt2x00dev, TIMECSR, ®); |
| rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); |
| rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); |
| rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); |
| rt2x00pci_register_write(rt2x00dev, TIMECSR, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR9, ®); |
| rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, |
| rt2x00dev->rx->data_size / 128); |
| rt2x00pci_register_write(rt2x00dev, CSR9, reg); |
| |
| /* |
| * Always use CWmin and CWmax set in descriptor. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CSR11, ®); |
| rt2x00_set_field32(®, CSR11_CW_SELECT, 0); |
| rt2x00pci_register_write(rt2x00dev, CSR11, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, CNT3, 0); |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR8, ®); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); |
| rt2x00pci_register_write(rt2x00dev, TXCSR8, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); |
| rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); |
| rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); |
| rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RXCSR3, ®); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); |
| rt2x00pci_register_write(rt2x00dev, RXCSR3, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, PCICSR, ®); |
| rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); |
| rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); |
| rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); |
| rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); |
| rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); |
| rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); |
| rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); |
| rt2x00pci_register_write(rt2x00dev, PCICSR, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); |
| |
| rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); |
| rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0); |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| return -EBUSY; |
| |
| rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223); |
| rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518); |
| |
| rt2x00pci_register_read(rt2x00dev, MACCSR2, ®); |
| rt2x00_set_field32(®, MACCSR2_DELAY, 64); |
| rt2x00pci_register_write(rt2x00dev, MACCSR2, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); |
| rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200); |
| |
| rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR1, ®); |
| rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); |
| rt2x00_set_field32(®, CSR1_BBP_RESET, 0); |
| rt2x00_set_field32(®, CSR1_HOST_READY, 0); |
| rt2x00pci_register_write(rt2x00dev, CSR1, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, CSR1, ®); |
| rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); |
| rt2x00_set_field32(®, CSR1_HOST_READY, 1); |
| rt2x00pci_register_write(rt2x00dev, CSR1, reg); |
| |
| /* |
| * We must clear the FCS and FIFO error count. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CNT0, ®); |
| rt2x00pci_register_read(rt2x00dev, CNT4, ®); |
| |
| return 0; |
| } |
| |
| static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2500pci_bbp_read(rt2x00dev, 0, &value); |
| if ((value != 0xff) && (value != 0x00)) |
| goto continue_csr_init; |
| NOTICE(rt2x00dev, "Waiting for BBP register.\n"); |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); |
| return -EACCES; |
| |
| continue_csr_init: |
| rt2500pci_bbp_write(rt2x00dev, 3, 0x02); |
| rt2500pci_bbp_write(rt2x00dev, 4, 0x19); |
| rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); |
| rt2500pci_bbp_write(rt2x00dev, 15, 0x30); |
| rt2500pci_bbp_write(rt2x00dev, 16, 0xac); |
| rt2500pci_bbp_write(rt2x00dev, 18, 0x18); |
| rt2500pci_bbp_write(rt2x00dev, 19, 0xff); |
| rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); |
| rt2500pci_bbp_write(rt2x00dev, 21, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 22, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 23, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 24, 0x70); |
| rt2500pci_bbp_write(rt2x00dev, 25, 0x40); |
| rt2500pci_bbp_write(rt2x00dev, 26, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 27, 0x23); |
| rt2500pci_bbp_write(rt2x00dev, 30, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); |
| rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); |
| rt2500pci_bbp_write(rt2x00dev, 34, 0x12); |
| rt2500pci_bbp_write(rt2x00dev, 35, 0x50); |
| rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); |
| rt2500pci_bbp_write(rt2x00dev, 40, 0x02); |
| rt2500pci_bbp_write(rt2x00dev, 41, 0x60); |
| rt2500pci_bbp_write(rt2x00dev, 53, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 54, 0x18); |
| rt2500pci_bbp_write(rt2x00dev, 56, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 57, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 58, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); |
| rt2500pci_bbp_write(rt2x00dev, 62, 0x10); |
| |
| DEBUG(rt2x00dev, "Start initialization from EEPROM...\n"); |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n", |
| reg_id, value); |
| rt2500pci_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| DEBUG(rt2x00dev, "...End initialization from EEPROM.\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); |
| rt2x00_set_field32(®, RXCSR0_DISABLE_RX, |
| state == STATE_RADIO_RX_OFF); |
| rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); |
| } |
| |
| static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int mask = (state == STATE_RADIO_IRQ_OFF); |
| u32 reg; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00pci_register_read(rt2x00dev, CSR7, ®); |
| rt2x00pci_register_write(rt2x00dev, CSR7, reg); |
| } |
| |
| /* |
| * Only toggle the interrupts bits we are going to use. |
| * Non-checked interrupt bits are disabled by default. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CSR8, ®); |
| rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); |
| rt2x00_set_field32(®, CSR8_RXDONE, mask); |
| rt2x00pci_register_write(rt2x00dev, CSR8, reg); |
| } |
| |
| static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Initialize all registers. |
| */ |
| if (rt2500pci_init_rings(rt2x00dev) || |
| rt2500pci_init_registers(rt2x00dev) || |
| rt2500pci_init_bbp(rt2x00dev)) { |
| ERROR(rt2x00dev, "Register initialization failed.\n"); |
| return -EIO; |
| } |
| |
| /* |
| * Enable interrupts. |
| */ |
| rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON); |
| |
| /* |
| * Enable LED |
| */ |
| rt2500pci_enable_led(rt2x00dev); |
| |
| return 0; |
| } |
| |
| static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| /* |
| * Disable LED |
| */ |
| rt2500pci_disable_led(rt2x00dev); |
| |
| rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0); |
| |
| /* |
| * Disable synchronisation. |
| */ |
| rt2x00pci_register_write(rt2x00dev, CSR14, 0); |
| |
| /* |
| * Cancel RX and TX. |
| */ |
| rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); |
| rt2x00_set_field32(®, TXCSR0_ABORT, 1); |
| rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); |
| |
| /* |
| * Disable interrupts. |
| */ |
| rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF); |
| } |
| |
| static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| unsigned int i; |
| char put_to_sleep; |
| char bbp_state; |
| char rf_state; |
| |
| put_to_sleep = (state != STATE_AWAKE); |
| |
| rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); |
| rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); |
| rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); |
| rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); |
| rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); |
| rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg); |
| |
| /* |
| * Device is not guaranteed to be in the requested state yet. |
| * We must wait until the register indicates that the |
| * device has entered the correct state. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); |
| bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE); |
| rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE); |
| if (bbp_state == state && rf_state == state) |
| return 0; |
| msleep(10); |
| } |
| |
| NOTICE(rt2x00dev, "Device failed to enter state %d, " |
| "current device state: bbp %d and rf %d.\n", |
| state, bbp_state, rf_state); |
| |
| return -EBUSY; |
| } |
| |
| static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| retval = rt2500pci_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| rt2500pci_disable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_RX_ON: |
| case STATE_RADIO_RX_OFF: |
| rt2500pci_toggle_rx(rt2x00dev, state); |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt2500pci_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, |
| __le32 *txd, |
| struct txdata_entry_desc *desc, |
| struct ieee80211_hdr *ieee80211hdr, |
| unsigned int length, |
| struct ieee80211_tx_control *control) |
| { |
| u32 word; |
| |
| /* |
| * Start writing the descriptor words. |
| */ |
| rt2x00_desc_read(txd, 2, &word); |
| rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); |
| rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs); |
| rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min); |
| rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max); |
| rt2x00_desc_write(txd, 2, word); |
| |
| rt2x00_desc_read(txd, 3, &word); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high); |
| rt2x00_desc_write(txd, 3, word); |
| |
| rt2x00_desc_read(txd, 10, &word); |
| rt2x00_set_field32(&word, TXD_W10_RTS, |
| test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags)); |
| rt2x00_desc_write(txd, 10, word); |
| |
| rt2x00_desc_read(txd, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 1); |
| rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_ACK, |
| test_bit(ENTRY_TXD_ACK, &desc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_OFDM, |
| test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); |
| rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs); |
| rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, |
| !!(control->flags & |
| IEEE80211_TXCTL_LONG_RETRY_LIMIT)); |
| rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); |
| rt2x00_desc_write(txd, 0, word); |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, |
| unsigned int queue) |
| { |
| u32 reg; |
| |
| if (queue == IEEE80211_TX_QUEUE_BEACON) { |
| rt2x00pci_register_read(rt2x00dev, CSR14, ®); |
| if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) { |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); |
| rt2x00pci_register_write(rt2x00dev, CSR14, reg); |
| } |
| return; |
| } |
| |
| rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); |
| rt2x00_set_field32(®, TXCSR0_KICK_PRIO, |
| (queue == IEEE80211_TX_QUEUE_DATA0)); |
| rt2x00_set_field32(®, TXCSR0_KICK_TX, |
| (queue == IEEE80211_TX_QUEUE_DATA1)); |
| rt2x00_set_field32(®, TXCSR0_KICK_ATIM, |
| (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)); |
| rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static void rt2500pci_fill_rxdone(struct data_entry *entry, |
| struct rxdata_entry_desc *desc) |
| { |
| __le32 *rxd = entry->priv; |
| u32 word0; |
| u32 word2; |
| |
| rt2x00_desc_read(rxd, 0, &word0); |
| rt2x00_desc_read(rxd, 2, &word2); |
| |
| desc->flags = 0; |
| if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| desc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) |
| desc->flags |= RX_FLAG_FAILED_PLCP_CRC; |
| |
| desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); |
| desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - |
| entry->ring->rt2x00dev->rssi_offset; |
| desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM); |
| desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue) |
| { |
| struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue); |
| struct data_entry *entry; |
| __le32 *txd; |
| u32 word; |
| int tx_status; |
| int retry; |
| |
| while (!rt2x00_ring_empty(ring)) { |
| entry = rt2x00_get_data_entry_done(ring); |
| txd = entry->priv; |
| rt2x00_desc_read(txd, 0, &word); |
| |
| if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| !rt2x00_get_field32(word, TXD_W0_VALID)) |
| break; |
| |
| /* |
| * Obtain the status about this packet. |
| */ |
| tx_status = rt2x00_get_field32(word, TXD_W0_RESULT); |
| retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); |
| |
| rt2x00lib_txdone(entry, tx_status, retry); |
| |
| /* |
| * Make this entry available for reuse. |
| */ |
| entry->flags = 0; |
| rt2x00_set_field32(&word, TXD_W0_VALID, 0); |
| rt2x00_desc_write(txd, 0, word); |
| rt2x00_ring_index_done_inc(ring); |
| } |
| |
| /* |
| * If the data ring was full before the txdone handler |
| * we must make sure the packet queue in the mac80211 stack |
| * is reenabled when the txdone handler has finished. |
| */ |
| entry = ring->entry; |
| if (!rt2x00_ring_full(ring)) |
| ieee80211_wake_queue(rt2x00dev->hw, |
| entry->tx_status.control.queue); |
| } |
| |
| static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg; |
| |
| /* |
| * Get the interrupt sources & saved to local variable. |
| * Write register value back to clear pending interrupts. |
| */ |
| rt2x00pci_register_read(rt2x00dev, CSR7, ®); |
| rt2x00pci_register_write(rt2x00dev, CSR7, reg); |
| |
| if (!reg) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| /* |
| * Handle interrupts, walk through all bits |
| * and run the tasks, the bits are checked in order of |
| * priority. |
| */ |
| |
| /* |
| * 1 - Beacon timer expired interrupt. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) |
| rt2x00lib_beacondone(rt2x00dev); |
| |
| /* |
| * 2 - Rx ring done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_RXDONE)) |
| rt2x00pci_rxdone(rt2x00dev); |
| |
| /* |
| * 3 - Atim ring transmit done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING)) |
| rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON); |
| |
| /* |
| * 4 - Priority ring transmit done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING)) |
| rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); |
| |
| /* |
| * 5 - Tx ring transmit done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) |
| rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| struct eeprom_93cx6 eeprom; |
| u32 reg; |
| u16 word; |
| u8 *mac; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR21, ®); |
| |
| eeprom.data = rt2x00dev; |
| eeprom.register_read = rt2500pci_eepromregister_read; |
| eeprom.register_write = rt2500pci_eepromregister_write; |
| eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? |
| PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; |
| eeprom.reg_data_in = 0; |
| eeprom.reg_data_out = 0; |
| eeprom.reg_data_clock = 0; |
| eeprom.reg_chip_select = 0; |
| |
| eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| EEPROM_SIZE / sizeof(u16)); |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| if (!is_valid_ether_addr(mac)) { |
| DECLARE_MAC_BUF(macbuf); |
| |
| random_ether_addr(mac); |
| EEPROM(rt2x00dev, "MAC: %s\n", |
| print_mac(macbuf, mac)); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, |
| LED_MODE_DEFAULT); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, |
| DEFAULT_RSSI_OFFSET); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); |
| EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); |
| } |
| |
| return 0; |
| } |
| |
| static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| rt2x00pci_register_read(rt2x00dev, CSR0, ®); |
| rt2x00_set_chip(rt2x00dev, RT2560, value, reg); |
| |
| if (!rt2x00_rf(&rt2x00dev->chip, RF2522) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2523) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2524) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2525) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2525E) && |
| !rt2x00_rf(&rt2x00dev->chip, RF5222)) { |
| ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| |
| /* |
| * Store led mode, for correct led behaviour. |
| */ |
| rt2x00dev->led_mode = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| #ifdef CONFIG_RT2500PCI_RFKILL |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) |
| __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); |
| #endif /* CONFIG_RT2500PCI_RFKILL */ |
| |
| /* |
| * Check if the BBP tuning should be enabled. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) |
| __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags); |
| |
| /* |
| * Read the RSSI <-> dBm offset information. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); |
| rt2x00dev->rssi_offset = |
| rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); |
| |
| return 0; |
| } |
| |
| /* |
| * RF value list for RF2522 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2522[] = { |
| { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, |
| { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, |
| { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, |
| { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, |
| { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, |
| { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, |
| { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, |
| { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, |
| { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, |
| { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, |
| { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, |
| { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, |
| { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, |
| { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, |
| }; |
| |
| /* |
| * RF value list for RF2523 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2523[] = { |
| { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, |
| { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, |
| { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, |
| { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, |
| { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, |
| { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, |
| { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, |
| { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, |
| { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, |
| { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, |
| { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, |
| { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, |
| { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, |
| { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2524 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2524[] = { |
| { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, |
| { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, |
| { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, |
| { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, |
| { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, |
| { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, |
| { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, |
| { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, |
| { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, |
| { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, |
| { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, |
| { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, |
| { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, |
| { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525[] = { |
| { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, |
| { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, |
| { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, |
| { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, |
| { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, |
| { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, |
| { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, |
| { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, |
| { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, |
| { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, |
| { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, |
| { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, |
| { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, |
| { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525e |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525e[] = { |
| { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, |
| { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, |
| { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, |
| { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, |
| { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, |
| { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, |
| { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, |
| { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, |
| { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, |
| { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, |
| { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, |
| { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, |
| { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, |
| { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, |
| }; |
| |
| /* |
| * RF value list for RF5222 |
| * Supports: 2.4 GHz & 5.2 GHz |
| */ |
| static const struct rf_channel rf_vals_5222[] = { |
| { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, |
| { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, |
| { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, |
| { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, |
| { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, |
| { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, |
| { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, |
| { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, |
| { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, |
| { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, |
| { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, |
| { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, |
| { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, |
| { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, |
| { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, |
| { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, |
| { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, |
| { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, |
| { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, |
| { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, |
| { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, |
| { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, |
| { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, |
| { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, |
| { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, |
| { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, |
| { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, |
| { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, |
| { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, |
| { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, |
| { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, |
| { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, |
| { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, |
| { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, |
| }; |
| |
| static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| u8 *txpower; |
| unsigned int i; |
| |
| /* |
| * Initialize all hw fields. |
| */ |
| rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; |
| rt2x00dev->hw->extra_tx_headroom = 0; |
| rt2x00dev->hw->max_signal = MAX_SIGNAL; |
| rt2x00dev->hw->max_rssi = MAX_RX_SSI; |
| rt2x00dev->hw->queues = 2; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * Convert tx_power array in eeprom. |
| */ |
| txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); |
| for (i = 0; i < 14; i++) |
| txpower[i] = TXPOWER_FROM_DEV(txpower[i]); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->num_modes = 2; |
| spec->num_rates = 12; |
| spec->tx_power_a = NULL; |
| spec->tx_power_bg = txpower; |
| spec->tx_power_default = DEFAULT_TXPOWER; |
| |
| if (rt2x00_rf(&rt2x00dev->chip, RF2522)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); |
| spec->channels = rf_vals_bg_2522; |
| } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); |
| spec->channels = rf_vals_bg_2523; |
| } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); |
| spec->channels = rf_vals_bg_2524; |
| } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); |
| spec->channels = rf_vals_bg_2525; |
| } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); |
| spec->channels = rf_vals_bg_2525e; |
| } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_5222); |
| spec->channels = rf_vals_5222; |
| spec->num_modes = 3; |
| } |
| } |
| |
| static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt2500pci_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt2500pci_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| rt2500pci_probe_hw_mode(rt2x00dev); |
| |
| /* |
| * This device requires the beacon ring |
| */ |
| __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| static void rt2500pci_configure_filter(struct ieee80211_hw *hw, |
| unsigned int changed_flags, |
| unsigned int *total_flags, |
| int mc_count, |
| struct dev_addr_list *mc_list) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct interface *intf = &rt2x00dev->interface; |
| u32 reg; |
| |
| /* |
| * Mask off any flags we are going to ignore from |
| * the total_flags field. |
| */ |
| *total_flags &= |
| FIF_ALLMULTI | |
| FIF_FCSFAIL | |
| FIF_PLCPFAIL | |
| FIF_CONTROL | |
| FIF_OTHER_BSS | |
| FIF_PROMISC_IN_BSS; |
| |
| /* |
| * Apply some rules to the filters: |
| * - Some filters imply different filters to be set. |
| * - Some things we can't filter out at all. |
| * - Some filters are set based on interface type. |
| */ |
| if (mc_count) |
| *total_flags |= FIF_ALLMULTI; |
| if (*total_flags & FIF_OTHER_BSS || |
| *total_flags & FIF_PROMISC_IN_BSS) |
| *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS; |
| if (is_interface_type(intf, IEEE80211_IF_TYPE_AP)) |
| *total_flags |= FIF_PROMISC_IN_BSS; |
| |
| /* |
| * Check if there is any work left for us. |
| */ |
| if (intf->filter == *total_flags) |
| return; |
| intf->filter = *total_flags; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); |
| rt2x00_set_field32(®, RXCSR0_DROP_CRC, |
| !(*total_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, |
| !(*total_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, |
| !(*total_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, |
| !(*total_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, RXCSR0_DROP_TODS, |
| !(*total_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); |
| rt2x00_set_field32(®, RXCSR0_DROP_MCAST, |
| !(*total_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); |
| rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); |
| } |
| |
| static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw, |
| u32 short_retry, u32 long_retry) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR11, ®); |
| rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry); |
| rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry); |
| rt2x00pci_register_write(rt2x00dev, CSR11, reg); |
| |
| return 0; |
| } |
| |
| static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR17, ®); |
| tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; |
| rt2x00pci_register_read(rt2x00dev, CSR16, ®); |
| tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); |
| |
| return tsf; |
| } |
| |
| static void rt2500pci_reset_tsf(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| |
| rt2x00pci_register_write(rt2x00dev, CSR16, 0); |
| rt2x00pci_register_write(rt2x00dev, CSR17, 0); |
| } |
| |
| static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, CSR15, ®); |
| return rt2x00_get_field32(reg, CSR15_BEACON_SENT); |
| } |
| |
| static const struct ieee80211_ops rt2500pci_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .config_interface = rt2x00mac_config_interface, |
| .configure_filter = rt2500pci_configure_filter, |
| .get_stats = rt2x00mac_get_stats, |
| .set_retry_limit = rt2500pci_set_retry_limit, |
| .erp_ie_changed = rt2x00mac_erp_ie_changed, |
| .conf_tx = rt2x00mac_conf_tx, |
| .get_tx_stats = rt2x00mac_get_tx_stats, |
| .get_tsf = rt2500pci_get_tsf, |
| .reset_tsf = rt2500pci_reset_tsf, |
| .beacon_update = rt2x00pci_beacon_update, |
| .tx_last_beacon = rt2500pci_tx_last_beacon, |
| }; |
| |
| static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { |
| .irq_handler = rt2500pci_interrupt, |
| .probe_hw = rt2500pci_probe_hw, |
| .initialize = rt2x00pci_initialize, |
| .uninitialize = rt2x00pci_uninitialize, |
| .set_device_state = rt2500pci_set_device_state, |
| .rfkill_poll = rt2500pci_rfkill_poll, |
| .link_stats = rt2500pci_link_stats, |
| .reset_tuner = rt2500pci_reset_tuner, |
| .link_tuner = rt2500pci_link_tuner, |
| .write_tx_desc = rt2500pci_write_tx_desc, |
| .write_tx_data = rt2x00pci_write_tx_data, |
| .kick_tx_queue = rt2500pci_kick_tx_queue, |
| .fill_rxdone = rt2500pci_fill_rxdone, |
| .config_mac_addr = rt2500pci_config_mac_addr, |
| .config_bssid = rt2500pci_config_bssid, |
| .config_type = rt2500pci_config_type, |
| .config_preamble = rt2500pci_config_preamble, |
| .config = rt2500pci_config, |
| }; |
| |
| static const struct rt2x00_ops rt2500pci_ops = { |
| .name = DRV_NAME, |
| .rxd_size = RXD_DESC_SIZE, |
| .txd_size = TXD_DESC_SIZE, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .lib = &rt2500pci_rt2x00_ops, |
| .hw = &rt2500pci_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt2500pci_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * RT2500pci module information. |
| */ |
| static struct pci_device_id rt2500pci_device_table[] = { |
| { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); |
| MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); |
| MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); |
| MODULE_LICENSE("GPL"); |
| |
| static struct pci_driver rt2500pci_driver = { |
| .name = DRV_NAME, |
| .id_table = rt2500pci_device_table, |
| .probe = rt2x00pci_probe, |
| .remove = __devexit_p(rt2x00pci_remove), |
| .suspend = rt2x00pci_suspend, |
| .resume = rt2x00pci_resume, |
| }; |
| |
| static int __init rt2500pci_init(void) |
| { |
| return pci_register_driver(&rt2500pci_driver); |
| } |
| |
| static void __exit rt2500pci_exit(void) |
| { |
| pci_unregister_driver(&rt2500pci_driver); |
| } |
| |
| module_init(rt2500pci_init); |
| module_exit(rt2500pci_exit); |