blob: eeeb4c5740bf63f2de34f14af596bf88efd5b145 [file] [log] [blame]
/* bnx2x_main.c: QLogic Everest network driver.
*
* Copyright (c) 2007-2013 Broadcom Corporation
* Copyright (c) 2014 QLogic Corporation
* All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Ariel Elior <ariel.elior@qlogic.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/device.h> /* for dev_info() */
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <linux/time.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crash_dump.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <net/vxlan.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <linux/crc32c.h>
#include <linux/prefetch.h>
#include <linux/zlib.h>
#include <linux/io.h>
#include <linux/semaphore.h>
#include <linux/stringify.h>
#include <linux/vmalloc.h>
#include "bnx2x.h"
#include "bnx2x_init.h"
#include "bnx2x_init_ops.h"
#include "bnx2x_cmn.h"
#include "bnx2x_vfpf.h"
#include "bnx2x_dcb.h"
#include "bnx2x_sp.h"
#include <linux/firmware.h>
#include "bnx2x_fw_file_hdr.h"
/* FW files */
#define FW_FILE_VERSION \
__stringify(BCM_5710_FW_MAJOR_VERSION) "." \
__stringify(BCM_5710_FW_MINOR_VERSION) "." \
__stringify(BCM_5710_FW_REVISION_VERSION) "." \
__stringify(BCM_5710_FW_ENGINEERING_VERSION)
#define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
#define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
#define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
/* Time in jiffies before concluding the transmitter is hung */
#define TX_TIMEOUT (5*HZ)
static char version[] =
"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Eliezer Tamir");
MODULE_DESCRIPTION("QLogic "
"BCM57710/57711/57711E/"
"57712/57712_MF/57800/57800_MF/57810/57810_MF/"
"57840/57840_MF Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_FIRMWARE(FW_FILE_NAME_E1);
MODULE_FIRMWARE(FW_FILE_NAME_E1H);
MODULE_FIRMWARE(FW_FILE_NAME_E2);
int bnx2x_num_queues;
module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
MODULE_PARM_DESC(num_queues,
" Set number of queues (default is as a number of CPUs)");
static int disable_tpa;
module_param(disable_tpa, int, S_IRUGO);
MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
static int int_mode;
module_param(int_mode, int, S_IRUGO);
MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
"(1 INT#x; 2 MSI)");
static int dropless_fc;
module_param(dropless_fc, int, S_IRUGO);
MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
static int mrrs = -1;
module_param(mrrs, int, S_IRUGO);
MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
static int debug;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, " Default debug msglevel");
static struct workqueue_struct *bnx2x_wq;
struct workqueue_struct *bnx2x_iov_wq;
struct bnx2x_mac_vals {
u32 xmac_addr;
u32 xmac_val;
u32 emac_addr;
u32 emac_val;
u32 umac_addr[2];
u32 umac_val[2];
u32 bmac_addr;
u32 bmac_val[2];
};
enum bnx2x_board_type {
BCM57710 = 0,
BCM57711,
BCM57711E,
BCM57712,
BCM57712_MF,
BCM57712_VF,
BCM57800,
BCM57800_MF,
BCM57800_VF,
BCM57810,
BCM57810_MF,
BCM57810_VF,
BCM57840_4_10,
BCM57840_2_20,
BCM57840_MF,
BCM57840_VF,
BCM57811,
BCM57811_MF,
BCM57840_O,
BCM57840_MFO,
BCM57811_VF
};
/* indexed by board_type, above */
static struct {
char *name;
} board_info[] = {
[BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
[BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
[BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
[BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
[BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
[BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
[BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
[BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
[BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
[BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
[BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
[BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
[BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
[BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
[BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
[BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
[BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
[BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
[BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
[BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
[BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
};
#ifndef PCI_DEVICE_ID_NX2_57710
#define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
#endif
#ifndef PCI_DEVICE_ID_NX2_57711
#define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
#endif
#ifndef PCI_DEVICE_ID_NX2_57711E
#define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
#endif
#ifndef PCI_DEVICE_ID_NX2_57712
#define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
#endif
#ifndef PCI_DEVICE_ID_NX2_57712_MF
#define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
#endif
#ifndef PCI_DEVICE_ID_NX2_57712_VF
#define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
#endif
#ifndef PCI_DEVICE_ID_NX2_57800
#define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
#endif
#ifndef PCI_DEVICE_ID_NX2_57800_MF
#define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
#endif
#ifndef PCI_DEVICE_ID_NX2_57800_VF
#define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
#endif
#ifndef PCI_DEVICE_ID_NX2_57810
#define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
#endif
#ifndef PCI_DEVICE_ID_NX2_57810_MF
#define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_O
#define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
#endif
#ifndef PCI_DEVICE_ID_NX2_57810_VF
#define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_4_10
#define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_2_20
#define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_MFO
#define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_MF
#define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
#endif
#ifndef PCI_DEVICE_ID_NX2_57840_VF
#define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
#endif
#ifndef PCI_DEVICE_ID_NX2_57811
#define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
#endif
#ifndef PCI_DEVICE_ID_NX2_57811_MF
#define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
#endif
#ifndef PCI_DEVICE_ID_NX2_57811_VF
#define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
#endif
static const struct pci_device_id bnx2x_pci_tbl[] = {
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
/* Global resources for unloading a previously loaded device */
#define BNX2X_PREV_WAIT_NEEDED 1
static DEFINE_SEMAPHORE(bnx2x_prev_sem);
static LIST_HEAD(bnx2x_prev_list);
/* Forward declaration */
static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
/****************************************************************************
* General service functions
****************************************************************************/
static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
static void __storm_memset_dma_mapping(struct bnx2x *bp,
u32 addr, dma_addr_t mapping)
{
REG_WR(bp, addr, U64_LO(mapping));
REG_WR(bp, addr + 4, U64_HI(mapping));
}
static void storm_memset_spq_addr(struct bnx2x *bp,
dma_addr_t mapping, u16 abs_fid)
{
u32 addr = XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
__storm_memset_dma_mapping(bp, addr, mapping);
}
static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
u16 pf_id)
{
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
}
static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
u8 enable)
{
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
enable);
}
static void storm_memset_eq_data(struct bnx2x *bp,
struct event_ring_data *eq_data,
u16 pfid)
{
size_t size = sizeof(struct event_ring_data);
u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
}
static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
u16 pfid)
{
u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
REG_WR16(bp, addr, eq_prod);
}
/* used only at init
* locking is done by mcp
*/
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
{
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
}
static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
{
u32 val;
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
return val;
}
#define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
#define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
#define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
#define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
#define DMAE_DP_DST_NONE "dst_addr [none]"
static void bnx2x_dp_dmae(struct bnx2x *bp,
struct dmae_command *dmae, int msglvl)
{
u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
int i;
switch (dmae->opcode & DMAE_COMMAND_DST) {
case DMAE_CMD_DST_PCI:
if (src_type == DMAE_CMD_SRC_PCI)
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
"comp_addr [%x:%08x], comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
else
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src [%08x], len [%d*4], dst [%x:%08x]\n"
"comp_addr [%x:%08x], comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_lo >> 2,
dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
break;
case DMAE_CMD_DST_GRC:
if (src_type == DMAE_CMD_SRC_PCI)
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
"comp_addr [%x:%08x], comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
dmae->len, dmae->dst_addr_lo >> 2,
dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
else
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src [%08x], len [%d*4], dst [%08x]\n"
"comp_addr [%x:%08x], comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_lo >> 2,
dmae->len, dmae->dst_addr_lo >> 2,
dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
break;
default:
if (src_type == DMAE_CMD_SRC_PCI)
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
"comp_addr [%x:%08x] comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
else
DP(msglvl, "DMAE: opcode 0x%08x\n"
"src_addr [%08x] len [%d * 4] dst_addr [none]\n"
"comp_addr [%x:%08x] comp_val 0x%08x\n",
dmae->opcode, dmae->src_addr_lo >> 2,
dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
dmae->comp_val);
break;
}
for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
i, *(((u32 *)dmae) + i));
}
/* copy command into DMAE command memory and set DMAE command go */
void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
{
u32 cmd_offset;
int i;
cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
}
REG_WR(bp, dmae_reg_go_c[idx], 1);
}
u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
{
return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
DMAE_CMD_C_ENABLE);
}
u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
{
return opcode & ~DMAE_CMD_SRC_RESET;
}
u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
bool with_comp, u8 comp_type)
{
u32 opcode = 0;
opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
(dst_type << DMAE_COMMAND_DST_SHIFT));
opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
(BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
#ifdef __BIG_ENDIAN
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
#else
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
#endif
if (with_comp)
opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
return opcode;
}
void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
struct dmae_command *dmae,
u8 src_type, u8 dst_type)
{
memset(dmae, 0, sizeof(struct dmae_command));
/* set the opcode */
dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
true, DMAE_COMP_PCI);
/* fill in the completion parameters */
dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
dmae->comp_val = DMAE_COMP_VAL;
}
/* issue a dmae command over the init-channel and wait for completion */
int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
u32 *comp)
{
int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
int rc = 0;
bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
/* Lock the dmae channel. Disable BHs to prevent a dead-lock
* as long as this code is called both from syscall context and
* from ndo_set_rx_mode() flow that may be called from BH.
*/
spin_lock_bh(&bp->dmae_lock);
/* reset completion */
*comp = 0;
/* post the command on the channel used for initializations */
bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
/* wait for completion */
udelay(5);
while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
if (!cnt ||
(bp->recovery_state != BNX2X_RECOVERY_DONE &&
bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
BNX2X_ERR("DMAE timeout!\n");
rc = DMAE_TIMEOUT;
goto unlock;
}
cnt--;
udelay(50);
}
if (*comp & DMAE_PCI_ERR_FLAG) {
BNX2X_ERR("DMAE PCI error!\n");
rc = DMAE_PCI_ERROR;
}
unlock:
spin_unlock_bh(&bp->dmae_lock);
return rc;
}
void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
u32 len32)
{
int rc;
struct dmae_command dmae;
if (!bp->dmae_ready) {
u32 *data = bnx2x_sp(bp, wb_data[0]);
if (CHIP_IS_E1(bp))
bnx2x_init_ind_wr(bp, dst_addr, data, len32);
else
bnx2x_init_str_wr(bp, dst_addr, data, len32);
return;
}
/* set opcode and fixed command fields */
bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
/* fill in addresses and len */
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = dst_addr >> 2;
dmae.dst_addr_hi = 0;
dmae.len = len32;
/* issue the command and wait for completion */
rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
if (rc) {
BNX2X_ERR("DMAE returned failure %d\n", rc);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#endif
}
}
void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
{
int rc;
struct dmae_command dmae;
if (!bp->dmae_ready) {
u32 *data = bnx2x_sp(bp, wb_data[0]);
int i;
if (CHIP_IS_E1(bp))
for (i = 0; i < len32; i++)
data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
else
for (i = 0; i < len32; i++)
data[i] = REG_RD(bp, src_addr + i*4);
return;
}
/* set opcode and fixed command fields */
bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
/* fill in addresses and len */
dmae.src_addr_lo = src_addr >> 2;
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
dmae.len = len32;
/* issue the command and wait for completion */
rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
if (rc) {
BNX2X_ERR("DMAE returned failure %d\n", rc);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#endif
}
}
static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
u32 addr, u32 len)
{
int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
int offset = 0;
while (len > dmae_wr_max) {
bnx2x_write_dmae(bp, phys_addr + offset,
addr + offset, dmae_wr_max);
offset += dmae_wr_max * 4;
len -= dmae_wr_max;
}
bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
}
enum storms {
XSTORM,
TSTORM,
CSTORM,
USTORM,
MAX_STORMS
};
#define STORMS_NUM 4
#define REGS_IN_ENTRY 4
static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
enum storms storm,
int entry)
{
switch (storm) {
case XSTORM:
return XSTORM_ASSERT_LIST_OFFSET(entry);
case TSTORM:
return TSTORM_ASSERT_LIST_OFFSET(entry);
case CSTORM:
return CSTORM_ASSERT_LIST_OFFSET(entry);
case USTORM:
return USTORM_ASSERT_LIST_OFFSET(entry);
case MAX_STORMS:
default:
BNX2X_ERR("unknown storm\n");
}
return -EINVAL;
}
static int bnx2x_mc_assert(struct bnx2x *bp)
{
char last_idx;
int i, j, rc = 0;
enum storms storm;
u32 regs[REGS_IN_ENTRY];
u32 bar_storm_intmem[STORMS_NUM] = {
BAR_XSTRORM_INTMEM,
BAR_TSTRORM_INTMEM,
BAR_CSTRORM_INTMEM,
BAR_USTRORM_INTMEM
};
u32 storm_assert_list_index[STORMS_NUM] = {
XSTORM_ASSERT_LIST_INDEX_OFFSET,
TSTORM_ASSERT_LIST_INDEX_OFFSET,
CSTORM_ASSERT_LIST_INDEX_OFFSET,
USTORM_ASSERT_LIST_INDEX_OFFSET
};
char *storms_string[STORMS_NUM] = {
"XSTORM",
"TSTORM",
"CSTORM",
"USTORM"
};
for (storm = XSTORM; storm < MAX_STORMS; storm++) {
last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
storm_assert_list_index[storm]);
if (last_idx)
BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
storms_string[storm], last_idx);
/* print the asserts */
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
/* read a single assert entry */
for (j = 0; j < REGS_IN_ENTRY; j++)
regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
bnx2x_get_assert_list_entry(bp,
storm,
i) +
sizeof(u32) * j);
/* log entry if it contains a valid assert */
if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
storms_string[storm], i, regs[3],
regs[2], regs[1], regs[0]);
rc++;
} else {
break;
}
}
}
BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
CHIP_IS_E1(bp) ? "everest1" :
CHIP_IS_E1H(bp) ? "everest1h" :
CHIP_IS_E2(bp) ? "everest2" : "everest3",
BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION);
return rc;
}
#define MCPR_TRACE_BUFFER_SIZE (0x800)
#define SCRATCH_BUFFER_SIZE(bp) \
(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
{
u32 addr, val;
u32 mark, offset;
__be32 data[9];
int word;
u32 trace_shmem_base;
if (BP_NOMCP(bp)) {
BNX2X_ERR("NO MCP - can not dump\n");
return;
}
netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
(bp->common.bc_ver & 0xff0000) >> 16,
(bp->common.bc_ver & 0xff00) >> 8,
(bp->common.bc_ver & 0xff));
if (pci_channel_offline(bp->pdev)) {
BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
return;
}
val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
if (BP_PATH(bp) == 0)
trace_shmem_base = bp->common.shmem_base;
else
trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
/* sanity */
if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
SCRATCH_BUFFER_SIZE(bp)) {
BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
trace_shmem_base);
return;
}
addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
/* validate TRCB signature */
mark = REG_RD(bp, addr);
if (mark != MFW_TRACE_SIGNATURE) {
BNX2X_ERR("Trace buffer signature is missing.");
return ;
}
/* read cyclic buffer pointer */
addr += 4;
mark = REG_RD(bp, addr);
mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
if (mark >= trace_shmem_base || mark < addr + 4) {
BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
return;
}
printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
printk("%s", lvl);
/* dump buffer after the mark */
for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(bp, offset + 4*word));
data[8] = 0x0;
pr_cont("%s", (char *)data);
}
/* dump buffer before the mark */
for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(bp, offset + 4*word));
data[8] = 0x0;
pr_cont("%s", (char *)data);
}
printk("%s" "end of fw dump\n", lvl);
}
static void bnx2x_fw_dump(struct bnx2x *bp)
{
bnx2x_fw_dump_lvl(bp, KERN_ERR);
}
static void bnx2x_hc_int_disable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
u32 val = REG_RD(bp, addr);
/* in E1 we must use only PCI configuration space to disable
* MSI/MSIX capability
* It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
*/
if (CHIP_IS_E1(bp)) {
/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
* Use mask register to prevent from HC sending interrupts
* after we exit the function
*/
REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
DP(NETIF_MSG_IFDOWN,
"write %x to HC %d (addr 0x%x)\n",
val, port, addr);
/* flush all outstanding writes */
mmiowb();
REG_WR(bp, addr, val);
if (REG_RD(bp, addr) != val)
BNX2X_ERR("BUG! Proper val not read from IGU!\n");
}
static void bnx2x_igu_int_disable(struct bnx2x *bp)
{
u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN);
DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
/* flush all outstanding writes */
mmiowb();
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
BNX2X_ERR("BUG! Proper val not read from IGU!\n");
}
static void bnx2x_int_disable(struct bnx2x *bp)
{
if (bp->common.int_block == INT_BLOCK_HC)
bnx2x_hc_int_disable(bp);
else
bnx2x_igu_int_disable(bp);
}
void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
{
int i;
u16 j;
struct hc_sp_status_block_data sp_sb_data;
int func = BP_FUNC(bp);
#ifdef BNX2X_STOP_ON_ERROR
u16 start = 0, end = 0;
u8 cos;
#endif
if (IS_PF(bp) && disable_int)
bnx2x_int_disable(bp);
bp->stats_state = STATS_STATE_DISABLED;
bp->eth_stats.unrecoverable_error++;
DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
BNX2X_ERR("begin crash dump -----------------\n");
/* Indices */
/* Common */
if (IS_PF(bp)) {
struct host_sp_status_block *def_sb = bp->def_status_blk;
int data_size, cstorm_offset;
BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
bp->def_idx, bp->def_att_idx, bp->attn_state,
bp->spq_prod_idx, bp->stats_counter);
BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
def_sb->atten_status_block.attn_bits,
def_sb->atten_status_block.attn_bits_ack,
def_sb->atten_status_block.status_block_id,
def_sb->atten_status_block.attn_bits_index);
BNX2X_ERR(" def (");
for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
pr_cont("0x%x%s",
def_sb->sp_sb.index_values[i],
(i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
data_size = sizeof(struct hc_sp_status_block_data) /
sizeof(u32);
cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
for (i = 0; i < data_size; i++)
*((u32 *)&sp_sb_data + i) =
REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
i * sizeof(u32));
pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
sp_sb_data.igu_sb_id,
sp_sb_data.igu_seg_id,
sp_sb_data.p_func.pf_id,
sp_sb_data.p_func.vnic_id,
sp_sb_data.p_func.vf_id,
sp_sb_data.p_func.vf_valid,
sp_sb_data.state);
}
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
int loop;
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
struct hc_status_block_sm *hc_sm_p =
CHIP_IS_E1x(bp) ?
sb_data_e1x.common.state_machine :
sb_data_e2.common.state_machine;
struct hc_index_data *hc_index_p =
CHIP_IS_E1x(bp) ?
sb_data_e1x.index_data :
sb_data_e2.index_data;
u8 data_size, cos;
u32 *sb_data_p;
struct bnx2x_fp_txdata txdata;
if (!bp->fp)
break;
if (!fp->rx_cons_sb)
continue;
/* Rx */
BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
i, fp->rx_bd_prod, fp->rx_bd_cons,
fp->rx_comp_prod,
fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
fp->rx_sge_prod, fp->last_max_sge,
le16_to_cpu(fp->fp_hc_idx));
/* Tx */
for_each_cos_in_tx_queue(fp, cos)
{
if (!fp->txdata_ptr[cos])
break;
txdata = *fp->txdata_ptr[cos];
if (!txdata.tx_cons_sb)
continue;
BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
i, txdata.tx_pkt_prod,
txdata.tx_pkt_cons, txdata.tx_bd_prod,
txdata.tx_bd_cons,
le16_to_cpu(*txdata.tx_cons_sb));
}
loop = CHIP_IS_E1x(bp) ?
HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
/* host sb data */
if (IS_FCOE_FP(fp))
continue;
BNX2X_ERR(" run indexes (");
for (j = 0; j < HC_SB_MAX_SM; j++)
pr_cont("0x%x%s",
fp->sb_running_index[j],
(j == HC_SB_MAX_SM - 1) ? ")" : " ");
BNX2X_ERR(" indexes (");
for (j = 0; j < loop; j++)
pr_cont("0x%x%s",
fp->sb_index_values[j],
(j == loop - 1) ? ")" : " ");
/* VF cannot access FW refelection for status block */
if (IS_VF(bp))
continue;
/* fw sb data */
data_size = CHIP_IS_E1x(bp) ?
sizeof(struct hc_status_block_data_e1x) :
sizeof(struct hc_status_block_data_e2);
data_size /= sizeof(u32);
sb_data_p = CHIP_IS_E1x(bp) ?
(u32 *)&sb_data_e1x :
(u32 *)&sb_data_e2;
/* copy sb data in here */
for (j = 0; j < data_size; j++)
*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
j * sizeof(u32));
if (!CHIP_IS_E1x(bp)) {
pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
sb_data_e2.common.p_func.pf_id,
sb_data_e2.common.p_func.vf_id,
sb_data_e2.common.p_func.vf_valid,
sb_data_e2.common.p_func.vnic_id,
sb_data_e2.common.same_igu_sb_1b,
sb_data_e2.common.state);
} else {
pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
sb_data_e1x.common.p_func.pf_id,
sb_data_e1x.common.p_func.vf_id,
sb_data_e1x.common.p_func.vf_valid,
sb_data_e1x.common.p_func.vnic_id,
sb_data_e1x.common.same_igu_sb_1b,
sb_data_e1x.common.state);
}
/* SB_SMs data */
for (j = 0; j < HC_SB_MAX_SM; j++) {
pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
j, hc_sm_p[j].__flags,
hc_sm_p[j].igu_sb_id,
hc_sm_p[j].igu_seg_id,
hc_sm_p[j].time_to_expire,
hc_sm_p[j].timer_value);
}
/* Indices data */
for (j = 0; j < loop; j++) {
pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
hc_index_p[j].flags,
hc_index_p[j].timeout);
}
}
#ifdef BNX2X_STOP_ON_ERROR
if (IS_PF(bp)) {
/* event queue */
BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
for (i = 0; i < NUM_EQ_DESC; i++) {
u32 *data = (u32 *)&bp->eq_ring[i].message.data;
BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
i, bp->eq_ring[i].message.opcode,
bp->eq_ring[i].message.error);
BNX2X_ERR("data: %x %x %x\n",
data[0], data[1], data[2]);
}
}
/* Rings */
/* Rx */
for_each_valid_rx_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
if (!bp->fp)
break;
if (!fp->rx_cons_sb)
continue;
start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
for (j = start; j != end; j = RX_BD(j + 1)) {
u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
i, j, rx_bd[1], rx_bd[0], sw_bd->data);
}
start = RX_SGE(fp->rx_sge_prod);
end = RX_SGE(fp->last_max_sge);
for (j = start; j != end; j = RX_SGE(j + 1)) {
u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
i, j, rx_sge[1], rx_sge[0], sw_page->page);
}
start = RCQ_BD(fp->rx_comp_cons - 10);
end = RCQ_BD(fp->rx_comp_cons + 503);
for (j = start; j != end; j = RCQ_BD(j + 1)) {
u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
}
}
/* Tx */
for_each_valid_tx_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
if (!bp->fp)
break;
for_each_cos_in_tx_queue(fp, cos) {
struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
if (!fp->txdata_ptr[cos])
break;
if (!txdata->tx_cons_sb)
continue;
start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
for (j = start; j != end; j = TX_BD(j + 1)) {
struct sw_tx_bd *sw_bd =
&txdata->tx_buf_ring[j];
BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
i, cos, j, sw_bd->skb,
sw_bd->first_bd);
}
start = TX_BD(txdata->tx_bd_cons - 10);
end = TX_BD(txdata->tx_bd_cons + 254);
for (j = start; j != end; j = TX_BD(j + 1)) {
u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
i, cos, j, tx_bd[0], tx_bd[1],
tx_bd[2], tx_bd[3]);
}
}
}
#endif
if (IS_PF(bp)) {
bnx2x_fw_dump(bp);
bnx2x_mc_assert(bp);
}
BNX2X_ERR("end crash dump -----------------\n");
}
/*
* FLR Support for E2
*
* bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
* initialization.
*/
#define FLR_WAIT_USEC 10000 /* 10 milliseconds */
#define FLR_WAIT_INTERVAL 50 /* usec */
#define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
struct pbf_pN_buf_regs {
int pN;
u32 init_crd;
u32 crd;
u32 crd_freed;
};
struct pbf_pN_cmd_regs {
int pN;
u32 lines_occup;
u32 lines_freed;
};
static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
struct pbf_pN_buf_regs *regs,
u32 poll_count)
{
u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
u32 cur_cnt = poll_count;
crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
crd = crd_start = REG_RD(bp, regs->crd);
init_crd = REG_RD(bp, regs->init_crd);
DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
(init_crd - crd_start))) {
if (cur_cnt--) {
udelay(FLR_WAIT_INTERVAL);
crd = REG_RD(bp, regs->crd);
crd_freed = REG_RD(bp, regs->crd_freed);
} else {
DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
regs->pN);
DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
regs->pN, crd);
DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
regs->pN, crd_freed);
break;
}
}
DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
struct pbf_pN_cmd_regs *regs,
u32 poll_count)
{
u32 occup, to_free, freed, freed_start;
u32 cur_cnt = poll_count;
occup = to_free = REG_RD(bp, regs->lines_occup);
freed = freed_start = REG_RD(bp, regs->lines_freed);
DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
if (cur_cnt--) {
udelay(FLR_WAIT_INTERVAL);
occup = REG_RD(bp, regs->lines_occup);
freed = REG_RD(bp, regs->lines_freed);
} else {
DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
regs->pN);
DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
regs->pN, occup);
DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
regs->pN, freed);
break;
}
}
DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
u32 expected, u32 poll_count)
{
u32 cur_cnt = poll_count;
u32 val;
while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
udelay(FLR_WAIT_INTERVAL);
return val;
}
int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
char *msg, u32 poll_cnt)
{
u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
if (val != 0) {
BNX2X_ERR("%s usage count=%d\n", msg, val);
return 1;
}
return 0;
}
/* Common routines with VF FLR cleanup */
u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
{
/* adjust polling timeout */
if (CHIP_REV_IS_EMUL(bp))
return FLR_POLL_CNT * 2000;
if (CHIP_REV_IS_FPGA(bp))
return FLR_POLL_CNT * 120;
return FLR_POLL_CNT;
}
void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
{
struct pbf_pN_cmd_regs cmd_regs[] = {
{0, (CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_OCCUPANCY_Q0 :
PBF_REG_P0_TQ_OCCUPANCY,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q0 :
PBF_REG_P0_TQ_LINES_FREED_CNT},
{1, (CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_OCCUPANCY_Q1 :
PBF_REG_P1_TQ_OCCUPANCY,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q1 :
PBF_REG_P1_TQ_LINES_FREED_CNT},
{4, (CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_OCCUPANCY_LB_Q :
PBF_REG_P4_TQ_OCCUPANCY,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
PBF_REG_P4_TQ_LINES_FREED_CNT}
};
struct pbf_pN_buf_regs buf_regs[] = {
{0, (CHIP_IS_E3B0(bp)) ?
PBF_REG_INIT_CRD_Q0 :
PBF_REG_P0_INIT_CRD ,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_CREDIT_Q0 :
PBF_REG_P0_CREDIT,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
{1, (CHIP_IS_E3B0(bp)) ?
PBF_REG_INIT_CRD_Q1 :
PBF_REG_P1_INIT_CRD,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_CREDIT_Q1 :
PBF_REG_P1_CREDIT,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
{4, (CHIP_IS_E3B0(bp)) ?
PBF_REG_INIT_CRD_LB_Q :
PBF_REG_P4_INIT_CRD,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_CREDIT_LB_Q :
PBF_REG_P4_CREDIT,
(CHIP_IS_E3B0(bp)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
};
int i;
/* Verify the command queues are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
/* Verify the transmission buffers are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
}
#define OP_GEN_PARAM(param) \
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
#define OP_GEN_TYPE(type) \
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
#define OP_GEN_AGG_VECT(index) \
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
{
u32 op_gen_command = 0;
u32 comp_addr = BAR_CSTRORM_INTMEM +
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
int ret = 0;
if (REG_RD(bp, comp_addr)) {
BNX2X_ERR("Cleanup complete was not 0 before sending\n");
return 1;
}
op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
BNX2X_ERR("FW final cleanup did not succeed\n");
DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
(REG_RD(bp, comp_addr)));
bnx2x_panic();
return 1;
}
/* Zero completion for next FLR */
REG_WR(bp, comp_addr, 0);
return ret;
}
u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
{
u16 status;
pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
return status & PCI_EXP_DEVSTA_TRPND;
}
/* PF FLR specific routines
*/
static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
{
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
if (bnx2x_flr_clnup_poll_hw_counter(bp,
CFC_REG_NUM_LCIDS_INSIDE_PF,
"CFC PF usage counter timed out",
poll_cnt))
return 1;
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(bp,
DORQ_REG_PF_USAGE_CNT,
"DQ PF usage counter timed out",
poll_cnt))
return 1;
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(bp,
QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
"QM PF usage counter timed out",
poll_cnt))
return 1;
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(bp,
TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
"Timers VNIC usage counter timed out",
poll_cnt))
return 1;
if (bnx2x_flr_clnup_poll_hw_counter(bp,
TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
"Timers NUM_SCANS usage counter timed out",
poll_cnt))
return 1;
/* Wait DMAE PF usage counter to zero */
if (bnx2x_flr_clnup_poll_hw_counter(bp,
dmae_reg_go_c[INIT_DMAE_C(bp)],
"DMAE command register timed out",
poll_cnt))
return 1;
return 0;
}
static void bnx2x_hw_enable_status(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
val = REG_RD(bp, PBF_REG_DISABLE_PF);
DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
val);
}
static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
{
u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
/* Re-enable PF target read access */
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
/* Poll HW usage counters */
DP(BNX2X_MSG_SP, "Polling usage counters\n");
if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
return -EBUSY;
/* Zero the igu 'trailing edge' and 'leading edge' */
/* Send the FW cleanup command */
if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
return -EBUSY;
/* ATC cleanup */
/* Verify TX hw is flushed */
bnx2x_tx_hw_flushed(bp, poll_cnt);
/* Wait 100ms (not adjusted according to platform) */
msleep(100);
/* Verify no pending pci transactions */
if (bnx2x_is_pcie_pending(bp->pdev))
BNX2X_ERR("PCIE Transactions still pending\n");
/* Debug */
bnx2x_hw_enable_status(bp);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function init
*/
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
return 0;
}
static void bnx2x_hc_int_enable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
u32 val = REG_RD(bp, addr);
bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
if (msix) {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (single_msix)
val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
} else if (msi) {
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (!CHIP_IS_E1(bp)) {
DP(NETIF_MSG_IFUP,
"write %x to HC %d (addr 0x%x)\n", val, port, addr);
REG_WR(bp, addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
}
if (CHIP_IS_E1(bp))
REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
DP(NETIF_MSG_IFUP,
"write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
(msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
REG_WR(bp, addr, val);
/*
* Ensure that HC_CONFIG is written before leading/trailing edge config
*/
mmiowb();
barrier();
if (!CHIP_IS_E1(bp)) {
/* init leading/trailing edge */
if (IS_MF(bp)) {
val = (0xee0f | (1 << (BP_VN(bp) + 4)));
if (bp->port.pmf)
/* enable nig and gpio3 attention */
val |= 0x1100;
} else
val = 0xffff;
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
}
/* Make sure that interrupts are indeed enabled from here on */
mmiowb();
}
static void bnx2x_igu_int_enable(struct bnx2x *bp)
{
u32 val;
bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
if (msix) {
val &= ~(IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN);
if (single_msix)
val |= IGU_PF_CONF_SINGLE_ISR_EN;
} else if (msi) {
val &= ~IGU_PF_CONF_INT_LINE_EN;
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
} else {
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
val |= (IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
}
/* Clean previous status - need to configure igu prior to ack*/
if ((!msix) || single_msix) {
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
bnx2x_ack_int(bp);
}
val |= IGU_PF_CONF_FUNC_EN;
DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
if (val & IGU_PF_CONF_INT_LINE_EN)
pci_intx(bp->pdev, true);
barrier();
/* init leading/trailing edge */
if (IS_MF(bp)) {
val = (0xee0f | (1 << (BP_VN(bp) + 4)));
if (bp->port.pmf)
/* enable nig and gpio3 attention */
val |= 0x1100;
} else
val = 0xffff;
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
/* Make sure that interrupts are indeed enabled from here on */
mmiowb();
}
void bnx2x_int_enable(struct bnx2x *bp)
{
if (bp->common.int_block == INT_BLOCK_HC)
bnx2x_hc_int_enable(bp);
else
bnx2x_igu_int_enable(bp);
}
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
{
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
int i, offset;
if (disable_hw)
/* prevent the HW from sending interrupts */
bnx2x_int_disable(bp);
/* make sure all ISRs are done */
if (msix) {
synchronize_irq(bp->msix_table[0].vector);
offset = 1;
if (CNIC_SUPPORT(bp))
offset++;
for_each_eth_queue(bp, i)
synchronize_irq(bp->msix_table[offset++].vector);
} else
synchronize_irq(bp->pdev->irq);
/* make sure sp_task is not running */
cancel_delayed_work(&bp->sp_task);
cancel_delayed_work(&bp->period_task);
flush_workqueue(bnx2x_wq);
}
/* fast path */
/*
* General service functions
*/
/* Return true if succeeded to acquire the lock */
static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
"Trying to take a lock on resource %d\n", resource);
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return false;
}
if (func <= 5)
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
else
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
/* Try to acquire the lock */
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit)
return true;
DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
"Failed to get a lock on resource %d\n", resource);
return false;
}
/**
* bnx2x_get_leader_lock_resource - get the recovery leader resource id
*
* @bp: driver handle
*
* Returns the recovery leader resource id according to the engine this function
* belongs to. Currently only only 2 engines is supported.
*/
static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
{
if (BP_PATH(bp))
return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
else
return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
}
/**
* bnx2x_trylock_leader_lock- try to acquire a leader lock.
*
* @bp: driver handle
*
* Tries to acquire a leader lock for current engine.
*/
static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
{
return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
}
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
static int bnx2x_schedule_sp_task(struct bnx2x *bp)
{
/* Set the interrupt occurred bit for the sp-task to recognize it
* must ack the interrupt and transition according to the IGU
* state machine.
*/
atomic_set(&bp->interrupt_occurred, 1);
/* The sp_task must execute only after this bit
* is set, otherwise we will get out of sync and miss all
* further interrupts. Hence, the barrier.
*/
smp_wmb();
/* schedule sp_task to workqueue */
return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
}
void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
{
struct bnx2x *bp = fp->bp;
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
DP(BNX2X_MSG_SP,
"fp %d cid %d got ramrod #%d state is %x type is %d\n",
fp->index, cid, command, bp->state,
rr_cqe->ramrod_cqe.ramrod_type);
/* If cid is within VF range, replace the slowpath object with the
* one corresponding to this VF
*/
if (cid >= BNX2X_FIRST_VF_CID &&
cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
switch (command) {
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
drv_cmd = BNX2X_Q_CMD_UPDATE;
break;
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
drv_cmd = BNX2X_Q_CMD_SETUP;
break;
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
break;
case (RAMROD_CMD_ID_ETH_HALT):
DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
drv_cmd = BNX2X_Q_CMD_HALT;
break;
case (RAMROD_CMD_ID_ETH_TERMINATE):
DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
drv_cmd = BNX2X_Q_CMD_TERMINATE;
break;
case (RAMROD_CMD_ID_ETH_EMPTY):
DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
drv_cmd = BNX2X_Q_CMD_EMPTY;
break;
case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
break;
default:
BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
command, fp->index);
return;
}
if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
q_obj->complete_cmd(bp, q_obj, drv_cmd))
/* q_obj->complete_cmd() failure means that this was
* an unexpected completion.
*
* In this case we don't want to increase the bp->spq_left
* because apparently we haven't sent this command the first
* place.
*/
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#else
return;
#endif
smp_mb__before_atomic();
atomic_inc(&bp->cq_spq_left);
/* push the change in bp->spq_left and towards the memory */
smp_mb__after_atomic();
DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
(!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
/* if Q update ramrod is completed for last Q in AFEX vif set
* flow, then ACK MCP at the end
*
* mark pending ACK to MCP bit.
* prevent case that both bits are cleared.
* At the end of load/unload driver checks that
* sp_state is cleared, and this order prevents
* races
*/
smp_mb__before_atomic();
set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
wmb();
clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
smp_mb__after_atomic();
/* schedule the sp task as mcp ack is required */
bnx2x_schedule_sp_task(bp);
}
return;
}
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
{
struct bnx2x *bp = netdev_priv(dev_instance);
u16 status = bnx2x_ack_int(bp);
u16 mask;
int i;
u8 cos;
/* Return here if interrupt is shared and it's not for us */
if (unlikely(status == 0)) {
DP(NETIF_MSG_INTR, "not our interrupt!\n");
return IRQ_NONE;
}
DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return IRQ_HANDLED;
#endif
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
if (status & mask) {
/* Handle Rx or Tx according to SB id */
for_each_cos_in_tx_queue(fp, cos)
prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
prefetch(&fp->sb_running_index[SM_RX_ID]);
napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
status &= ~mask;
}
}
if (CNIC_SUPPORT(bp)) {
mask = 0x2;
if (status & (mask | 0x1)) {
struct cnic_ops *c_ops = NULL;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops && (bp->cnic_eth_dev.drv_state &
CNIC_DRV_STATE_HANDLES_IRQ))
c_ops->cnic_handler(bp->cnic_data, NULL);
rcu_read_unlock();
status &= ~mask;
}
}
if (unlikely(status & 0x1)) {
/* schedule sp task to perform default status block work, ack
* attentions and enable interrupts.
*/
bnx2x_schedule_sp_task(bp);
status &= ~0x1;
if (!status)
return IRQ_HANDLED;
}
if (unlikely(status))
DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
status);
return IRQ_HANDLED;
}
/* Link */
/*
* General service functions
*/
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
int cnt;
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return -EINVAL;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* Validating that the resource is not already taken */
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit) {
BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
lock_status, resource_bit);
return -EEXIST;
}
/* Try for 5 second every 5ms */
for (cnt = 0; cnt < 1000; cnt++) {
/* Try to acquire the lock */
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit)
return 0;
usleep_range(5000, 10000);
}
BNX2X_ERR("Timeout\n");
return -EAGAIN;
}
int bnx2x_release_leader_lock(struct bnx2x *bp)
{
return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
}
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return -EINVAL;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* Validating that the resource is currently taken */
lock_status = REG_RD(bp, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
lock_status, resource_bit);
return -EFAULT;
}
REG_WR(bp, hw_lock_control_reg, resource_bit);
return 0;
}
int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
int value;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
/* read GPIO value */
gpio_reg = REG_RD(bp, MISC_REG_GPIO);
/* get the requested pin value */
if ((gpio_reg & gpio_mask) == gpio_mask)
value = 1;
else
value = 0;
return value;
}
int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
DP(NETIF_MSG_LINK,
"Set GPIO %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear FLOAT and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
DP(NETIF_MSG_LINK,
"Set GPIO %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear FLOAT and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
DP(NETIF_MSG_LINK,
"Set GPIO %d (shift %d) -> input\n",
gpio_num, gpio_shift);
/* set FLOAT */
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_GPIO, gpio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
return 0;
}
int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
{
u32 gpio_reg = 0;
int rc = 0;
/* Any port swapping should be handled by caller. */
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = REG_RD(bp, MISC_REG_GPIO);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
/* set CLR */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
/* set SET */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
/* set FLOAT */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
rc = -EINVAL;
break;
}
if (rc == 0)
REG_WR(bp, MISC_REG_GPIO, gpio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
return rc;
}
int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
DP(NETIF_MSG_LINK,
"Clear GPIO INT %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
DP(NETIF_MSG_LINK,
"Set GPIO INT %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
return 0;
}
static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
{
u32 spio_reg;
/* Only 2 SPIOs are configurable */
if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
/* read SPIO and mask except the float bits */
spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
switch (mode) {
case MISC_SPIO_OUTPUT_LOW:
DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
/* clear FLOAT and set CLR */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_CLR_POS);
break;
case MISC_SPIO_OUTPUT_HIGH:
DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
/* clear FLOAT and set SET */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_SET_POS);
break;
case MISC_SPIO_INPUT_HI_Z:
DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
/* set FLOAT */
spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_SPIO, spio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
return 0;
}
void bnx2x_calc_fc_adv(struct bnx2x *bp)
{
u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
switch (bp->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
break;
default:
break;
}
}
static void bnx2x_set_requested_fc(struct bnx2x *bp)
{
/* Initialize link parameters structure variables
* It is recommended to turn off RX FC for jumbo frames
* for better performance
*/
if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
else
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
}
static void bnx2x_init_dropless_fc(struct bnx2x *bp)
{
u32 pause_enabled = 0;
if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
pause_enabled = 1;
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
pause_enabled);
}
DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
pause_enabled ? "enabled" : "disabled");
}
int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
{
int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
if (!BP_NOMCP(bp)) {
bnx2x_set_requested_fc(bp);
bnx2x_acquire_phy_lock(bp);
if (load_mode == LOAD_DIAG) {
struct link_params *lp = &bp->link_params;
lp->loopback_mode = LOOPBACK_XGXS;
/* Prefer doing PHY loopback at highest speed */
if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
if (lp->speed_cap_mask[cfx_idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
lp->req_line_speed[cfx_idx] =
SPEED_20000;
else if (lp->speed_cap_mask[cfx_idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
lp->req_line_speed[cfx_idx] =
SPEED_10000;
else
lp->req_line_speed[cfx_idx] =
SPEED_1000;
}
}
if (load_mode == LOAD_LOOPBACK_EXT) {
struct link_params *lp = &bp->link_params;
lp->loopback_mode = LOOPBACK_EXT;
}
rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_init_dropless_fc(bp);
bnx2x_calc_fc_adv(bp);
if (bp->link_vars.link_up) {
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
bnx2x_link_report(bp);
}
queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
return rc;
}
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
return -EINVAL;
}
void bnx2x_link_set(struct bnx2x *bp)
{
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_init_dropless_fc(bp);
bnx2x_calc_fc_adv(bp);
} else
BNX2X_ERR("Bootcode is missing - can not set link\n");
}
static void bnx2x__link_reset(struct bnx2x *bp)
{
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
bnx2x_release_phy_lock(bp);
} else
BNX2X_ERR("Bootcode is missing - can not reset link\n");
}
void bnx2x_force_link_reset(struct bnx2x *bp)
{
bnx2x_acquire_phy_lock(bp);
bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
bnx2x_release_phy_lock(bp);
}
u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
{
u8 rc = 0;
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
is_serdes);
bnx2x_release_phy_lock(bp);
} else
BNX2X_ERR("Bootcode is missing - can not test link\n");
return rc;
}
/* Calculates the sum of vn_min_rates.
It's needed for further normalizing of the min_rates.
Returns:
sum of vn_min_rates.
or
0 - if all the min_rates are 0.
In the later case fairness algorithm should be deactivated.
If not all min_rates are zero then those that are zeroes will be set to 1.
*/
static void bnx2x_calc_vn_min(struct bnx2x *bp,
struct cmng_init_input *input)
{
int all_zero = 1;
int vn;
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
u32 vn_cfg = bp->mf_config[vn];
u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
/* Skip hidden vns */
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
vn_min_rate = 0;
/* If min rate is zero - set it to 1 */
else if (!vn_min_rate)
vn_min_rate = DEF_MIN_RATE;
else
all_zero = 0;
input->vnic_min_rate[vn] = vn_min_rate;
}
/* if ETS or all min rates are zeros - disable fairness */
if (BNX2X_IS_ETS_ENABLED(bp)) {
input->flags.cmng_enables &=
~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
} else if (all_zero) {
input->flags.cmng_enables &=
~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
DP(NETIF_MSG_IFUP,
"All MIN values are zeroes fairness will be disabled\n");
} else
input->flags.cmng_enables |=
CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
}
static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
struct cmng_init_input *input)
{
u16 vn_max_rate;
u32 vn_cfg = bp->mf_config[vn];
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
vn_max_rate = 0;
else {
u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
if (IS_MF_PERCENT_BW(bp)) {
/* maxCfg in percents of linkspeed */
vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
} else /* SD modes */
/* maxCfg is absolute in 100Mb units */
vn_max_rate = maxCfg * 100;
}
DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
input->vnic_max_rate[vn] = vn_max_rate;
}
static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
{
if (CHIP_REV_IS_SLOW(bp))
return CMNG_FNS_NONE;
if (IS_MF(bp))
return CMNG_FNS_MINMAX;
return CMNG_FNS_NONE;
}
void bnx2x_read_mf_cfg(struct bnx2x *bp)
{
int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
if (BP_NOMCP(bp))
return; /* what should be the default value in this case */
/* For 2 port configuration the absolute function number formula
* is:
* abs_func = 2 * vn + BP_PORT + BP_PATH
*
* and there are 4 functions per port
*
* For 4 port configuration it is
* abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
*
* and there are 2 functions per port
*/
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
if (func >= E1H_FUNC_MAX)
break;
bp->mf_config[vn] =
MF_CFG_RD(bp, func_mf_config[func].config);
}
if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
bp->flags |= MF_FUNC_DIS;
} else {
DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
bp->flags &= ~MF_FUNC_DIS;
}
}
static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
{
struct cmng_init_input input;
memset(&input, 0, sizeof(struct cmng_init_input));
input.port_rate = bp->link_vars.line_speed;
if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
int vn;
/* read mf conf from shmem */
if (read_cfg)
bnx2x_read_mf_cfg(bp);
/* vn_weight_sum and enable fairness if not 0 */
bnx2x_calc_vn_min(bp, &input);
/* calculate and set min-max rate for each vn */
if (bp->port.pmf)
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
bnx2x_calc_vn_max(bp, vn, &input);
/* always enable rate shaping and fairness */
input.flags.cmng_enables |=
CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
bnx2x_init_cmng(&input, &bp->cmng);
return;
}
/* rate shaping and fairness are disabled */
DP(NETIF_MSG_IFUP,
"rate shaping and fairness are disabled\n");
}
static void storm_memset_cmng(struct bnx2x *bp,
struct cmng_init *cmng,
u8 port)
{
int vn;
size_t size = sizeof(struct cmng_struct_per_port);
u32 addr = BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
int func = func_by_vn(bp, vn);
addr = BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
size = sizeof(struct rate_shaping_vars_per_vn);
__storm_memset_struct(bp, addr, size,
(u32 *)&cmng->vnic.vnic_max_rate[vn]);
addr = BAR_XSTRORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
size = sizeof(struct fairness_vars_per_vn);
__storm_memset_struct(bp, addr, size,
(u32 *)&cmng->vnic.vnic_min_rate[vn]);
}
}
/* init cmng mode in HW according to local configuration */
void bnx2x_set_local_cmng(struct bnx2x *bp)
{
int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
if (cmng_fns != CMNG_FNS_NONE) {
bnx2x_cmng_fns_init(bp, false, cmng_fns);
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
} else {
/* rate shaping and fairness are disabled */
DP(NETIF_MSG_IFUP,
"single function mode without fairness\n");
}
}
/* This function is called upon link interrupt */
static void bnx2x_link_attn(struct bnx2x *bp)
{
/* Make sure that we are synced with the current statistics */
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_update(&bp->link_params, &bp->link_vars);
bnx2x_init_dropless_fc(bp);
if (bp->link_vars.link_up) {
if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
struct host_port_stats *pstats;
pstats = bnx2x_sp(bp, port_stats);
/* reset old mac stats */
memset(&(pstats->mac_stx[0]), 0,
sizeof(struct mac_stx));
}
if (bp->state == BNX2X_STATE_OPEN)
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
}
if (bp->link_vars.link_up && bp->link_vars.line_speed)
bnx2x_set_local_cmng(bp);
__bnx2x_link_report(bp);
if (IS_MF(bp))
bnx2x_link_sync_notify(bp);
}
void bnx2x__link_status_update(struct bnx2x *bp)
{
if (bp->state != BNX2X_STATE_OPEN)
return;
/* read updated dcb configuration */
if (IS_PF(bp)) {
bnx2x_dcbx_pmf_update(bp);
bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
if (bp->link_vars.link_up)
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
else
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
/* indicate link status */
bnx2x_link_report(bp);
} else { /* VF */
bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_2500baseX_Full |
SUPPORTED_10000baseT_Full |
SUPPORTED_TP |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
bp->port.advertising[0] = bp->port.supported[0];
bp->link_params.bp = bp;
bp->link_params.port = BP_PORT(bp);
bp->link_params.req_duplex[0] = DUPLEX_FULL;
bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
bp->link_params.req_line_speed[0] = SPEED_10000;
bp->link_params.speed_cap_mask[0] = 0x7f0000;
bp->link_params.switch_cfg = SWITCH_CFG_10G;
bp->link_vars.mac_type = MAC_TYPE_BMAC;
bp->link_vars.line_speed = SPEED_10000;
bp->link_vars.link_status =
(LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
bp->link_vars.link_up = 1;
bp->link_vars.duplex = DUPLEX_FULL;
bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
__bnx2x_link_report(bp);
bnx2x_sample_bulletin(bp);
/* if bulletin board did not have an update for link status
* __bnx2x_link_report will report current status
* but it will NOT duplicate report in case of already reported
* during sampling bulletin board.
*/
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
}
}
static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
u16 vlan_val, u8 allowed_prio)
{
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_afex_update_params *f_update_params =
&func_params.params.afex_update;
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
/* no need to wait for RAMROD completion, so don't
* set RAMROD_COMP_WAIT flag
*/
f_update_params->vif_id = vifid;
f_update_params->afex_default_vlan = vlan_val;
f_update_params->allowed_priorities = allowed_prio;
/* if ramrod can not be sent, response to MCP immediately */
if (bnx2x_func_state_change(bp, &func_params) < 0)
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
return 0;
}
static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
u16 vif_index, u8 func_bit_map)
{
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_afex_viflists_params *update_params =
&func_params.params.afex_viflists;
int rc;
u32 drv_msg_code;
/* validate only LIST_SET and LIST_GET are received from switch */
if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
cmd_type);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
/* set parameters according to cmd_type */
update_params->afex_vif_list_command = cmd_type;
update_params->vif_list_index = vif_index;
update_params->func_bit_map =
(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
update_params->func_to_clear = 0;
drv_msg_code =
(cmd_type == VIF_LIST_RULE_GET) ?
DRV_MSG_CODE_AFEX_LISTGET_ACK :
DRV_MSG_CODE_AFEX_LISTSET_ACK;
/* if ramrod can not be sent, respond to MCP immediately for
* SET and GET requests (other are not triggered from MCP)
*/
rc = bnx2x_func_state_change(bp, &func_params);
if (rc < 0)
bnx2x_fw_command(bp, drv_msg_code, 0);
return 0;
}
static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
{
struct afex_stats afex_stats;
u32 func = BP_ABS_FUNC(bp);
u32 mf_config;
u16 vlan_val;
u32 vlan_prio;
u16 vif_id;
u8 allowed_prio;
u8 vlan_mode;
u32 addr_to_write, vifid, addrs, stats_type, i;
if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
DP(BNX2X_MSG_MCP,
"afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
}
if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
DP(BNX2X_MSG_MCP,
"afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
vifid, addrs);
bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
addrs);
}
if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
addr_to_write = SHMEM2_RD(bp,
afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
stats_type = SHMEM2_RD(bp,
afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
DP(BNX2X_MSG_MCP,
"afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
addr_to_write);
bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
/* write response to scratchpad, for MCP */
for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
REG_WR(bp, addr_to_write + i*sizeof(u32),
*(((u32 *)(&afex_stats))+i));
/* send ack message to MCP */
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
}
if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
bp->mf_config[BP_VN(bp)] = mf_config;
DP(BNX2X_MSG_MCP,
"afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
mf_config);
/* if VIF_SET is "enabled" */
if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
/* set rate limit directly to internal RAM */
struct cmng_init_input cmng_input;
struct rate_shaping_vars_per_vn m_rs_vn;
size_t size = sizeof(struct rate_shaping_vars_per_vn);
u32 addr = BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
bp->mf_config[BP_VN(bp)] = mf_config;
bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
m_rs_vn.vn_counter.rate =
cmng_input.vnic_max_rate[BP_VN(bp)];
m_rs_vn.vn_counter.quota =
(m_rs_vn.vn_counter.rate *
RS_PERIODIC_TIMEOUT_USEC) / 8;
__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
/* read relevant values from mf_cfg struct in shmem */
vif_id =
(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK) >>
FUNC_MF_CFG_E1HOV_TAG_SHIFT;
vlan_val =
(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
FUNC_MF_CFG_AFEX_VLAN_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_SHIFT;
vlan_prio = (mf_config &
FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
vlan_mode =
(MF_CFG_RD(bp,
func_mf_config[func].afex_config) &
FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
allowed_prio =
(MF_CFG_RD(bp,
func_mf_config[func].afex_config) &
FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
/* send ramrod to FW, return in case of failure */
if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
allowed_prio))
return;
bp->afex_def_vlan_tag = vlan_val;
bp->afex_vlan_mode = vlan_mode;
} else {
/* notify link down because BP->flags is disabled */
bnx2x_link_report(bp);
/* send INVALID VIF ramrod to FW */
bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
/* Reset the default afex VLAN */
bp->afex_def_vlan_tag = -1;
}
}
}
static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
{
struct bnx2x_func_switch_update_params *switch_update_params;
struct bnx2x_func_state_params func_params;
memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
switch_update_params = &func_params.params.switch_update;
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
int func = BP_ABS_FUNC(bp);
u32 val;
/* Re-learn the S-tag from shmem */
val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK;
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
bp->mf_ov = val;
} else {
BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
goto fail;
}
/* Configure new S-tag in LLH */
REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
bp->mf_ov);
/* Send Ramrod to update FW of change */
__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
&switch_update_params->changes);
switch_update_params->vlan = bp->mf_ov;
if (bnx2x_func_state_change(bp, &func_params) < 0) {
BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
bp->mf_ov);
goto fail;
} else {
DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
bp->mf_ov);
}
} else {
goto fail;
}
bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
return;
fail:
bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
}
static void bnx2x_pmf_update(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 val;
bp->port.pmf = 1;
DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
/*
* We need the mb() to ensure the ordering between the writing to
* bp->port.pmf here and reading it from the bnx2x_periodic_task().
*/
smp_mb();
/* queue a periodic task */
queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
bnx2x_dcbx_pmf_update(bp);
/* enable nig attention */
val = (0xff0f | (1 << (BP_VN(bp) + 4)));
if (bp->common.int_block == INT_BLOCK_HC) {
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
} else if (!CHIP_IS_E1x(bp)) {
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
}
bnx2x_stats_handle(bp, STATS_EVENT_PMF);
}
/* end of Link */
/* slow path */
/*
* General service functions
*/
/* send the MCP a request, block until there is a reply */
u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
{
int mb_idx = BP_FW_MB_IDX(bp);
u32 seq;
u32 rc = 0;
u32 cnt = 1;
u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
mutex_lock(&bp->fw_mb_mutex);
seq = ++bp->fw_seq;
SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
(command | seq), param);
do {
/* let the FW do it's magic ... */
msleep(delay);
rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
/* Give the FW up to 5 second (500*10ms) */
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
cnt*delay, rc, seq);
/* is this a reply to our command? */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
rc &= FW_MSG_CODE_MASK;
else {
/* FW BUG! */
BNX2X_ERR("FW failed to respond!\n");
bnx2x_fw_dump(bp);
rc = 0;
}
mutex_unlock(&bp->fw_mb_mutex);
return rc;
}
static void storm_memset_func_cfg(struct bnx2x *bp,
struct tstorm_eth_function_common_config *tcfg,
u16 abs_fid)
{
size_t size = sizeof(struct tstorm_eth_function_common_config);
u32 addr = BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
}
void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
{
if (CHIP_IS_E1x(bp)) {
struct tstorm_eth_function_common_config tcfg = {0};
storm_memset_func_cfg(bp, &tcfg, p->func_id);
}
/* Enable the function in the FW */
storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
storm_memset_func_en(bp, p->func_id, 1);
/* spq */
if (p->spq_active) {
storm_memset_spq_addr(bp, p->spq_map, p->func_id);
REG_WR(bp, XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
}
}
/**
* bnx2x_get_common_flags - Return common flags
*
* @bp device handle
* @fp queue handle
* @zero_stats TRUE if statistics zeroing is needed
*
* Return the flags that are common for the Tx-only and not normal connections.
*/
static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
struct bnx2x_fastpath *fp,
bool zero_stats)
{
unsigned long flags = 0;
/* PF driver will always initialize the Queue to an ACTIVE state */
__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
/* tx only connections collect statistics (on the same index as the
* parent connection). The statistics are zeroed when the parent
* connection is initialized.
*/
__set_bit(BNX2X_Q_FLG_STATS, &flags);
if (zero_stats)
__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
if (bp->flags & TX_SWITCHING)
__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
#ifdef BNX2X_STOP_ON_ERROR
__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
#endif
return flags;
}
static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
struct bnx2x_fastpath *fp,
bool leading)
{
unsigned long flags = 0;
/* calculate other queue flags */
if (IS_MF_SD(bp))
__set_bit(BNX2X_Q_FLG_OV, &flags);
if (IS_FCOE_FP(fp)) {
__set_bit(BNX2X_Q_FLG_FCOE, &flags);
/* For FCoE - force usage of default priority (for afex) */
__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
}
if (fp->mode != TPA_MODE_DISABLED) {
__set_bit(BNX2X_Q_FLG_TPA, &flags);
__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
if (fp->mode == TPA_MODE_GRO)
__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
}
if (leading) {
__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
__set_bit(BNX2X_Q_FLG_MCAST, &flags);
}
/* Always set HW VLAN stripping */
__set_bit(BNX2X_Q_FLG_VLAN, &flags);
/* configure silent vlan removal */
if (IS_MF_AFEX(bp))
__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
return flags | bnx2x_get_common_flags(bp, fp, true);
}
static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
u8 cos)
{
gen_init->stat_id = bnx2x_stats_id(fp);
gen_init->spcl_id = fp->cl_id;
/* Always use mini-jumbo MTU for FCoE L2 ring */
if (IS_FCOE_FP(fp))
gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
else
gen_init->mtu = bp->dev->mtu;
gen_init->cos = cos;
gen_init->fp_hsi = ETH_FP_HSI_VERSION;
}
static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
struct bnx2x_rxq_setup_params *rxq_init)
{
u8 max_sge = 0;
u16 sge_sz = 0;
u16 tpa_agg_size = 0;
if (fp->mode != TPA_MODE_DISABLED) {
pause->sge_th_lo = SGE_TH_LO(bp);
pause->sge_th_hi = SGE_TH_HI(bp);
/* validate SGE ring has enough to cross high threshold */
WARN_ON(bp->dropless_fc &&
pause->sge_th_hi + FW_PREFETCH_CNT >
MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
tpa_agg_size = TPA_AGG_SIZE;
max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
SGE_PAGE_SHIFT;
max_sge = ((max_sge + PAGES_PER_SGE - 1) &
(~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
}
/* pause - not for e1 */
if (!CHIP_IS_E1(bp)) {
pause->bd_th_lo = BD_TH_LO(bp);
pause->bd_th_hi = BD_TH_HI(bp);
pause->rcq_th_lo = RCQ_TH_LO(bp);
pause->rcq_th_hi = RCQ_TH_HI(bp);
/*
* validate that rings have enough entries to cross
* high thresholds
*/
WARN_ON(bp->dropless_fc &&
pause->bd_th_hi + FW_PREFETCH_CNT >
bp->rx_ring_size);
WARN_ON(bp->dropless_fc &&
pause->rcq_th_hi + FW_PREFETCH_CNT >
NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
pause->pri_map = 1;
}
/* rxq setup */
rxq_init->dscr_map = fp->rx_desc_mapping;
rxq_init->sge_map = fp->rx_sge_mapping;
rxq_init->rcq_map = fp->rx_comp_mapping;
rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
/* This should be a maximum number of data bytes that may be
* placed on the BD (not including paddings).
*/
rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
rxq_init->cl_qzone_id = fp->cl_qzone_id;
rxq_init->tpa_agg_sz = tpa_agg_size;
rxq_init->sge_buf_sz = sge_sz;
rxq_init->max_sges_pkt = max_sge;
rxq_init->rss_engine_id = BP_FUNC(bp);
rxq_init->mcast_engine_id = BP_FUNC(bp);
/* Maximum number or simultaneous TPA aggregation for this Queue.
*
* For PF Clients it should be the maximum available number.
* VF driver(s) may want to define it to a smaller value.
*/
rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
rxq_init->fw_sb_id = fp->fw_sb_id;
if (IS_FCOE_FP(fp))
rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
else
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
/* configure silent vlan removal
* if multi function mode is afex, then mask default vlan
*/
if (IS_MF_AFEX(bp)) {
rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
rxq_init->silent_removal_mask = VLAN_VID_MASK;
}
}
static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
u8 cos)
{
txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
txq_init->fw_sb_id = fp->fw_sb_id;
/*
* set the tss leading client id for TX classification ==
* leading RSS client id
*/
txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
if (IS_FCOE_FP(fp)) {
txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
}
}
static void bnx2x_pf_init(struct bnx2x *bp)
{
struct bnx2x_func_init_params func_init = {0};
struct event_ring_data eq_data = { {0} };
if (!CHIP_IS_E1x(bp)) {
/* reset IGU PF statistics: MSIX + ATTN */
/* PF */
REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
BNX2X_IGU_STAS_MSG_VF_CNT*4 +
(CHIP_MODE_IS_4_PORT(bp) ?
BP_FUNC(bp) : BP_VN(bp))*4, 0);
/* ATTN */
REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
BNX2X_IGU_STAS_MSG_VF_CNT*4 +
BNX2X_IGU_STAS_MSG_PF_CNT*4 +
(CHIP_MODE_IS_4_PORT(bp) ?
BP_FUNC(bp) : BP_VN(bp))*4, 0);
}
func_init.spq_active = true;
func_init.pf_id = BP_FUNC(bp);
func_init.func_id = BP_FUNC(bp);
func_init.spq_map = bp->spq_mapping;
func_init.spq_prod = bp->spq_prod_idx;
bnx2x_func_init(bp, &func_init);
memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
/*
* Congestion management values depend on the link rate
* There is no active link so initial link rate is set to 10 Gbps.
* When the link comes up The congestion management values are
* re-calculated according to the actual link rate.
*/
bp->link_vars.line_speed = SPEED_10000;
bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
/* Only the PMF sets the HW */
if (bp->port.pmf)
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
/* init Event Queue - PCI bus guarantees correct endianity*/
eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
eq_data.producer = bp->eq_prod;
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
eq_data.sb_id = DEF_SB_ID;
storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
}
static void bnx2x_e1h_disable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
bnx2x_tx_disable(bp);
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
}
static void bnx2x_e1h_enable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
/* Tx queue should be only re-enabled */
netif_tx_wake_all_queues(bp->dev);
/*
* Should not call netif_carrier_on since it will be called if the link
* is up when checking for link state
*/
}
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
{
struct eth_stats_info *ether_stat =
&bp->slowpath->drv_info_to_mcp.ether_stat;
struct bnx2x_vlan_mac_obj *mac_obj =
&bp->sp_objs->mac_obj;
int i;
strlcpy(ether_stat->version, DRV_MODULE_VERSION,
ETH_STAT_INFO_VERSION_LEN);
/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
* mac_local field in ether_stat struct. The base address is offset by 2
* bytes to account for the field being 8 bytes but a mac address is
* only 6 bytes. Likewise, the stride for the get_n_elements function is
* 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
* allocated by the ether_stat struct, so the macs will land in their
* proper positions.
*/
for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
memset(ether_stat->mac_local + i, 0,
sizeof(ether_stat->mac_local[0]));
mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
ether_stat->mac_local + MAC_PAD, MAC_PAD,
ETH_ALEN);
ether_stat->mtu_size = bp->dev->mtu;
if (bp->dev->features & NETIF_F_RXCSUM)
ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
if (bp->dev->features & NETIF_F_TSO)
ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
ether_stat->feature_flags |= bp->common.boot_mode;
ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
ether_stat->txq_size = bp->tx_ring_size;
ether_stat->rxq_size = bp->rx_ring_size;
#ifdef CONFIG_BNX2X_SRIOV
ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
#endif
}
static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
{
struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
struct fcoe_stats_info *fcoe_stat =
&bp->slowpath->drv_info_to_mcp.fcoe_stat;
if (!CNIC_LOADED(bp))
return;
memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
fcoe_stat->qos_priority =
app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
/* insert FCoE stats from ramrod response */
if (!NO_FCOE(bp)) {
struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
tstorm_queue_statistics;
struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
xstorm_queue_statistics;
struct fcoe_statistics_params *fw_fcoe_stat =
&bp->fw_stats_data->fcoe;
ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
fcoe_stat->rx_bytes_lo,
fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
ADD_64_LE(fcoe_stat->rx_bytes_hi,
fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
fcoe_stat->rx_bytes_lo,
fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
ADD_64_LE(fcoe_stat->rx_bytes_hi,
fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
fcoe_stat->rx_bytes_lo,
fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
ADD_64_LE(fcoe_stat->rx_bytes_hi,
fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
fcoe_stat->rx_bytes_lo,
fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
fcoe_stat->rx_frames_lo,
fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
fcoe_stat->rx_frames_lo,
fcoe_q_tstorm_stats->rcv_ucast_pkts);
ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
fcoe_stat->rx_frames_lo,
fcoe_q_tstorm_stats->rcv_bcast_pkts);
ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
fcoe_stat->rx_frames_lo,
fcoe_q_tstorm_stats->rcv_mcast_pkts);
ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
fcoe_stat->tx_bytes_lo,
fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
ADD_64_LE(fcoe_stat->tx_bytes_hi,
fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
fcoe_stat->tx_bytes_lo,
fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
ADD_64_LE(fcoe_stat->tx_bytes_hi,
fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
fcoe_stat->tx_bytes_lo,
fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
ADD_64_LE(fcoe_stat->tx_bytes_hi,
fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
fcoe_stat->tx_bytes_lo,
fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
fcoe_stat->tx_frames_lo,
fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
fcoe_stat->tx_frames_lo,
fcoe_q_xstorm_stats->ucast_pkts_sent);
ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
fcoe_stat->tx_frames_lo,
fcoe_q_xstorm_stats->bcast_pkts_sent);
ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
fcoe_stat->tx_frames_lo,
fcoe_q_xstorm_stats->mcast_pkts_sent);
}
/* ask L5 driver to add data to the struct */
bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
}
static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
{
struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
struct iscsi_stats_info *iscsi_stat =
&bp->slowpath->drv_info_to_mcp.iscsi_stat;
if (!CNIC_LOADED(bp))
return;
memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
ETH_ALEN);
iscsi_stat->qos_priority =
app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
/* ask L5 driver to add data to the struct */
bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
}
/* called due to MCP event (on pmf):
* reread new bandwidth configuration
* configure FW
* notify others function about the change
*/
static void bnx2x_config_mf_bw(struct bnx2x *bp)
{
if (bp->link_vars.link_up) {
bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
bnx2x_link_sync_notify(bp);
}
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
}
static void bnx2x_set_mf_bw(struct bnx2x *bp)
{
bnx2x_config_mf_bw(bp);
bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
}
static void bnx2x_handle_eee_event(struct bnx2x *bp)
{
DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
}
#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
#define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
{
enum drv_info_opcode op_code;
u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
bool release = false;
int wait;
/* if drv_info version supported by MFW doesn't match - send NACK */
if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
DRV_INFO_CONTROL_OP_CODE_SHIFT;
/* Must prevent other flows from accessing drv_info_to_mcp */
mutex_lock(&bp->drv_info_mutex);
memset(&bp->slowpath->drv_info_to_mcp, 0,
sizeof(union drv_info_to_mcp));
switch (op_code) {
case ETH_STATS_OPCODE:
bnx2x_drv_info_ether_stat(bp);
break;
case FCOE_STATS_OPCODE:
bnx2x_drv_info_fcoe_stat(bp);
break;
case ISCSI_STATS_OPCODE:
bnx2x_drv_info_iscsi_stat(bp);
break;
default:
/* if op code isn't supported - send NACK */
bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
goto out;
}
/* if we got drv_info attn from MFW then these fields are defined in
* shmem2 for sure
*/
SHMEM2_WR(bp, drv_info_host_addr_lo,
U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
SHMEM2_WR(bp, drv_info_host_addr_hi,
U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
/* Since possible management wants both this and get_driver_version
* need to wait until management notifies us it finished utilizing
* the buffer.
*/
if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
DP(BNX2X_MSG_MCP, "Management does not support indication\n");
} else if (!bp->drv_info_mng_owner) {
u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
/* Management is done; need to clear indication */
if (indication & bit) {
SHMEM2_WR(bp, mfw_drv_indication,
indication & ~bit);
release = true;
break;
}
msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
}
}
if (!release) {
DP(BNX2X_MSG_MCP, "Management did not release indication\n");
bp->drv_info_mng_owner = true;
}
out:
mutex_unlock(&bp->drv_info_mutex);
}
static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
{
u8 vals[4];
int i = 0;
if (bnx2x_format) {
i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
&vals[0], &vals[1], &vals[2], &vals[3]);
if (i > 0)
vals[0] -= '0';
} else {
i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
&vals[0], &vals[1], &vals[2], &vals[3]);
}
while (i < 4)
vals[i++] = 0;
return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
}
void bnx2x_update_mng_version(struct bnx2x *bp)
{
u32 iscsiver = DRV_VER_NOT_LOADED;
u32 fcoever = DRV_VER_NOT_LOADED;
u32 ethver = DRV_VER_NOT_LOADED;
int idx = BP_FW_MB_IDX(bp);
u8 *version;
if (!SHMEM2_HAS(bp, func_os_drv_ver))
return;
mutex_lock(&bp->drv_info_mutex);
/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
if (bp->drv_info_mng_owner)
goto out;
if (bp->state != BNX2X_STATE_OPEN)
goto out;
/* Parse ethernet driver version */
ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
if (!CNIC_LOADED(bp))
goto out;
/* Try getting storage driver version via cnic */
memset(&bp->slowpath->drv_info_to_mcp, 0,
sizeof(union drv_info_to_mcp));
bnx2x_drv_info_iscsi_stat(bp);
version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
iscsiver = bnx2x_update_mng_version_utility(version, false);
memset(&bp->slowpath->drv_info_to_mcp, 0,
sizeof(union drv_info_to_mcp));
bnx2x_drv_info_fcoe_stat(bp);
version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
fcoever = bnx2x_update_mng_version_utility(version, false);
out:
SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
mutex_unlock(&bp->drv_info_mutex);
DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
ethver, iscsiver, fcoever);
}
void bnx2x_update_mfw_dump(struct bnx2x *bp)
{
u32 drv_ver;
u32 valid_dump;
if (!SHMEM2_HAS(bp, drv_info))
return;
/* Update Driver load time, possibly broken in y2038 */
SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
/* Check & notify On-Chip dump. */
valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
if (valid_dump & FIRST_DUMP_VALID)
DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
if (valid_dump & SECOND_DUMP_VALID)
DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
}
static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
{
u32 cmd_ok, cmd_fail;
/* sanity */
if (event & DRV_STATUS_DCC_EVENT_MASK &&
event & DRV_STATUS_OEM_EVENT_MASK) {
BNX2X_ERR("Received simultaneous events %08x\n", event);
return;
}
if (event & DRV_STATUS_DCC_EVENT_MASK) {
cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
cmd_ok = DRV_MSG_CODE_DCC_OK;
} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
cmd_ok = DRV_MSG_CODE_OEM_OK;
}
DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
/* This is the only place besides the function initialization
* where the bp->flags can change so it is done without any
* locks
*/
if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
bp->flags |= MF_FUNC_DIS;
bnx2x_e1h_disable(bp);
} else {
DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
bp->flags &= ~MF_FUNC_DIS;
bnx2x_e1h_enable(bp);
}
event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
DRV_STATUS_OEM_DISABLE_ENABLE_PF);
}
if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
bnx2x_config_mf_bw(bp);
event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
}
/* Report results to MCP */
if (event)
bnx2x_fw_command(bp, cmd_fail, 0);
else
bnx2x_fw_command(bp, cmd_ok, 0);
}
/* must be called under the spq lock */
static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
{
struct eth_spe *next_spe = bp->spq_prod_bd;
if (bp->spq_prod_bd == bp->spq_last_bd) {
bp->spq_prod_bd = bp->spq;
bp->spq_prod_idx = 0;
DP(BNX2X_MSG_SP, "end of spq\n");
} else {
bp->spq_prod_bd++;
bp->spq_prod_idx++;
}
return next_spe;
}
/* must be called under the spq lock */
static void bnx2x_sp_prod_update(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
/*
* Make sure that BD data is updated before writing the producer:
* BD data is written to the memory, the producer is read from the
* memory, thus we need a full memory barrier to ensure the ordering.
*/
mb();
REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
bp->spq_prod_idx);
mmiowb();
}
/**
* bnx2x_is_contextless_ramrod - check if the current command ends on EQ
*
* @cmd: command to check
* @cmd_type: command type
*/
static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
{
if ((cmd_type == NONE_CONNECTION_TYPE) ||
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
return true;
else
return false;
}
/**
* bnx2x_sp_post - place a single command on an SP ring
*
* @bp: driver handle
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
* @cid: SW CID the command is related to
* @data_hi: command private data address (high 32 bits)
* @data_lo: command private data address (low 32 bits)
* @cmd_type: command type (e.g. NONE, ETH)
*
* SP data is handled as if it's always an address pair, thus data fields are
* not swapped to little endian in upper functions. Instead this function swaps
* data as if it's two u32 fields.
*/
int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
u32 data_hi, u32 data_lo, int cmd_type)
{
struct eth_spe *spe;
u16 type;
bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic)) {
BNX2X_ERR("Can't post SP when there is panic\n");
return -EIO;
}
#endif
spin_lock_bh(&bp->spq_lock);
if (common) {
if (!atomic_read(&bp->eq_spq_left)) {
BNX2X_ERR("BUG! EQ ring full!\n");
spin_unlock_bh(&bp->spq_lock);
bnx2x_panic();
return -EBUSY;
}
} else if (!atomic_read(&bp->cq_spq_left)) {
BNX2X_ERR("BUG! SPQ ring full!\n");
spin_unlock_bh(&bp->spq_lock);
bnx2x_panic();
return -EBUSY;
}
spe = bnx2x_sp_get_next(bp);
/* CID needs port number to be encoded int it */
spe->hdr.conn_and_cmd_data =
cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
HW_CID(bp, cid));
/* In some cases, type may already contain the func-id
* mainly in SRIOV related use cases, so we add it here only
* if it's not already set.
*/
if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
SPE_HDR_CONN_TYPE;
type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
SPE_HDR_FUNCTION_ID);
} else {
type = cmd_type;
}
spe->hdr.type = cpu_to_le16(type);
spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
/*
* It's ok if the actual decrement is issued towards the memory
* somewhere between the spin_lock and spin_unlock. Thus no
* more explicit memory barrier is needed.
*/
if (common)
atomic_dec(&bp->eq_spq_left);
else
atomic_dec(&bp->cq_spq_left);
DP(BNX2X_MSG_SP,
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
(u32)(U64_LO(bp->spq_mapping) +
(void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
HW_CID(bp, cid), data_hi, data_lo, type,
atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
bnx2x_sp_prod_update(bp);
spin_unlock_bh(&bp->spq_lock);
return 0;
}
/* acquire split MCP access lock register */
static int bnx2x_acquire_alr(struct bnx2x *bp)
{
u32 j, val;
int rc = 0;
might_sleep();
for (j = 0; j < 1000; j++) {
REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
if (val & MCPR_ACCESS_LOCK_LOCK)
break;
usleep_range(5000, 10000);
}
if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
BNX2X_ERR("Cannot acquire MCP access lock register\n");
rc = -EBUSY;
}
return rc;
}
/* release split MCP access lock register */
static void bnx2x_release_alr(struct bnx2x *bp)
{
REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
}
#define BNX2X_DEF_SB_ATT_IDX 0x0001
#define BNX2X_DEF_SB_IDX 0x0002
static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
{
struct host_sp_status_block *def_sb = bp->def_status_blk;
u16 rc = 0;
barrier(); /* status block is written to by the chip */
if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
rc |= BNX2X_DEF_SB_ATT_IDX;
}
if (bp->def_idx != def_sb->sp_sb.running_index) {
bp->def_idx = def_sb->sp_sb.running_index;
rc |= BNX2X_DEF_SB_IDX;
}
/* Do not reorder: indices reading should complete before handling */
barrier();
return rc;
}
/*
* slow path service functions
*/
static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
{
int port = BP_PORT(bp);
u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
u32 aeu_mask;
u32 nig_mask = 0;
u32 reg_addr;
if (bp->attn_state & asserted)
BNX2X_ERR("IGU ERROR\n");
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(bp, aeu_addr);
DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
aeu_mask, asserted);
aeu_mask &= ~(asserted & 0x3ff);
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
REG_WR(bp, aeu_addr, aeu_mask);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
bp->attn_state |= asserted;
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
bnx2x_acquire_phy_lock(bp);
/* save nig interrupt mask */
nig_mask = REG_RD(bp, nig_int_mask_addr);
/* If nig_mask is not set, no need to call the update
* function.
*/
if (nig_mask) {
REG_WR(bp, nig_int_mask_addr, 0);
bnx2x_link_attn(bp);
}
/* handle unicore attn? */
}
if (asserted & ATTN_SW_TIMER_4_FUNC)
DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
if (asserted & GPIO_2_FUNC)
DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
if (asserted & GPIO_3_FUNC)
DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
if (asserted & GPIO_4_FUNC)
DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
} /* if hardwired */
if (bp->common.int_block == INT_BLOCK_HC)
reg_addr = (HC_REG_COMMAND_REG + port*32 +
COMMAND_REG_ATTN_BITS_SET);
else
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
(bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(bp, reg_addr, asserted);
/* now set back the mask */
if (asserted & ATTN_NIG_FOR_FUNC) {
/* Verify that IGU ack through BAR was written before restoring
* NIG mask. This loop should exit after 2-3 iterations max.
*/
if (bp->common.int_block != INT_BLOCK_HC) {
u32 cnt = 0, igu_acked;
do {
igu_acked = REG_RD(bp,
IGU_REG_ATTENTION_ACK_BITS);
} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
(++cnt < MAX_IGU_ATTN_ACK_TO));
if (!igu_acked)
DP(NETIF_MSG_HW,
"Failed to verify IGU ack on time\n");
barrier();
}
REG_WR(bp, nig_int_mask_addr, nig_mask);
bnx2x_release_phy_lock(bp);
}
}
static void bnx2x_fan_failure(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 ext_phy_config;
/* mark the failure */
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
ext_phy_config);
/* log the failure */
netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
"Please contact OEM Support for assistance\n");
/* Schedule device reset (unload)
* This is due to some boards consuming sufficient power when driver is
* up to overheat if fan fails.
*/
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
}
static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
{
int port = BP_PORT(bp);
int reg_offset;
u32 val;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(bp, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(bp, reg_offset, val);
BNX2X_ERR("SPIO5 hw attention\n");
/* Fan failure attention */
bnx2x_hw_reset_phy(&bp->link_params);
bnx2x_fan_failure(bp);
}
if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
bnx2x_acquire_phy_lock(bp);
bnx2x_handle_module_detect_int(&bp->link_params);
bnx2x_release_phy_lock(bp);
}
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_0));
bnx2x_panic();
}
}
static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
BNX2X_ERR("DB hw attention 0x%x\n", val);
/* DORQ discard attention */
if (val & 0x2)
BNX2X_ERR("FATAL error from DORQ\n");
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
int port = BP_PORT(bp);
int reg_offset;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_1));
bnx2x_panic();
}
}
static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
BNX2X_ERR("CFC hw attention 0x%x\n", val);
/* CFC error attention */
if (val & 0x2)
BNX2X_ERR("FATAL error from CFC\n");
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000)
BNX2X_ERR("FATAL error from PXP\n");
if (!CHIP_IS_E1x(bp)) {
val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
}
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
int port = BP_PORT(bp);
int reg_offset;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_2));
bnx2x_panic();
}
}
static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
if (attn & BNX2X_PMF_LINK_ASSERT) {
int func = BP_FUNC(bp);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
bnx2x_read_mf_cfg(bp);
bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
func_mf_config[BP_ABS_FUNC(bp)].config);
val = SHMEM_RD(bp,
func_mb[BP_FW_MB_IDX(bp)].drv_status);
if (val & (DRV_STATUS_DCC_EVENT_MASK |
DRV_STATUS_OEM_EVENT_MASK))
bnx2x_oem_event(bp,
(val & (DRV_STATUS_DCC_EVENT_MASK |
DRV_STATUS_OEM_EVENT_MASK)));
if (val & DRV_STATUS_SET_MF_BW)
bnx2x_set_mf_bw(bp);
if (val & DRV_STATUS_DRV_INFO_REQ)
bnx2x_handle_drv_info_req(bp);
if (val & DRV_STATUS_VF_DISABLED)
bnx2x_schedule_iov_task(bp,
BNX2X_IOV_HANDLE_FLR);
if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
bnx2x_pmf_update(bp);
if (bp->port.pmf &&
(val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
bp->dcbx_enabled > 0)
/* start dcbx state machine */
bnx2x_dcbx_set_params(bp,
BNX2X_DCBX_STATE_NEG_RECEIVED);
if (val & DRV_STATUS_AFEX_EVENT_MASK)
bnx2x_handle_afex_cmd(bp,
val & DRV_STATUS_AFEX_EVENT_MASK);
if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
bnx2x_handle_eee_event(bp);
if (val & DRV_STATUS_OEM_UPDATE_SVID)
bnx2x_schedule_sp_rtnl(bp,
BNX2X_SP_RTNL_UPDATE_SVID, 0);
if (bp->link_vars.periodic_flags &
PERIODIC_FLAGS_LINK_EVENT) {
/* sync with link */
bnx2x_acquire_phy_lock(bp);
bp->link_vars.periodic_flags &=
~PERIODIC_FLAGS_LINK_EVENT;
bnx2x_release_phy_lock(bp);
if (IS_MF(bp))
bnx2x_link_sync_notify(bp);
bnx2x_link_report(bp);
}
/* Always call it here: bnx2x_link_report() will
* prevent the link indication duplication.
*/
bnx2x__link_status_update(bp);
} else if (attn & BNX2X_MC_ASSERT_BITS) {
BNX2X_ERR("MC assert!\n");
bnx2x_mc_assert(bp);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
bnx2x_panic();
} else if (attn & BNX2X_MCP_ASSERT) {
BNX2X_ERR("MCP assert!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
bnx2x_fw_dump(bp);
} else
BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
}
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
if (attn & BNX2X_GRC_TIMEOUT) {
val = CHIP_IS_E1(bp) ? 0 :
REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
BNX2X_ERR("GRC time-out 0x%08x\n", val);
}
if (attn & BNX2X_GRC_RSV) {
val = CHIP_IS_E1(bp) ? 0 :
REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
BNX2X_ERR("GRC reserved 0x%08x\n", val);
}
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
}
/*
* Bits map:
* 0-7 - Engine0 load counter.
* 8-15 - Engine1 load counter.
* 16 - Engine0 RESET_IN_PROGRESS bit.
* 17 - Engine1 RESET_IN_PROGRESS bit.
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
* on the engine
* 19 - Engine1 ONE_IS_LOADED.
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
* leader to complete (check for both RESET_IN_PROGRESS bits and not for
* just the one belonging to its engine).
*
*/
#define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
#define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
#define BNX2X_PATH0_LOAD_CNT_SHIFT 0
#define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
#define BNX2X_PATH1_LOAD_CNT_SHIFT 8
#define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
#define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
#define BNX2X_GLOBAL_RESET_BIT 0x00040000
/*
* Set the GLOBAL_RESET bit.
*
* Should be run under rtnl lock
*/
void bnx2x_set_reset_global(struct bnx2x *bp)
{
u32 val;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/*
* Clear the GLOBAL_RESET bit.
*
* Should be run under rtnl lock
*/
static void bnx2x_clear_reset_global(struct bnx2x *bp)
{
u32 val;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/*
* Checks the GLOBAL_RESET bit.
*
* should be run under rtnl lock
*/
static bool bnx2x_reset_is_global(struct bnx2x *bp)
{
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
}
/*
* Clear RESET_IN_PROGRESS bit for the current engine.
*
* Should be run under rtnl lock
*/
static void bnx2x_set_reset_done(struct bnx2x *bp)
{
u32 val;
u32 bit = BP_PATH(bp) ?
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
/* Clear the bit */
val &= ~bit;
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/*
* Set RESET_IN_PROGRESS for the current engine.
*
* should be run under rtnl lock
*/
void bnx2x_set_reset_in_progress(struct bnx2x *bp)
{
u32 val;
u32 bit = BP_PATH(bp) ?
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
/* Set the bit */
val |= bit;
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/*
* Checks the RESET_IN_PROGRESS bit for the given engine.
* should be run under rtnl lock
*/
bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
{
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
u32 bit = engine ?
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
/* return false if bit is set */
return (val & bit) ? false : true;
}
/*
* set pf load for the current pf.
*
* should be run under rtnl lock
*/
void bnx2x_set_pf_load(struct bnx2x *bp)
{
u32 val1, val;
u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK;
u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
/* get the current counter value */
val1 = (val & mask) >> shift;
/* set bit of that PF */
val1 |= (1 << bp->pf_num);
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/**
* bnx2x_clear_pf_load - clear pf load mark
*
* @bp: driver handle
*
* Should be run under rtnl lock.
* Decrements the load counter for the current engine. Returns
* whether other functions are still loaded
*/
bool bnx2x_clear_pf_load(struct bnx2x *bp)
{
u32 val1, val;
u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK;
u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
/* get the current counter value */
val1 = (val & mask) >> shift;
/* clear bit of that PF */
val1 &= ~(1 << bp->pf_num);
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
return val1 != 0;
}
/*
* Read the load status for the current engine.
*
* should be run under rtnl lock
*/
static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
{
u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK);
u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT);
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
val = (val & mask) >> shift;
DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
engine, val);
return val != 0;
}
static void _print_parity(struct bnx2x *bp, u32 reg)
{
pr_cont(" [0x%08x] ", REG_RD(bp, reg));
}
static void _print_next_block(int idx, const char *blk)
{
pr_cont("%s%s", idx ? ", " : "", blk);
}
static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
int *par_num, bool print)
{
u32 cur_bit;
bool res;
int i;
res = false;
for (i = 0; sig; i++) {
cur_bit = (0x1UL << i);
if (sig & cur_bit) {
res |= true; /* Each bit is real error! */
if (print) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
_print_next_block((*par_num)++, "BRB");
_print_parity(bp,
BRB1_REG_BRB1_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
_print_next_block((*par_num)++,
"PARSER");
_print_parity(bp, PRS_REG_PRS_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
_print_next_block((*par_num)++, "TSDM");
_print_parity(bp,
TSDM_REG_TSDM_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
_print_next_block((*par_num)++,
"SEARCHER");
_print_parity(bp, SRC_REG_SRC_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
_print_next_block((*par_num)++, "TCM");
_print_parity(bp, TCM_REG_TCM_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
_print_next_block((*par_num)++,
"TSEMI");
_print_parity(bp,
TSEM_REG_TSEM_PRTY_STS_0);
_print_parity(bp,
TSEM_REG_TSEM_PRTY_STS_1);
break;
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
_print_next_block((*par_num)++, "XPB");
_print_parity(bp, GRCBASE_XPB +
PB_REG_PB_PRTY_STS);
break;
}
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return res;
}
static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
int *par_num, bool *global,
bool print)
{
u32 cur_bit;
bool res;
int i;
res = false;
for (i = 0; sig; i++) {
cur_bit = (0x1UL << i);
if (sig & cur_bit) {
res |= true; /* Each bit is real error! */
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "PBF");
_print_parity(bp, PBF_REG_PBF_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "QM");
_print_parity(bp, QM_REG_QM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "TM");
_print_parity(bp, TM_REG_TM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "XSDM");
_print_parity(bp,
XSDM_REG_XSDM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "XCM");
_print_parity(bp, XCM_REG_XCM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++,
"XSEMI");
_print_parity(bp,
XSEM_REG_XSEM_PRTY_STS_0);
_print_parity(bp,
XSEM_REG_XSEM_PRTY_STS_1);
}
break;
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++,
"DOORBELLQ");
_print_parity(bp,
DORQ_REG_DORQ_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "NIG");
if (CHIP_IS_E1x(bp)) {
_print_parity(bp,
NIG_REG_NIG_PRTY_STS);
} else {
_print_parity(bp,
NIG_REG_NIG_PRTY_STS_0);
_print_parity(bp,
NIG_REG_NIG_PRTY_STS_1);
}
}
break;
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
if (print)
_print_next_block((*par_num)++,
"VAUX PCI CORE");
*global = true;
break;
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++,
"DEBUG");
_print_parity(bp, DBG_REG_DBG_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "USDM");
_print_parity(bp,
USDM_REG_USDM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "UCM");
_print_parity(bp, UCM_REG_UCM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++,
"USEMI");
_print_parity(bp,
USEM_REG_USEM_PRTY_STS_0);
_print_parity(bp,
USEM_REG_USEM_PRTY_STS_1);
}
break;
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "UPB");
_print_parity(bp, GRCBASE_UPB +
PB_REG_PB_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "CSDM");
_print_parity(bp,
CSDM_REG_CSDM_PRTY_STS);
}
break;
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
if (print) {
_print_next_block((*par_num)++, "CCM");
_print_parity(bp, CCM_REG_CCM_PRTY_STS);
}
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return res;
}
static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
int *par_num, bool print)
{
u32 cur_bit;
bool res;
int i;
res = false;
for (i = 0; sig; i++) {
cur_bit = (0x1UL << i);
if (sig & cur_bit) {
res = true; /* Each bit is real error! */
if (print) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
_print_next_block((*par_num)++,
"CSEMI");
_print_parity(bp,
CSEM_REG_CSEM_PRTY_STS_0);
_print_parity(bp,
CSEM_REG_CSEM_PRTY_STS_1);
break;
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
_print_next_block((*par_num)++, "PXP");
_print_parity(bp, PXP_REG_PXP_PRTY_STS);
_print_parity(bp,
PXP2_REG_PXP2_PRTY_STS_0);
_print_parity(bp,
PXP2_REG_PXP2_PRTY_STS_1);
break;
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
_print_next_block((*par_num)++,
"PXPPCICLOCKCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
_print_next_block((*par_num)++, "CFC");
_print_parity(bp,
CFC_REG_CFC_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
_print_next_block((*par_num)++, "CDU");
_print_parity(bp, CDU_REG_CDU_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
_print_next_block((*par_num)++, "DMAE");
_print_parity(bp,
DMAE_REG_DMAE_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
_print_next_block((*par_num)++, "IGU");
if (CHIP_IS_E1x(bp))
_print_parity(bp,
HC_REG_HC_PRTY_STS);
else
_print_parity(bp,
IGU_REG_IGU_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
_print_next_block((*par_num)++, "MISC");
_print_parity(bp,
MISC_REG_MISC_PRTY_STS);
break;
}
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return res;
}
static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
int *par_num, bool *global,
bool print)
{
bool res = false;
u32 cur_bit;
int i;
for (i = 0; sig; i++) {
cur_bit = (0x1UL << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
if (print)
_print_next_block((*par_num)++,
"MCP ROM");
*global = true;
res = true;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
if (print)
_print_next_block((*par_num)++,
"MCP UMP RX");
*global = true;
res = true;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
if (print)
_print_next_block((*par_num)++,
"MCP UMP TX");
*global = true;
res = true;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
(*par_num)++;
/* clear latched SCPAD PATIRY from MCP */
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
1UL << 10);
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return res;
}
static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
int *par_num, bool print)
{
u32 cur_bit;
bool res;
int i;
res = false;
for (i = 0; sig; i++) {
cur_bit = (0x1UL << i);
if (sig & cur_bit) {
res = true; /* Each bit is real error! */
if (print) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
_print_next_block((*par_num)++,
"PGLUE_B");
_print_parity(bp,
PGLUE_B_REG_PGLUE_B_PRTY_STS);
break;
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
_print_next_block((*par_num)++, "ATC");
_print_parity(bp,
ATC_REG_ATC_PRTY_STS);
break;
}
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return res;
}
static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
u32 *sig)
{
bool res = false;
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
int par_num = 0;
DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
sig[0] & HW_PRTY_ASSERT_SET_0,
sig[1] & HW_PRTY_ASSERT_SET_1,
sig[2] & HW_PRTY_ASSERT_SET_2,
sig[3] & HW_PRTY_ASSERT_SET_3,
sig[4] & HW_PRTY_ASSERT_SET_4);
if (print) {
if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
(sig[4] & HW_PRTY_ASSERT_SET_4)) ||
(sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
netdev_err(bp->dev,
"Parity errors detected in blocks: ");
} else {
print = false;
}
}
res |= bnx2x_check_blocks_with_parity0(bp,
sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
res |= bnx2x_check_blocks_with_parity1(bp,
sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
res |= bnx2x_check_blocks_with_parity2(bp,
sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
res |= bnx2x_check_blocks_with_parity3(bp,
sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
res |= bnx2x_check_blocks_with_parity4(bp,
sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
if (print)
pr_cont("\n");
}
return res;
}
/**
* bnx2x_chk_parity_attn - checks for parity attentions.
*
* @bp: driver handle
* @global: true if there was a global attention
* @print: show parity attention in syslog
*/
bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
{
struct attn_route attn = { {0} };
int port = BP_PORT(bp);
attn.sig[0] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
port*4);
attn.sig[1] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
port*4);
attn.sig[2] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
port*4);
attn.sig[3] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
port*4);
/* Since MCP attentions can't be disabled inside the block, we need to
* read AEU registers to see whether they're currently disabled
*/
attn.sig[3] &= ((REG_RD(bp,
!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
: MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
MISC_AEU_ENABLE_MCP_PRTY_BITS) |
~MISC_AEU_ENABLE_MCP_PRTY_BITS);
if (!CHIP_IS_E1x(bp))
attn.sig[4] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
port*4);
return bnx2x_parity_attn(bp, global, print, attn.sig);
}
static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
if (val &
PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
if (val &
PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
}
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
BNX2X_ERR("ATC hw attention 0x%x\n", val);
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
}
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
BNX2X_ERR("FATAL parity attention set4 0x%x\n",
(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
}
}
static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
{
struct attn_route attn, *group_mask;
int port = BP_PORT(bp);
int index;
u32 reg_addr;
u32 val;
u32 aeu_mask;
bool global = false;
/* need to take HW lock because MCP or other port might also
try to handle this event */
bnx2x_acquire_alr(bp);
if (bnx2x_chk_parity_attn(bp, &global, true)) {
#ifndef BNX2X_STOP_ON_ERROR
bp->recovery_state = BNX2X_RECOVERY_INIT;
schedule_delayed_work(&bp->sp_rtnl_task, 0);
/* Disable HW interrupts */
bnx2x_int_disable(bp);
/* In case of parity errors don't handle attentions so that
* other function would "see" parity errors.
*/
#else
bnx2x_panic();
#endif
bnx2x_release_alr(bp);
return;
}
attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
if (!CHIP_IS_E1x(bp))
attn.sig[4] =
REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
else
attn.sig[4] = 0;
DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = &bp->attn_group[index];
DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
index,
group_mask->sig[0], group_mask->sig[1],
group_mask->sig[2], group_mask->sig[3],
group_mask->sig[4]);
bnx2x_attn_int_deasserted4(bp,
attn.sig[4] & group_mask->sig[4]);
bnx2x_attn_int_deasserted3(bp,
attn.sig[3] & group_mask->sig[3]);
bnx2x_attn_int_deasserted1(bp,
attn.sig[1] & group_mask->sig[1]);
bnx2x_attn_int_deasserted2(bp,
attn.sig[2] & group_mask->sig[2]);
bnx2x_attn_int_deasserted0(bp,
attn.sig[0] & group_mask->sig[0]);
}
}
bnx2x_release_alr(bp);
if (bp->common.int_block == INT_BLOCK_HC)
reg_addr = (HC_REG_COMMAND_REG + port*32 +
COMMAND_REG_ATTN_BITS_CLR);
else
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
val = ~deasserted;
DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
(bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(bp, reg_addr, val);
if (~bp->attn_state & deasserted)
BNX2X_ERR("IGU ERROR\n");
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(bp, reg_addr);
DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
aeu_mask, deasserted);
aeu_mask |= (deasserted & 0x3ff);
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
REG_WR(bp, reg_addr, aeu_mask);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
bp->attn_state &= ~deasserted;
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
}
static void bnx2x_attn_int(struct bnx2x *bp)
{
/* read local copy of bits */
u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
attn_bits);
u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
attn_bits_ack);
u32 attn_state = bp->attn_state;
/* look for changed bits */
u32 asserted = attn_bits & ~attn_ack & ~attn_state;
u32 deasserted = ~attn_bits & attn_ack & attn_state;
DP(NETIF_MSG_HW,
"attn_bits %x attn_ack %x asserted %x deasserted %x\n",
attn_bits, attn_ack, asserted, deasserted);
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
BNX2X_ERR("BAD attention state\n");
/* handle bits that were raised */
if (asserted)
bnx2x_attn_int_asserted(bp, asserted);
if (deasserted)
bnx2x_attn_int_deasserted(bp, deasserted);
}
void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
u16 index, u8 op, u8 update)
{
u32 igu_addr = bp->igu_base_addr;
igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
igu_addr);
}
static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
{
/* No memory barriers */
storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
mmiowb(); /* keep prod updates ordered */
}
static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
union event_ring_elem *elem)
{
u8 err = elem->message.error;
if (!bp->cnic_eth_dev.starting_cid ||
(cid < bp->cnic_eth_dev.starting_cid &&
cid != bp->cnic_eth_dev.iscsi_l2_cid))
return 1;
DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
if (unlikely(err)) {
BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
cid);
bnx2x_panic_dump(bp, false);
}
bnx2x_cnic_cfc_comp(bp, cid, err);
return 0;
}
static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
{
struct bnx2x_mcast_ramrod_params rparam;
int rc;
memset(&rparam, 0, sizeof(rparam));
rparam.mcast_obj = &bp->mcast_obj;
netif_addr_lock_bh(bp->dev);
/* Clear pending state for the last command */
bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
/* If there are pending mcast commands - send them */
if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
if (rc < 0)
BNX2X_ERR("Failed to send pending mcast commands: %d\n",
rc);
}
netif_addr_unlock_bh(bp->dev);
}
static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
union event_ring_elem *elem)
{
unsigned long ramrod_flags = 0;
int rc = 0;
u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
u32 cid = echo & BNX2X_SWCID_MASK;
struct bnx2x_vlan_mac_obj *vlan_mac_obj;
/* Always push next commands out, don't wait here */
__set_bit(RAMROD_CONT, &ramrod_flags);
switch (echo >> BNX2X_SWCID_SHIFT) {
case BNX2X_FILTER_MAC_PENDING:
DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
vlan_mac_obj = &bp->iscsi_l2_mac_obj;
else
vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
break;
case BNX2X_FILTER_VLAN_PENDING:
DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
break;
case BNX2X_FILTER_MCAST_PENDING:
DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
/* This is only relevant for 57710 where multicast MACs are
* configured as unicast MACs using the same ramrod.
*/
bnx2x_handle_mcast_eqe(bp);
return;
default:
BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
return;
}
rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
if (rc < 0)
BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
else if (rc > 0)
DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
}
static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
{
netif_addr_lock_bh(bp->dev);
clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
/* Send rx_mode command again if was requested */
if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
bnx2x_set_storm_rx_mode(bp);
else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
&bp->sp_state))
bnx2x_set_iscsi_eth_rx_mode(bp, true);
else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
&bp->sp_state))
bnx2x_set_iscsi_eth_rx_mode(bp, false);
netif_addr_unlock_bh(bp->dev);
}
static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
union event_ring_elem *elem)
{
if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
DP(BNX2X_MSG_SP,
"afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
elem->message.data.vif_list_event.func_bit_map);
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
elem->message.data.vif_list_event.func_bit_map);
} else if (elem->message.data.vif_list_event.echo ==
VIF_LIST_RULE_SET) {
DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
}
}
/* called with rtnl_lock */
static void bnx2x_after_function_update(struct bnx2x *bp)
{
int q, rc;
struct bnx2x_fastpath *fp;
struct bnx2x_queue_state_params queue_params = {NULL};
struct bnx2x_queue_update_params *q_update_params =
&queue_params.params.update;
/* Send Q update command with afex vlan removal values for all Qs */
queue_params.cmd = BNX2X_Q_CMD_UPDATE;
/* set silent vlan removal values according to vlan mode */
__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
&q_update_params->update_flags);
__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
&q_update_params->update_flags);
__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
/* in access mode mark mask and value are 0 to strip all vlans */
if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
q_update_params->silent_removal_value = 0;
q_update_params->silent_removal_mask = 0;
} else {
q_update_params->silent_removal_value =
(bp->afex_def_vlan_tag & VLAN_VID_MASK);
q_update_params->silent_removal_mask = VLAN_VID_MASK;
}
for_each_eth_queue(bp, q) {
/* Set the appropriate Queue object */
fp = &bp->fp[q];
queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* send the ramrod */
rc = bnx2x_queue_state_change(bp, &queue_params);
if (rc < 0)
BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
q);
}
if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
fp = &bp->fp[FCOE_IDX(bp)];
queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* clear pending completion bit */
__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
/* mark latest Q bit */
smp_mb__before_atomic();
set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
smp_mb__after_atomic();
/* send Q update ramrod for FCoE Q */
rc = bnx2x_queue_state_change(bp, &queue_params);
if (rc < 0)
BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
q);
} else {
/* If no FCoE ring - ACK MCP now */
bnx2x_link_report(bp);
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
}
}
static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
struct bnx2x *bp, u32 cid)
{
DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
return &bnx2x_fcoe_sp_obj(bp, q_obj);
else
return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
}
static void bnx2x_eq_int(struct bnx2x *bp)
{
u16 hw_cons, sw_cons, sw_prod;
union event_ring_elem *elem;
u8 echo;
u32 cid;
u8 opcode;
int rc, spqe_cnt = 0;
struct bnx2x_queue_sp_obj *q_obj;
struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
hw_cons = le16_to_cpu(*bp->eq_cons_sb);
/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
* when we get the next-page we need to adjust so the loop
* condition below will be met. The next element is the size of a
* regular element and hence incrementing by 1
*/
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
hw_cons++;
/* This function may never run in parallel with itself for a
* specific bp, thus there is no need in "paired" read memory
* barrier here.
*/
sw_cons = bp->eq_cons;
sw_prod = bp->eq_prod;
DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
for (; sw_cons != hw_cons;
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
elem = &bp->eq_ring[EQ_DESC(sw_cons)];
rc = bnx2x_iov_eq_sp_event(bp, elem);
if (!rc) {
DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
rc);
goto next_spqe;
}
opcode = elem->message.opcode;
/* handle eq element */
switch (opcode) {
case EVENT_RING_OPCODE_VF_PF_CHANNEL:
bnx2x_vf_mbx_schedule(bp,
&elem->message.data.vf_pf_event);
continue;
case EVENT_RING_OPCODE_STAT_QUERY:
DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
"got statistics comp event %d\n",
bp->stats_comp++);
/* nothing to do with stats comp */
goto next_spqe;
case EVENT_RING_OPCODE_CFC_DEL:
/* handle according to cid range */
/*
* we may want to verify here that the bp state is
* HALTING
*/
/* elem CID originates from FW; actually LE */
cid = SW_CID(elem->message.data.cfc_del_event.cid);
DP(BNX2X_MSG_SP,
"got delete ramrod for MULTI[%d]\n", cid);
if (CNIC_LOADED(bp) &&
!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
goto next_spqe;
q_obj = bnx2x_cid_to_q_obj(bp, cid);
if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
break;
goto next_spqe;
case EVENT_RING_OPCODE_STOP_TRAFFIC:
DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
if (f_obj->complete_cmd(bp, f_obj,
BNX2X_F_CMD_TX_STOP))
break;
goto next_spqe;
case EVENT_RING_OPCODE_START_TRAFFIC:
DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
if (f_obj->complete_cmd(bp, f_obj,
BNX2X_F_CMD_TX_START))
break;
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_UPDATE:
echo = elem->message.data.function_update_event.echo;
if (echo == SWITCH_UPDATE) {
DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
"got FUNC_SWITCH_UPDATE ramrod\n");
if (f_obj->complete_cmd(
bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
break;
} else {
int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
"AFEX: ramrod completed FUNCTION_UPDATE\n");
f_obj->complete_cmd(bp, f_obj,
BNX2X_F_CMD_AFEX_UPDATE);
/* We will perform the Queues update from
* sp_rtnl task as all Queue SP operations
* should run under rtnl_lock.
*/
bnx2x_schedule_sp_rtnl(bp, cmd, 0);
}
goto next_spqe;
case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
f_obj->complete_cmd(bp, f_obj,
BNX2X_F_CMD_AFEX_VIFLISTS);
bnx2x_after_afex_vif_lists(bp, elem);
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_START:
DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
"got FUNC_START ramrod\n");
if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
break;
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_STOP:
DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
"got FUNC_STOP ramrod\n");
if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
break;
goto next_spqe;
case EVENT_RING_OPCODE_SET_TIMESYNC:
DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
"got set_timesync ramrod completion\n");
if (f_obj->complete_cmd(bp, f_obj,
BNX2X_F_CMD_SET_TIMESYNC))
break;
goto next_spqe;
}
switch (opcode | bp->state) {
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
BNX2X_STATE_OPENING_WAIT4_PORT):
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
SW_CID(elem->message.data.eth_event.echo));
rss_raw->clear_pending(rss_raw);
break;
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_SET_MAC |
BNX2X_STATE_CLOSING_WAIT4_HALT):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
bnx2x_handle_classification_eqe(bp, elem);
break;
case (EVENT_RING_OPCODE_MULTICAST_RULES |
BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_MULTICAST_RULES |
BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_MULTICAST_RULES |
BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(BNX2X_MSG_SP, "got mcast ramrod\n");
bnx2x_handle_mcast_eqe(bp);
break;
case (EVENT_RING_OPCODE_FILTERS_RULES |
BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_FILTERS_RULES |
BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_FILTERS_RULES |
BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
bnx2x_handle_rx_mode_eqe(bp);
break;
default:
/* unknown event log error and continue */
BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
elem->message.opcode, bp->state);
}
next_spqe:
spqe_cnt++;
} /* for */
smp_mb__before_atomic();
atomic_add(spqe_cnt, &bp->eq_spq_left);
bp->eq_cons = sw_cons;
bp->eq_prod = sw_prod;
/* Make sure that above mem writes were issued towards the memory */
smp_wmb();
/* update producer */
bnx2x_update_eq_prod(bp, bp->eq_prod);
}
static void bnx2x_sp_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
DP(BNX2X_MSG_SP, "sp task invoked\n");
/* make sure the atomic interrupt_occurred has been written */
smp_rmb();
if (atomic_read(&bp->interrupt_occurred)) {
/* what work needs to be performed? */
u16 status = bnx2x_update_dsb_idx(bp);
DP(BNX2X_MSG_SP, "status %x\n", status);
DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
atomic_set(&bp->interrupt_occurred, 0);
/* HW attentions */
if (status & BNX2X_DEF_SB_ATT_IDX) {
bnx2x_attn_int(bp);
status &= ~BNX2X_DEF_SB_ATT_IDX;
}
/* SP events: STAT_QUERY and others */
if (status & BNX2X_DEF_SB_IDX) {
struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
if (FCOE_INIT(bp) &&
(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
/* Prevent local bottom-halves from running as
* we are going to change the local NAPI list.
*/
local_bh_disable();
napi_schedule(&bnx2x_fcoe(bp, napi));
local_bh_enable();
}
/* Handle EQ completions */
bnx2x_eq_int(bp);
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
status &= ~BNX2X_DEF_SB_IDX;
}
/* if status is non zero then perhaps something went wrong */
if (unlikely(status))
DP(BNX2X_MSG_SP,
"got an unknown interrupt! (status 0x%x)\n", status);
/* ack status block only if something was actually handled */
bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
}
/* afex - poll to check if VIFSET_ACK should be sent to MFW */
if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
&bp->sp_state)) {
bnx2x_link_report(bp);
bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
}
}
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct bnx2x *bp = netdev_priv(dev);
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
IGU_INT_DISABLE, 0);
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return IRQ_HANDLED;
#endif
if (CNIC_LOADED(bp)) {
struct cnic_ops *c_ops;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
c_ops->cnic_handler(bp->cnic_data, NULL);
rcu_read_unlock();
}
/* schedule sp task to perform default status block work, ack
* attentions and enable interrupts.
*/
bnx2x_schedule_sp_task(bp);
return IRQ_HANDLED;
}
/* end of slow path */
void bnx2x_drv_pulse(struct bnx2x *bp)
{
SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
bp->fw_drv_pulse_wr_seq);
}
static void bnx2x_timer(unsigned long data)
{
struct bnx2x *bp = (struct bnx2x *) data;
if (!netif_running(bp->dev))
return;
if (IS_PF(bp) &&
!BP_NOMCP(bp)) {
int mb_idx = BP_FW_MB_IDX(bp);
u16 drv_pulse;
u16 mcp_pulse;
++bp->fw_drv_pulse_wr_seq;
bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
drv_pulse = bp->fw_drv_pulse_wr_seq;
bnx2x_drv_pulse(bp);
mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/* The delta between driver pulse and mcp response
* should not get too big. If the MFW is more than 5 pulses
* behind, we should worry about it enough to generate an error
* log.
*/
if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
drv_pulse, mcp_pulse);
}
if (bp->state == BNX2X_STATE_OPEN)
bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
/* sample pf vf bulletin board for new posts from pf */
if (IS_VF(bp))
bnx2x_timer_sriov(bp);
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
/* end of Statistics */
/* nic init */
/*
* nic init service functions
*/
static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
u32 i;
if (!(len%4) && !(addr%4))
for (i = 0; i < len; i += 4)
REG_WR(bp, addr + i, fill);
else
for (i = 0; i < len; i++)
REG_WR8(bp, addr + i, fill);
}
/* helper: writes FP SP data to FW - data_size in dwords */
static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
int fw_sb_id,
u32 *sb_data_p,
u32 data_size)
{
int index;
for (index = 0; index < data_size; index++)
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
sizeof(u32)*index,
*(sb_data_p + index));
}
static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
{
u32 *sb_data_p;
u32 data_size = 0;
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
/* disable the function first */
if (!CHIP_IS_E1x(bp)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_DISABLED;
sb_data_e2.common.p_func.vf_valid = false;
sb_data_p = (u32 *)&sb_data_e2;
data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
} else {
memset(&sb_data_e1x, 0,
sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_DISABLED;
sb_data_e1x.common.p_func.vf_valid = false;
sb_data_p = (u32 *)&sb_data_e1x;
data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
}
bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
CSTORM_STATUS_BLOCK_SIZE);
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
CSTORM_SYNC_BLOCK_SIZE);
}
/* helper: writes SP SB data to FW */
static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
struct hc_sp_status_block_data *sp_sb_data)
{
int func = BP_FUNC(bp);
int i;
for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
i*sizeof(u32),
*((u32 *)sp_sb_data + i));
}
static void bnx2x_zero_sp_sb(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
sp_sb_data.state = SB_DISABLED;
sp_sb_data.p_func.vf_valid = false;
bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
CSTORM_SP_STATUS_BLOCK_SIZE);
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
CSTORM_SP_SYNC_BLOCK_SIZE);
}
static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
int igu_sb_id, int igu_seg_id)
{
hc_sm->igu_sb_id = igu_sb_id;
hc_sm->igu_seg_id = igu_seg_id;
hc_sm->timer_value = 0xFF;
hc_sm->time_to_expire = 0xFFFFFFFF;
}
/* allocates state machine ids. */
static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
{
/* zero out state machine indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
/* map indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
}
void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
u8 vf_valid, int fw_sb_id, int igu_sb_id)
{
int igu_seg_id;
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
struct hc_status_block_sm *hc_sm_p;
int data_size;
u32 *sb_data_p;
if (CHIP_INT_MODE_IS_BC(bp))
igu_seg_id = HC_SEG_ACCESS_NORM;
else
igu_seg_id = IGU_SEG_ACCESS_NORM;
bnx2x_zero_fp_sb(bp, fw_sb_id);
if (!CHIP_IS_E1x(bp)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_ENABLED;
sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
sb_data_e2.common.p_func.vf_id = vfid;
sb_data_e2.common.p_func.vf_valid = vf_valid;
sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
sb_data_e2.common.same_igu_sb_1b = true;
sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
hc_sm_p = sb_data_e2.common.state_machine;
sb_data_p = (u32 *)&sb_data_e2;
data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
bnx2x_map_sb_state_machines(sb_data_e2.index_data);
} else {
memset(&sb_data_e1x, 0,
sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_ENABLED;
sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
sb_data_e1x.common.p_func.vf_id = 0xff;
sb_data_e1x.common.p_func.vf_valid = false;
sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
sb_data_e1x.common.same_igu_sb_1b = true;
sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
hc_sm_p = sb_data_e1x.common.state_machine;
sb_data_p = (u32 *)&sb_data_e1x;
data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
}
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
igu_sb_id, igu_seg_id);
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
igu_sb_id, igu_seg_id);
DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
/* write indices to HW - PCI guarantees endianity of regpairs */
bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
}
static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
u16 tx_usec, u16 rx_usec)
{
bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
false, rx_usec);
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
tx_usec);
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
tx_usec);
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
tx_usec);
}
static void bnx2x_init_def_sb(struct bnx2x *bp)
{
struct host_sp_status_block *def_sb = bp->def_status_blk;
dma_addr_t mapping = bp->def_status_blk_mapping;
int igu_sp_sb_index;
int igu_seg_id;
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int reg_offset, reg_offset_en5;
u64 section;
int index;
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
if (CHIP_INT_MODE_IS_BC(bp)) {
igu_sp_sb_index = DEF_SB_IGU_ID;
igu_seg_id = HC_SEG_ACCESS_DEF;
} else {
igu_sp_sb_index = bp->igu_dsb_id;
igu_seg_id = IGU_SEG_ACCESS_DEF;
}
/* ATTN */
section = ((u64)mapping) + offsetof(struct host_sp_status_block,
atten_status_block);
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
bp->attn_state = 0;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
int sindex;
/* take care of sig[0]..sig[4] */
for (sindex = 0; sindex < 4; sindex++)
bp->attn_group[index].sig[sindex] =
REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
if (!CHIP_IS_E1x(bp))
/*
* enable5 is separate from the rest of the registers,
* and therefore the address skip is 4
* and not 16 between the different groups
*/
bp->attn_group[index].sig[4] = REG_RD(bp,
reg_offset_en5 + 0x4*index);
else
bp->attn_group[index].sig[4] = 0;
}
if (bp->common.int_block == INT_BLOCK_HC) {
reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
HC_REG_ATTN_MSG0_ADDR_L);
REG_WR(bp, reg_offset, U64_LO(section));
REG_WR(bp, reg_offset + 4, U64_HI(section));
} else if (!CHIP_IS_E1x(bp)) {
REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
}
section = ((u64)mapping) + offsetof(struct host_sp_status_block,
sp_sb);
bnx2x_zero_sp_sb(bp);
/* PCI guarantees endianity of regpairs */
sp_sb_data.state = SB_ENABLED;
sp_sb_data.host_sb_addr.lo = U64_LO(section);
sp_sb_data.host_sb_addr.hi = U64_HI(section);
sp_sb_data.igu_sb_id = igu_sp_sb_index;
sp_sb_data.igu_seg_id = igu_seg_id;
sp_sb_data.p_func.pf_id = func;
sp_sb_data.p_func.vnic_id = BP_VN(bp);
sp_sb_data.p_func.vf_id = 0xff;
bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
}
void bnx2x_update_coalesce(struct bnx2x *bp)
{
int i;
for_each_eth_queue(bp, i)
bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
bp->tx_ticks, bp->rx_ticks);
}
static void bnx2x_init_sp_ring(struct bnx2x *bp)
{
spin_lock_init(&bp->spq_lock);
atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
bp->spq_prod_idx = 0;
bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
bp->spq_prod_bd = bp->spq;
bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
}
static void bnx2x_init_eq_ring(struct bnx2x *bp)
{
int i;
for (i = 1; i <= NUM_EQ_PAGES; i++) {
union event_ring_elem *elem =
&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
elem->next_page.addr.hi =
cpu_to_le32(U64_HI(bp->eq_mapping +
BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
elem->next_page.addr.lo =
cpu_to_le32(U64_LO(bp->eq_mapping +
BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
}
bp->eq_cons = 0;
bp->eq_prod = NUM_EQ_DESC;
bp->eq_cons_sb = BNX2X_EQ_INDEX;
/* we want a warning message before it gets wrought... */
atomic_set(&bp->eq_spq_left,
min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
}
/* called with netif_addr_lock_bh() */
static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
unsigned long rx_mode_flags,
unsigned long rx_accept_flags,
unsigned long tx_accept_flags,
unsigned long ramrod_flags)
{
struct bnx2x_rx_mode_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Prepare ramrod parameters */
ramrod_param.cid = 0;
ramrod_param.cl_id = cl_id;
ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
ramrod_param.func_id = BP_FUNC(bp);
ramrod_param.pstate = &bp->sp_state;
ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
ramrod_param.ramrod_flags = ramrod_flags;
ramrod_param.rx_mode_flags = rx_mode_flags;
ramrod_param.rx_accept_flags = rx_accept_flags;
ramrod_param.tx_accept_flags = tx_accept_flags;
rc = bnx2x_config_rx_mode(bp, &ramrod_param);
if (rc < 0) {
BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
return rc;
}
return 0;
}
static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
unsigned long *rx_accept_flags,
unsigned long *tx_accept_flags)
{
/* Clear the flags first */
*rx_accept_flags = 0;
*tx_accept_flags = 0;
switch (rx_mode) {
case BNX2X_RX_MODE_NONE:
/*
* 'drop all' supersedes any accept flags that may have been
* passed to the function.
*/
break;
case BNX2X_RX_MODE_NORMAL:
__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
if (bp->accept_any_vlan) {
__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
}
break;
case BNX2X_RX_MODE_ALLMULTI:
__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
if (bp->accept_any_vlan) {
__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
}
break;
case BNX2X_RX_MODE_PROMISC:
/* According to definition of SI mode, iface in promisc mode
* should receive matched and unmatched (in resolution of port)
* unicast packets.
*/
__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
if (IS_MF_SI(bp))
__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
else
__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
break;
default:
BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
return -EINVAL;
}
return 0;
}
/* called with netif_addr_lock_bh() */
static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
{
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
int rc;
if (!NO_FCOE(bp))
/* Configure rx_mode of FCoE Queue */
__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
&tx_accept_flags);
if (rc)
return rc;
__set_bit(RAMROD_RX, &ramrod_flags);
__set_bit(RAMROD_TX, &ramrod_flags);
return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
rx_accept_flags, tx_accept_flags,
ramrod_flags);
}
static void bnx2x_init_internal_common(struct bnx2x *bp)
{
int i;
/* Zero this manually as its initialization is
currently missing in the initTool */
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_AGG_DATA_OFFSET + i * 4, 0);
if (!CHIP_IS_E1x(bp)) {
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
CHIP_INT_MODE_IS_BC(bp) ?
HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
}
}
static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
{
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
bnx2x_init_internal_common(bp);
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
/* nothing to do */
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
/* internal memory per function is
initialized inside bnx2x_pf_init */
break;
default:
BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
break;
}
}
static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
{
return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
}
static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
{
return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
}
static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
{
if (CHIP_IS_E1x(fp->bp))
return BP_L_ID(fp->bp) + fp->index;
else /* We want Client ID to be the same as IGU SB ID for 57712 */
return bnx2x_fp_igu_sb_id(fp);
}
static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
{
struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
u8 cos;
unsigned long q_type = 0;
u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
fp->rx_queue = fp_idx;
fp->cid = fp_idx;
fp->cl_id = bnx2x_fp_cl_id(fp);
fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
/* qZone id equals to FW (per path) client id */
fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
/* init shortcut */
fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
/* Setup SB indices */
fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
/* Configure Queue State object */
__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
/* init tx data */
for_each_cos_in_tx_queue(fp, cos) {
bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
FP_COS_TO_TXQ(fp, cos, bp),
BNX2X_TX_SB_INDEX_BASE + cos, fp);
cids[cos] = fp->txdata_ptr[cos]->cid;
}
/* nothing more for vf to do here */
if (IS_VF(bp))
return;
bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
fp->fw_sb_id, fp->igu_sb_id);
bnx2x_update_fpsb_idx(fp);
bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
bnx2x_sp_mapping(bp, q_rdata), q_type);
/**
* Configure classification DBs: Always enable Tx switching
*/
bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
DP(NETIF_MSG_IFUP,
"queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
fp->igu_sb_id);
}
static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
{
int i;
for (i = 1; i <= NUM_TX_RINGS; i++) {
struct eth_tx_next_bd *tx_next_bd =
&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
tx_next_bd->addr_hi =
cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
tx_next_bd->addr_lo =
cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
}
*txdata->tx_cons_sb = cpu_to_le16(0);
SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
txdata->tx_db.data.zero_fill1 = 0;
txdata->tx_db.data.prod = 0;
txdata->tx_pkt_prod = 0;
txdata->tx_pkt_cons = 0;
txdata->tx_bd_prod = 0;
txdata->tx_bd_cons = 0;
txdata->tx_pkt = 0;
}
static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
{
int i;
for_each_tx_queue_cnic(bp, i)
bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
}
static void bnx2x_init_tx_rings(struct bnx2x *bp)
{
int i;
u8 cos;
for_each_eth_queue(bp, i)
for_each_cos_in_tx_queue(&bp->fp[i], cos)
bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
}
static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
{
struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
unsigned long q_type = 0;
bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
BNX2X_FCOE_ETH_CL_ID_IDX);
bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
fp);
DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
/* qZone id equals to FW (per path) client id */
bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
/* init shortcut */
bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
bnx2x_rx_ustorm_prods_offset(fp);
/* Configure Queue State object */
__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
/* No multi-CoS for FCoE L2 client */
BUG_ON(fp->max_cos != 1);
bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
&fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
bnx2x_sp_mapping(bp, q_rdata), q_type);
DP(NETIF_MSG_IFUP,
"queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
fp->igu_sb_id);
}
void bnx2x_nic_init_cnic(struct bnx2x *bp)
{
if (!NO_FCOE(bp))
bnx2x_init_fcoe_fp(bp);
bnx2x_init_sb(bp, bp->cnic_sb_mapping,
BNX2X_VF_ID_INVALID, false,
bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
/* ensure status block indices were read */
rmb();
bnx2x_init_rx_rings_cnic(bp);
bnx2x_init_tx_rings_cnic(bp);
/* flush all */
mb();
mmiowb();
}
void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
{
int i;
/* Setup NIC internals and enable interrupts */
for_each_eth_queue(bp, i)
bnx2x_init_eth_fp(bp, i);
/* ensure status block indices were read */
rmb();
bnx2x_init_rx_rings(bp);
bnx2x_init_tx_rings(bp);
if (IS_PF(bp)) {
/* Initialize MOD_ABS interrupts */
bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
bp->common.shmem_base,
bp->common.shmem2_base, BP_PORT(bp));
/* initialize the default status block and sp ring */
bnx2x_init_def_sb(bp);
bnx2x_update_dsb_idx(bp);
bnx2x_init_sp_ring(bp);
} else {
bnx2x_memset_stats(bp);
}
}
void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
{
bnx2x_init_eq_ring(bp);
bnx2x_init_internal(bp, load_code);
bnx2x_pf_init(bp);
bnx2x_stats_init(bp);
/* flush all before enabling interrupts */
mb();
mmiowb();
bnx2x_int_enable(bp);
/* Check for SPIO5 */
bnx2x_attn_int_deasserted0(bp,
REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
AEU_INPUTS_ATTN_BITS_SPIO5);
}
/* gzip service functions */
static int bnx2x_gunzip_init(struct bnx2x *bp)
{
bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
&bp->gunzip_mapping, GFP_KERNEL);
if (bp->gunzip_buf == NULL)
goto gunzip_nomem1;
bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
if (bp->strm == NULL)
goto gunzip_nomem2;
bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
if (bp->strm->workspace == NULL)
goto gunzip_nomem3;
return 0;
gunzip_nomem3:
kfree(bp->strm);
bp->strm = NULL;
gunzip_nomem2:
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
bp->gunzip_mapping);
bp->gunzip_buf = NULL;
gunzip_nomem1:
BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
return -ENOMEM;
}
static void bnx2x_gunzip_end(struct bnx2x *bp)
{
if (bp->strm) {
vfree(bp->strm->workspace);
kfree(bp->strm);
bp->strm = NULL;
}
if (bp->gunzip_buf) {
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
bp->gunzip_mapping);
bp->gunzip_buf = NULL;
}
}
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
{
int n, rc;
/* check gzip header */
if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
BNX2X_ERR("Bad gzip header\n");
return -EINVAL;
}
n = 10;
#define FNAME 0x8
if (zbuf[3] & FNAME)
while ((zbuf[n++] != 0) && (n < len));
bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
bp->strm->avail_in = len - n;
bp->strm->next_out = bp->gunzip_buf;
bp->strm->avail_out = FW_BUF_SIZE;
rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
if (rc != Z_OK)
return rc;
rc = zlib_inflate(bp->strm, Z_FINISH);
if ((rc != Z_OK) && (rc != Z_STREAM_END))
netdev_err(bp->dev, "Firmware decompression error: %s\n",
bp->strm->msg);
bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
if (bp->gunzip_outlen & 0x3)
netdev_err(bp->dev,
"Firmware decompression error: gunzip_outlen (%d) not aligned\n",
bp->gunzip_outlen);
bp->gunzip_outlen >>= 2;
zlib_inflateEnd(bp->strm);
if (rc == Z_STREAM_END)
return 0;
return rc;
}
/* nic load/unload */
/*
* General service functions
*/
/* send a NIG loopback debug packet */
static void bnx2x_lb_pckt(struct bnx2x *bp)
{
u32 wb_write[3];
/* Ethernet source and destination addresses */
wb_write[0] = 0x55555555;
wb_write[1] = 0x55555555;
wb_write[2] = 0x20; /* SOP */
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
/* NON-IP protocol */
wb_write[0] = 0x09000000;
wb_write[1] = 0x55555555;
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
}
/* some of the internal memories
* are not directly readable from the driver
* to test them we send debug packets
*/
static int bnx2x_int_mem_test(struct bnx2x *bp)
{
int factor;
int count, i;
u32 val = 0;
if (CHIP_REV_IS_FPGA(bp))
factor = 120;
else if (CHIP_REV_IS_EMUL(bp))
factor = 200;
else
factor = 1;
/* Disable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send Ethernet packet */
bnx2x_lb_pckt(bp);
/* TODO do i reset NIG statistic? */
/* Wait until NIG register shows 1 packet of size 0x10 */
count = 1000 * factor;
while (count) {
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
if (val == 0x10)
break;
usleep_range(10000, 20000);
count--;
}
if (val != 0x10) {
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
return -1;
}
/* Wait until PRS register shows 1 packet */
count = 1000 * factor;
while (count) {
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val == 1)
break;
usleep_range(10000, 20000);
count--;
}
if (val != 0x1) {
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
return -2;
}
/* Reset and init BRB, PRS */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
msleep(50);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
msleep(50);
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
DP(NETIF_MSG_HW, "part2\n");
/* Disable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send 10 Ethernet packets */
for (i = 0; i < 10; i++)
bnx2x_lb_pckt(bp);
/* Wait until NIG register shows 10 + 1
packets of size 11*0x10 = 0xb0 */
count = 1000 * factor;
while (count) {
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
if (val == 0xb0)
break;
usleep_range(10000, 20000);
count--;
}
if (val != 0xb0) {
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
return -3;
}
/* Wait until PRS register shows 2 packets */
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val != 2)
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
/* Write 1 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
/* Wait until PRS register shows 3 packets */
msleep(10 * factor);
/* Wait until NIG register shows 1 packet of size 0x10 */
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val != 3)
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
/* clear NIG EOP FIFO */
for (i = 0; i < 11; i++)
REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
if (val != 1) {
BNX2X_ERR("clear of NIG failed\n");
return -4;
}
/* Reset and init BRB, PRS, NIG */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
msleep(50);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
msleep(50);
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
if (!CNIC_SUPPORT(bp))
/* set NIC mode */
REG_WR(bp, PRS_REG_NIC_MODE, 1);
/* Enable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
REG_WR(bp, CFC_REG_DEBUG0, 0x0);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
DP(NETIF_MSG_HW, "done\n");
return 0; /* OK */
}
static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
{
u32 val;
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
if (!CHIP_IS_E1x(bp))
REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
else
REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
/*
* mask read length error interrupts in brb for parser
* (parsing unit and 'checksum and crc' unit)
* these errors are legal (PU reads fixed length and CAC can cause
* read length error on truncated packets)
*/
REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
REG_WR(bp, QM_REG_QM_INT_MASK, 0);
REG_WR(bp, TM_REG_TM_INT_MASK, 0);
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
if (!CHIP_IS_E1x(bp))
val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
/* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
if (!CHIP_IS_E1x(bp))
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
/* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
}
static void bnx2x_reset_common(struct bnx2x *bp)
{
u32 val = 0x1400;
/* reset_common */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0xd3ffff7f);
if (CHIP_IS_E3(bp)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
}
static void bnx2x_setup_dmae(struct bnx2x *bp)
{
bp->dmae_ready = 0;
spin_lock_init(&bp->dmae_lock);
}
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
bnx2x_init_pxp_arb(bp, r_order, w_order);
}
static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
{
int is_required;
u32 val;
int port;
if (BP_NOMCP(bp))
return;
is_required = 0;
val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK;
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
is_required = 1;
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
for (port = PORT_0; port < PORT_MAX; port++) {
is_required |=
bnx2x_fan_failure_det_req(
bp,
bp->common.shmem_base,
bp->common.shmem2_base,
port);
}
DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
if (is_required == 0)
return;
/* Fan failure is indicated by SPIO 5 */
bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
/* set to active low mode */
val = REG_RD(bp, MISC_REG_SPIO_INT);
val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
REG_WR(bp, MISC_REG_SPIO_INT, val);
/* enable interrupt to signal the IGU */
val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
val |= MISC_SPIO_SPIO5;
REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
}
void bnx2x_pf_disable(struct bnx2x *bp)
{
u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
val &= ~IGU_PF_CONF_FUNC_EN;
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
}
static void bnx2x__common_init_phy(struct bnx2x *bp)
{
u32 shmem_base[2], shmem2_base[2];
/* Avoid common init in case MFW supports LFA */
if (SHMEM2_RD(bp, size) >
(u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
return;
shmem_base[0] = bp->common.shmem_base;
shmem2_base[0] = bp->common.shmem2_base;
if (!CHIP_IS_E1x(bp)) {
shmem_base[1] =
SHMEM2_RD(bp, other_shmem_base_addr);
shmem2_base[1] =
SHMEM2_RD(bp, other_shmem2_base_addr);
}
bnx2x_acquire_phy_lock(bp);
bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
bp->common.chip_id);
bnx2x_release_phy_lock(bp);
}
static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
{
REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
/* make sure this value is 0 */
REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
}
static void bnx2x_set_endianity(struct bnx2x *bp)
{
#ifdef __BIG_ENDIAN
bnx2x_config_endianity(bp, 1);
#else
bnx2x_config_endianity(bp, 0);
#endif
}
static void bnx2x_reset_endianity(struct bnx2x *bp)
{
bnx2x_config_endianity(bp, 0);
}
/**
* bnx2x_init_hw_common - initialize the HW at the COMMON phase.
*
* @bp: driver handle
*/
static int bnx2x_init_hw_common(struct bnx2x *bp)
{
u32 val;
DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
/*
* take the RESET lock to protect undi_unload flow from accessing
* registers while we're resetting the chip
*/
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
bnx2x_reset_common(bp);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
val = 0xfffc;
if (CHIP_IS_E3(bp)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
if (!CHIP_IS_E1x(bp)) {
u8 abs_func_id;
/**
* 4-port mode or 2-port mode we need to turn of master-enable
* for everyone, after that, turn it back on for self.
* so, we disregard multi-function or not, and always disable
* for all functions on the given path, this means 0,2,4,6 for
* path 0 and 1,3,5,7 for path 1
*/
for (abs_func_id = BP_PATH(bp);
abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
if (abs_func_id == BP_ABS_FUNC(bp)) {
REG_WR(bp,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
1);
continue;
}
bnx2x_pretend_func(bp, abs_func_id);
/* clear pf enable */
bnx2x_pf_disable(bp);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
}
}
bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
if (CHIP_IS_E1(bp)) {
/* enable HW interrupt from PXP on USDM overflow
bit 16 on INT_MASK_0 */
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
}
bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
bnx2x_init_pxp(bp);
bnx2x_set_endianity(bp);
bnx2x_ilt_init_page_size(bp, INITOP_SET);
if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
/* let the HW do it's magic ... */
msleep(100);
/* finish PXP init */
val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
BNX2X_ERR("PXP2 CFG failed\n");
return -EBUSY;
}
val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
BNX2X_ERR("PXP2 RD_INIT failed\n");
return -EBUSY;
}
/* Timers bug workaround E2 only. We need to set the entire ILT to
* have entries with value "0" and valid bit on.
* This needs to be done by the first PF that is loaded in a path
* (i.e. common phase)
*/
if (!CHIP_IS_E1x(bp)) {
/* In E2 there is a bug in the timers block that can cause function 6 / 7
* (i.e. vnic3) to start even if it is marked as "scan-off".
* This occurs when a different function (func2,3) is being marked
* as "scan-off". Real-life scenario for example: if a driver is being
* load-unloaded while func6,7 are down. This will cause the timer to access
* the ilt, translate to a logical address and send a request to read/write.
* Since the ilt for the function that is down is not valid, this will cause
* a translation error which is unrecoverable.
* The Workaround is intended to make sure that when this happens nothing fatal
* will occur. The workaround:
* 1. First PF driver which loads on a path will:
* a. After taking the chip out of reset, by using pretend,
* it will write "0" to the following registers of
* the other vnics.
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
* And for itself it will write '1' to
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
* dmae-operations (writing to pram for example.)
* note: can be done for only function 6,7 but cleaner this
* way.
* b. Write zero+valid to the entire ILT.
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
* VNIC3 (of that port). The range allocated will be the
* entire ILT. This is needed to prevent ILT range error.
* 2. Any PF driver load flow:
* a. ILT update with the physical addresses of the allocated
* logical pages.
* b. Wait 20msec. - note that this timeout is needed to make
* sure there are no requests in one of the PXP internal
* queues with "old" ILT addresses.
* c. PF enable in the PGLC.
* d. Clear the was_error of the PF in the PGLC. (could have
* occurred while driver was down)
* e. PF enable in the CFC (WEAK + STRONG)
* f. Timers scan enable
* 3. PF driver unload flow:
* a. Clear the Timers scan_en.
* b. Polling for scan_on=0 for that PF.
* c. Clear the PF enable bit in the PXP.
* d. Clear the PF enable in the CFC (WEAK + STRONG)
* e. Write zero+valid to all ILT entries (The valid bit must
* stay set)
* f. If this is VNIC 3 of a port then also init
* first_timers_ilt_entry to zero and last_timers_ilt_entry
* to the last entry in the ILT.
*
* Notes:
* Currently the PF error in the PGLC is non recoverable.
* In the future the there will be a recovery routine for this error.
* Currently attention is masked.
* Having an MCP lock on the load/unload process does not guarantee that
* there is no Timer disable during Func6/7 enable. This is because the
* Timers scan is currently being cleared by the MCP on FLR.
* Step 2.d can be done only for PF6/7 and the driver can also check if
* there is error before clearing it. But the flow above is simpler and
* more general.
* All ILT entries are written by zero+valid and not just PF6/7
* ILT entries since in the future the ILT entries allocation for
* PF-s might be dynamic.
*/
struct ilt_client_info ilt_cli;
struct bnx2x_ilt ilt;
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
memset(&ilt, 0, sizeof(struct bnx2x_ilt));
/* initialize dummy TM client */
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
/* Step 1: set zeroes to all ilt page entries with valid bit on
* Step 2: set the timers first/last ilt entry to point
* to the entire range to prevent ILT range error for 3rd/4th
* vnic (this code assumes existence of the vnic)
*
* both steps performed by call to bnx2x_ilt_client_init_op()
* with dummy TM client
*
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
* and his brother are split registers
*/
bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
}
REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
if (!CHIP_IS_E1x(bp)) {
int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
/* let the HW do it's magic ... */
do {
msleep(200);
val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
} while (factor-- && (val != 1));
if (val != 1) {
BNX2X_ERR("ATC_INIT failed\n");
return -EBUSY;
}
}
bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
bnx2x_iov_init_dmae(bp);
/* clean the DMAE memory */
bp->dmae_ready = 1;
bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
/* QM queues pointers table */
bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
/* soft reset pulse */
REG_WR(bp, QM_REG_SOFT_RESET, 1);
REG_WR(bp, QM_REG_SOFT_RESET, 0);
if (CNIC_SUPPORT(bp))
bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
if (!CHIP_REV_IS_SLOW(bp))
/* enable hw interrupt from doorbell Q */
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
if (!CHIP_IS_E1(bp))
REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
if (IS_MF_AFEX(bp)) {
/* configure that VNTag and VLAN headers must be
* received in afex mode
*/
REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
} else {
/* Bit-map indicating which L2 hdrs may appear
* after the basic Ethernet header
*/
REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
bp->path_has_ovlan ? 7 : 6);
}
}
bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
if (!CHIP_IS_E1x(bp)) {
/* reset VFC memories */
REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
msleep(20);
}
bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
/* sync semi rtc */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0x80000000);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
0x80000000);
bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
if (!CHIP_IS_E1x(bp)) {
if (IS_MF_AFEX(bp)) {
/* configure that VNTag and VLAN headers must be
* sent in afex mode
*/
REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
} else {
REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
bp->path_has_ovlan ? 7 : 6);
}
}
REG_WR(bp, SRC_REG_SOFT_RST, 1);
bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
if (CNIC_SUPPORT(bp)) {
REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
}
REG_WR(bp, SRC_REG_SOFT_RST, 0);
if (sizeof(union cdu_context) != 1024)
/* we currently assume that a context is 1024 bytes */
dev_alert(&bp->pdev->dev,
"please adjust the size of cdu_context(%ld)\n",
(long)sizeof(union cdu_context));
bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
/* enable context validation interrupt from CFC */
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
/* set the thresholds to prevent CFC/CDU race */
REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
/* Reset PCIE errors for debug */
REG_WR(bp, 0x2814, 0xffffffff);
REG_WR(bp, 0x3820, 0xffffffff);
if (!CHIP_IS_E1x(bp)) {
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
}
bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
if (!CHIP_IS_E1(bp)) {
/* in E3 this done in per-port section */
if (!CHIP_IS_E3(bp))
REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
}
if (CHIP_IS_E1H(bp))
/* not applicable for E2 (and above ...) */
REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
if (CHIP_REV_IS_SLOW(bp))
msleep(200);
/* finish CFC init */
val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC LL_INIT failed\n");
return -EBUSY;
}
val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC AC_INIT failed\n");
return -EBUSY;
}
val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC CAM_INIT failed\n");
return -EBUSY;
}
REG_WR(bp, CFC_REG_DEBUG0, 0);
if (CHIP_IS_E1(bp)) {
/* read NIG statistic
to see if this is our first up since powerup */
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
/* do internal memory self test */
if ((val == 0) && bnx2x_int_mem_test(bp)) {
BNX2X_ERR("internal mem self test failed\n");
return -EBUSY;
}
}
bnx2x_setup_fan_failure_detection(bp);
/* clear PXP2 attentions */
REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
bnx2x_enable_blocks_attention(bp);
bnx2x_enable_blocks_parity(bp);
if (!BP_NOMCP(bp)) {
if (CHIP_IS_E1x(bp))
bnx2x__common_init_phy(bp);
} else
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
if (SHMEM2_HAS(bp, netproc_fw_ver))
SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
return 0;
}
/**
* bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
*
* @bp: driver handle
*/
static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
{
int rc = bnx2x_init_hw_common(bp);
if (rc)
return rc;
/* In E2 2-PORT mode, same ext phy is used for the two paths */
if (!BP_NOMCP(bp))
bnx2x__common_init_phy(bp);
return 0;
}
static int bnx2x_init_hw_port(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
u32 low, high;
u32 val, reg;
DP(NETIF_MSG_HW, "starting port init port %d\n", port);
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
bnx2x_init_block(bp, BLOCK_MISC, init_phase);
bnx2x_init_block(bp, BLOCK_PXP, init_phase);
bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
/* Timers bug workaround: disables the pf_master bit in pglue at
* common phase, we need to enable it here before any dmae access are
* attempted. Therefore we manually added the enable-master to the
* port phase (it also happens in the function phase)
*/
if (!CHIP_IS_E1x(bp))
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
bnx2x_init_block(bp, BLOCK_ATC, init_phase);
bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
bnx2x_init_block(bp, BLOCK_QM, init_phase);
bnx2x_init_block(bp, BLOCK_TCM, init_phase);
bnx2x_init_block(bp, BLOCK_UCM, init_phase);
bnx2x_init_block(bp, BLOCK_CCM, init_phase);
bnx2x_init_block(bp, BLOCK_XCM, init_phase);
/* QM cid (connection) count */
bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
if (CNIC_SUPPORT(bp)) {
bnx2x_init_block(bp, BLOCK_TM, init_phase);
REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
}
bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
if (IS_MF(bp))
low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
else if (bp->dev->mtu > 4096) {
if (bp->flags & ONE_PORT_FLAG)
low = 160;
else {
val = bp->dev->mtu;
/* (24*1024 + val*4)/256 */
low = 96 + (val/64) +
((val % 64) ? 1 : 0);
}
} else
low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
high = low + 56; /* 14*1024/256 */
REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
}
if (CHIP_MODE_IS_4_PORT(bp))
REG_WR(bp, (BP_PORT(bp) ?
BRB1_REG_MAC_GUARANTIED_1 :
BRB1_REG_MAC_GUARANTIED_0), 40);
bnx2x_init_block(bp, BLOCK_PRS, init_phase);
if (CHIP_IS_E3B0(bp)) {
if (IS_MF_AFEX(bp)) {
/* configure headers for AFEX mode */
REG_WR(bp, BP_PORT(bp) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
REG_WR(bp, BP_PORT(bp) ?
PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
REG_WR(bp, BP_PORT(bp) ?
PRS_REG_MUST_HAVE_HDRS_PORT_1 :
PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
} else {
/* Ovlan exists only if we are in multi-function +
* switch-dependent mode, in switch-independent there
* is no ovlan headers
*/
REG_WR(bp, BP_PORT(bp) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
(bp->path_has_ovlan ? 7 : 6));
}
}
bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
bnx2x_init_block(bp, BLOCK_USDM, init_phase);
bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
bnx2x_init_block(bp, BLOCK_USEM, init_phase);
bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
bnx2x_init_block(bp, BLOCK_UPB, init_phase);
bnx2x_init_block(bp, BLOCK_XPB, init_phase);
bnx2x_init_block(bp, BLOCK_PBF, init_phase);
if (CHIP_IS_E1x(bp)) {
/* configure PBF to work without PAUSE mtu 9000 */
REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* update threshold */
REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
/* update init credit */
REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
/* probe changes */
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
udelay(50);
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
}
if (CNIC_SUPPORT(bp))
bnx2x_init_block(bp, BLOCK_SRC, init_phase);
bnx2x_init_block(bp, BLOCK_CDU, init_phase);
bnx2x_init_block(bp, BLOCK_CFC, init_phase);
if (CHIP_IS_E1(bp)) {
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
bnx2x_init_block(bp, BLOCK_HC, init_phase);
bnx2x_init_block(bp, BLOCK_IGU, init_phase);
bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
/* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
* - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention" */
val = IS_MF(bp) ? 0xF7 : 0x7;
/* Enable DCBX attention for all but E1 */
val |= CHIP_IS_E1(bp) ? 0 : 0x10;
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
/* SCPAD_PARITY should NOT trigger close the gates */
reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
REG_WR(bp, reg,
REG_RD(bp, reg) &
~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
REG_WR(bp, reg,
REG_RD(bp, reg) &
~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
bnx2x_init_block(bp, BLOCK_NIG, init_phase);
if (!CHIP_IS_E1x(bp)) {
/* Bit-map indicating which L2 hdrs may appear after the
* basic Ethernet header
*/
if (IS_MF_AFEX(bp))
REG_WR(bp, BP_PORT(bp) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
else
REG_WR(bp, BP_PORT(bp) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC,
IS_MF_SD(bp) ? 7 : 6);
if (CHIP_IS_E3(bp))
REG_WR(bp, BP_PORT(bp) ?
NIG_REG_LLH1_MF_MODE :
NIG_REG_LLH_MF_MODE, IS_MF(bp));
}
if (!CHIP_IS_E3(bp))
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
if (!CHIP_IS_E1(bp)) {
/* 0x2 disable mf_ov, 0x1 enable */
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
(IS_MF_SD(bp) ? 0x1 : 0x2));
if (!CHIP_IS_E1x(bp)) {
val = 0;
switch (bp->mf_mode) {
case MULTI_FUNCTION_SD:
val = 1;
break;
case MULTI_FUNCTION_SI:
case MULTI_FUNCTION_AFEX:
val = 2;
break;
}
REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
NIG_REG_LLH0_CLS_TYPE), val);
}
{
REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
}
}
/* If SPIO5 is set to generate interrupts, enable it for this port */
val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
if (val & MISC_SPIO_SPIO5) {
u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
val = REG_RD(bp, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(bp, reg_addr, val);
}
return 0;
}
static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
{
int reg;
u32 wb_write[2];
if (CHIP_IS_E1(bp))
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
else
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
wb_write[0] = ONCHIP_ADDR1(addr);
wb_write[1] = ONCHIP_ADDR2(addr);
REG_WR_DMAE(bp, reg, wb_write, 2);
}
void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
{
u32 data, ctl, cnt = 100;
u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
u32 sb_bit = 1 << (idu_sb_id%32);
u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(bp))
return;
data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
<< IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET |
IGU_REGULAR_BCLEANUP;
ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
func_encode << IGU_CTRL_REG_FID_SHIFT |
IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
data, igu_addr_data);
REG_WR(bp, igu_addr_data, data);
mmiowb();
barrier();
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(bp, igu_addr_ctl, ctl);
mmiowb();
barrier();
/* wait for clean up to finish */
while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
msleep(20);
if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
DP(NETIF_MSG_HW,
"Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
}
}
static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
{
bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
}
static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
{
u32 i, base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++)
bnx2x_ilt_wr(bp, i, 0);
}
static void bnx2x_init_searcher(struct bnx2x *bp)
{
int port = BP_PORT(bp);
bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
/* T1 hash bits value determines the T1 number of entries */
REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
}
static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
{
int rc;
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_switch_update_params *switch_update_params =
&func_params.params.switch_update;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
/* Function parameters */
__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
&switch_update_params->changes);
if (suspend)
__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
&switch_update_params->changes);
rc = bnx2x_func_state_change(bp, &func_params);
return rc;
}
static int bnx2x_reset_nic_mode(struct bnx2x *bp)
{
int rc, i, port = BP_PORT(bp);
int vlan_en = 0, mac_en[NUM_MACS];
/* Close input from network */
if (bp->mf_mode == SINGLE_FUNCTION) {
bnx2x_set_rx_filter(&bp->link_params, 0);
} else {
vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
NIG_REG_LLH0_FUNC_EN);
REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
NIG_REG_LLH0_FUNC_EN, 0);
for (i = 0; i < NUM_MACS; i++) {
mac_en[i] = REG_RD(bp, port ?
(NIG_REG_LLH1_FUNC_MEM_ENABLE +
4 * i) :
(NIG_REG_LLH0_FUNC_MEM_ENABLE +
4 * i));
REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
4 * i) :
(NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
}
}
/* Close BMC to host */
REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
/* Suspend Tx switching to the PF. Completion of this ramrod
* further guarantees that all the packets of that PF / child
* VFs in BRB were processed by the Parser, so it is safe to
* change the NIC_MODE register.
*/
rc = bnx2x_func_switch_update(bp, 1);
if (rc) {
BNX2X_ERR("Can't suspend tx-switching!\n");
return rc;
}
/* Change NIC_MODE register */
REG_WR(bp, PRS_REG_NIC_MODE, 0);
/* Open input from network */
if (bp->mf_mode == SINGLE_FUNCTION) {
bnx2x_set_rx_filter(&bp->link_params, 1);
} else {
REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
NIG_REG_LLH0_FUNC_EN, vlan_en);
for (i = 0; i < NUM_MACS; i++) {
REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
4 * i) :
(NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
mac_en[i]);
}
}
/* Enable BMC to host */
REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
/* Resume Tx switching to the PF */
rc = bnx2x_func_switch_update(bp, 0);
if (rc) {
BNX2X_ERR("Can't resume tx-switching!\n");
return rc;
}
DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
return 0;
}
int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
{
int rc;
bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
if (CONFIGURE_NIC_MODE(bp)) {
/* Configure searcher as part of function hw init */
bnx2x_init_searcher(bp);
/* Reset NIC mode */
rc = bnx2x_reset_nic_mode(bp);
if (rc)
BNX2X_ERR("Can't change NIC mode!\n");
return rc;
}
return 0;
}
/* previous driver DMAE transaction may have occurred when pre-boot stage ended
* and boot began, or when kdump kernel was loaded. Either case would invalidate
* the addresses of the transaction, resulting in was-error bit set in the pci
* causing all hw-to-host pcie transactions to timeout. If this happened we want
* to clear the interrupt which detected this from the pglueb and the was done
* bit
*/
static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
{
if (!CHIP_IS_E1x(bp))
REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
1 << BP_ABS_FUNC(bp));
}
static int bnx2x_init_hw_func(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int init_phase = PHASE_PF0 + func;
struct bnx2x_ilt *ilt = BP_ILT(bp);
u16 cdu_ilt_start;
u32 addr, val;
u32 main_mem_base, main_mem_size, main_mem_prty_clr;
int i, main_mem_width, rc;
DP(NETIF_MSG_HW, "starting func init func %d\n", func);
/* FLR cleanup - hmmm */
if (!CHIP_IS_E1x(bp)) {
rc = bnx2x_pf_flr_clnup(bp);
if (rc) {
bnx2x_fw_dump(bp);
return rc;
}
}
/* set MSI reconfigure capability */
if (bp->common.int_block == INT_BLOCK_HC) {
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(bp, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(bp, addr, val);
}
bnx2x_init_block(bp, BLOCK_PXP, init_phase);
bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
ilt = BP_ILT(bp);
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
if (IS_SRIOV(bp))
cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
* those of the VFs, so start line should be reset
*/
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
for (i = 0; i < L2_ILT_LINES(bp); i++) {
ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
ilt->lines[cdu_ilt_start + i].page_mapping =
bp->context[i].cxt_mapping;
ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
}
bnx2x_ilt_init_op(bp, INITOP_SET);
if (!CONFIGURE_NIC_MODE(bp)) {
bnx2x_init_searcher(bp);
REG_WR(bp, PRS_REG_NIC_MODE, 0);
DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
} else {
/* Set NIC mode */
REG_WR(bp, PRS_REG_NIC_MODE, 1);
DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
}
if (!CHIP_IS_E1x(bp)) {
u32 pf_conf = IGU_PF_CONF_FUNC_EN;
/* Turn on a single ISR mode in IGU if driver is going to use
* INT#x or MSI
*/
if (!(bp->flags & USING_MSIX_FLAG))
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
/*
* Timers workaround bug: function init part.
* Need to wait 20msec after initializing ILT,
* needed to make sure there are no requests in
* one of the PXP internal queues with "old" ILT addresses
*/
msleep(20);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function
* init
*/
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
/* Enable the function in IGU */
REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
}
bp->dmae_ready = 1;
bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
bnx2x_clean_pglue_errors(bp);
bnx2x_init_block(bp, BLOCK_ATC, init_phase);
bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
bnx2x_init_block(bp, BLOCK_NIG, init_phase);
bnx2x_init_block(bp, BLOCK_SRC, init_phase);
bnx2x_init_block(bp, BLOCK_MISC, init_phase);
bnx2x_init_block(bp, BLOCK_TCM, init_phase);
bnx2x_init_block(bp, BLOCK_UCM, init_phase);
bnx2x_init_block(bp, BLOCK_CCM, init_phase);
bnx2x_init_block(bp, BLOCK_XCM, init_phase);
bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
bnx2x_init_block(bp, BLOCK_USEM, init_phase);
bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
if (!CHIP_IS_E1x(bp))
REG_WR(bp, QM_REG_PF_EN, 1);
if (!CHIP_IS_E1x(bp)) {
REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
}
bnx2x_init_block(bp, BLOCK_QM, init_phase);
bnx2x_init_block(bp, BLOCK_TM, init_phase);
bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
bnx2x_iov_init_dq(bp);
bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
bnx2x_init_block(bp, BLOCK_PRS, init_phase);
bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
bnx2x_init_block(bp, BLOCK_USDM, init_phase);
bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
bnx2x_init_block(bp, BLOCK_UPB, init_phase);
bnx2x_init_block(bp, BLOCK_XPB, init_phase);
bnx2x_init_block(bp, BLOCK_PBF, init_phase);
if (!CHIP_IS_E1x(bp))
REG_WR(bp, PBF_REG_DISABLE_PF, 0);
bnx2x_init_block(bp, BLOCK_CDU, init_phase);
bnx2x_init_block(bp, BLOCK_CFC, init_phase);
if (!CHIP_IS_E1x(bp))
REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
if (IS_MF(bp)) {
if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
bp->mf_ov);
}
}
bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
/* HC init per function */
if (bp->common.int_block == INT_BLOCK_HC) {
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
bnx2x_init_block(bp, BLOCK_HC, init_phase);
} else {
int num_segs, sb_idx, prod_offset;
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
if (!CHIP_IS_E1x(bp)) {
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
bnx2x_init_block(bp, BLOCK_IGU, init_phase);
if (!CHIP_IS_E1x(bp)) {
int dsb_idx = 0;
/**
* Producer memory:
* E2 mode: address 0-135 match to the mapping memory;
* 136 - PF0 default prod; 137 - PF1 default prod;
* 138 - PF2 default prod; 139 - PF3 default prod;
* 140 - PF0 attn prod; 141 - PF1 attn prod;
* 142 - PF2 attn prod; 143 - PF3 attn prod;
* 144-147 reserved.
*
* E1.5 mode - In backward compatible mode;
* for non default SB; each even line in the memory
* holds the U producer and each odd line hold
* the C producer. The first 128 producers are for
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
* producers are for the DSB for each PF.
* Each PF has five segments: (the order inside each
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
* 144-147 attn prods;
*/
/* non-default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(bp) ?
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
prod_offset = (bp->igu_base_sb + sb_idx) *
num_segs;
for (i = 0; i < num_segs; i++) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i) * 4;
REG_WR(bp, addr, 0);
}
/* send consumer update with value 0 */
bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_igu_clear_sb(bp,
bp->igu_base_sb + sb_idx);
}
/* default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(bp) ?
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
if (CHIP_MODE_IS_4_PORT(bp))
dsb_idx = BP_FUNC(bp);
else
dsb_idx = BP_VN(bp);
prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
IGU_BC_BASE_DSB_PROD + dsb_idx :
IGU_NORM_BASE_DSB_PROD + dsb_idx);
/*
* igu prods come in chunks of E1HVN_MAX (4) -
* does not matters what is the current chip mode
*/
for (i = 0; i < (num_segs * E1HVN_MAX);
i += E1HVN_MAX) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i)*4;
REG_WR(bp, addr, 0);
}
/* send consumer update with 0 */
if (CHIP_INT_MODE_IS_BC(bp)) {
bnx2x_ack_sb(bp, bp->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, bp->igu_dsb_id,
CSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, bp->igu_dsb_id,
XSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, bp->igu_dsb_id,
TSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, bp->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
} else {
bnx2x_ack_sb(bp, bp->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, bp->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
}
bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
/* !!! These should become driver const once
rf-tool supports split-68 const */
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
}
}
/* Reset PCIE errors for debug */
REG_WR(bp, 0x2114, 0xffffffff);
REG_WR(bp, 0x2120, 0xffffffff);
if (CHIP_IS_E1x(bp)) {
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
main_mem_base = HC_REG_MAIN_MEMORY +
BP_PORT(bp) * (main_mem_size * 4);
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
main_mem_width = 8;
val = REG_RD(bp, main_mem_prty_clr);
if (val)
DP(NETIF_MSG_HW,
"Hmmm... Parity errors in HC block during function init (0x%x)!\n",
val);
/* Clear "false" parity errors in MSI-X table */
for (i = main_mem_base;
i < main_mem_base + main_mem_size * 4;
i += main_mem_width) {
bnx2x_read_dmae(bp, i, main_mem_width / 4);
bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
i, main_mem_width / 4);
}
/* Clear HC parity attention */
REG_RD(bp, main_mem_prty_clr);
}
#ifdef BNX2X_STOP_ON_ERROR
/* Enable STORMs SP logging */
REG_WR8(bp, BAR_USTRORM_INTMEM +
USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
REG_WR8(bp, BAR_TSTRORM_INTMEM +
TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
REG_WR8(bp, BAR_XSTRORM_INTMEM +
XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
#endif
bnx2x_phy_probe(&bp->link_params);
return 0;
}
void bnx2x_free_mem_cnic(struct bnx2x *bp)
{
bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
if (!CHIP_IS_E1x(bp))
BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
sizeof(struct host_hc_status_block_e2));
else
BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
sizeof(struct host_hc_status_block_e1x));
BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
}
void bnx2x_free_mem(struct bnx2x *bp)
{
int i;
BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
if (IS_VF(bp))
return;
BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
sizeof(struct host_sp_status_block));
BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
sizeof(struct bnx2x_slowpath));
for (i = 0; i < L2_ILT_LINES(bp); i++)
BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
bp->context[i].size);
bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
BNX2X_FREE(bp->ilt->lines);
BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
BCM_PAGE_SIZE * NUM_EQ_PAGES);
BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
bnx2x_iov_free_mem(bp);
}
int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
{
if (!CHIP_IS_E1x(bp)) {
/* size = the status block + ramrod buffers */
bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
sizeof(struct host_hc_status_block_e2));
if (!bp->cnic_sb.e2_sb)
goto alloc_mem_err;
} else {
bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
sizeof(struct host_hc_status_block_e1x));
if (!bp->cnic_sb.e1x_sb)
goto alloc_mem_err;
}
if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
/* allocate searcher T2 table, as it wasn't allocated before */
bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
if (!bp->t2)
goto alloc_mem_err;
}
/* write address to which L5 should insert its values */
bp->cnic_eth_dev.addr_drv_info_to_mcp =
&bp->slowpath->drv_info_to_mcp;
if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnx2x_free_mem_cnic(bp);
BNX2X_ERR("Can't allocate memory\n");
return -ENOMEM;
}
int bnx2x_alloc_mem(struct bnx2x *bp)
{
int i, allocated, context_size;
if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
/* allocate searcher T2 table */
bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
if (!bp->t2)
goto alloc_mem_err;
}
bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
sizeof(struct host_sp_status_block));
if (!bp->def_status_blk)
goto alloc_mem_err;
bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
sizeof(struct bnx2x_slowpath));
if (!bp->slowpath)
goto alloc_mem_err;
/* Allocate memory for CDU context:
* This memory is allocated separately and not in the generic ILT
* functions because CDU differs in few aspects:
* 1. There are multiple entities allocating memory for context -
* 'regular' driver, CNIC and SRIOV driver. Each separately controls
* its own ILT lines.
* 2. Since CDU page-size is not a single 4KB page (which is the case
* for the other ILT clients), to be efficient we want to support
* allocation of sub-page-size in the last entry.
* 3. Context pointers are used by the driver to pass to FW / update
* the context (for the other ILT clients the pointers are used just to
* free the memory during unload).
*/
context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
for (i = 0, allocated = 0; allocated < context_size; i++) {
bp->context[i].size = min(CDU_ILT_PAGE_SZ,
(context_size - allocated));
bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
bp->context[i].size);
if (!bp->context[i].vcxt)
goto alloc_mem_err;
allocated += bp->context[i].size;
}
bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
GFP_KERNEL);
if (!bp->ilt->lines)
goto alloc_mem_err;
if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
goto alloc_mem_err;
if (bnx2x_iov_alloc_mem(bp))
goto alloc_mem_err;
/* Slow path ring */
bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
if (!bp->spq)
goto alloc_mem_err;
/* EQ */
bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
BCM_PAGE_SIZE * NUM_EQ_PAGES);
if (!bp->eq_ring)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnx2x_free_mem(bp);
BNX2X_ERR("Can't allocate memory\n");
return -ENOMEM;
}
/*
* Init service functions
*/
int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
struct bnx2x_vlan_mac_obj *obj, bool set,
int mac_type, unsigned long *ramrod_flags)
{
int rc;
struct bnx2x_vlan_mac_ramrod_params ramrod_param;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Fill general parameters */
ramrod_param.vlan_mac_obj = obj;
ramrod_param.ramrod_flags = *ramrod_flags;
/* Fill a user request section if needed */
if (!test_bit(RAMROD_CONT, ramrod_flags)) {
memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
/* Set the command: ADD or DEL */
if (set)
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
else
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
}
rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
if (rc == -EEXIST) {
DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
/* do not treat adding same MAC as error */
rc = 0;
} else if (rc < 0)
BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
return rc;
}
int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
struct bnx2x_vlan_mac_obj *obj, bool set,
unsigned long *ramrod_flags)
{
int rc;
struct bnx2x_vlan_mac_ramrod_params ramrod_param;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Fill general parameters */
ramrod_param.vlan_mac_obj = obj;
ramrod_param.ramrod_flags = *ramrod_flags;
/* Fill a user request section if needed */
if (!test_bit(RAMROD_CONT, ramrod_flags)) {
ramrod_param.user_req.u.vlan.vlan = vlan;
__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
/* Set the command: ADD or DEL */
if (set)
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
else
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
}
rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
if (rc == -EEXIST) {
/* Do not treat adding same vlan as error. */
DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
rc = 0;
} else if (rc < 0) {
BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
}
return rc;
}
static int bnx2x_del_all_vlans(struct bnx2x *bp)
{
struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
unsigned long ramrod_flags = 0, vlan_flags = 0;
struct bnx2x_vlan_entry *vlan;
int rc;
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
__set_bit(BNX2X_VLAN, &vlan_flags);
rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
if (rc)
return rc;
/* Mark that hw forgot all entries */
list_for_each_entry(vlan, &bp->vlan_reg, link)
vlan->hw = false;
bp->vlan_cnt = 0;
return 0;
}
int bnx2x_del_all_macs(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *mac_obj,
int mac_type, bool wait_for_comp)
{
int rc;
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
/* Wait for completion of requested */
if (wait_for_comp)
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Set the mac type of addresses we want to clear */
__set_bit(mac_type, &vlan_mac_flags);
rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
if (rc < 0)
BNX2X_ERR("Failed to delete MACs: %d\n", rc);
return rc;
}
int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
{
if (IS_PF(bp)) {
unsigned long ramrod_flags = 0;
DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
&bp->sp_objs->mac_obj, set,
BNX2X_ETH_MAC, &ramrod_flags);
} else { /* vf */
return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
bp->fp->index, set);
}
}
int bnx2x_setup_leading(struct bnx2x *bp)
{
if (IS_PF(bp))
return bnx2x_setup_queue(bp, &bp->fp[0], true);
else /* VF */
return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
}
/**
* bnx2x_set_int_mode - configure interrupt mode
*
* @bp: driver handle
*
* In case of MSI-X it will also try to enable MSI-X.
*/
int bnx2x_set_int_mode(struct bnx2x *bp)
{
int rc = 0;
if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
return -EINVAL;
}
switch (int_mode) {
case BNX2X_INT_MODE_MSIX:
/* attempt to enable msix */
rc = bnx2x_enable_msix(bp);
/* msix attained */
if (!rc)
return 0;
/* vfs use only msix */
if (rc && IS_VF(bp))
return rc;
/* failed to enable multiple MSI-X */
BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
bp->num_queues,
1 + bp->num_cnic_queues);
/* falling through... */
case BNX2X_INT_MODE_MSI:
bnx2x_enable_msi(bp);
/* falling through... */
case BNX2X_INT_MODE_INTX:
bp->num_ethernet_queues = 1;
bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
BNX2X_DEV_INFO("set number of queues to 1\n");
break;
default:
BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
return -EINVAL;
}
return 0;
}
/* must be called prior to any HW initializations */
static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
{
if (IS_SRIOV(bp))
return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
return L2_ILT_LINES(bp);
}
void bnx2x_ilt_set_info(struct bnx2x *bp)
{
struct ilt_client_info *ilt_client;
struct bnx2x_ilt *ilt = BP_ILT(bp);
u16 line = 0;
ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
/* CDU */
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
ilt_client->client_num = ILT_CLIENT_CDU;
ilt_client->page_size = CDU_ILT_PAGE_SZ;
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
ilt_client->start = line;
line += bnx2x_cid_ilt_lines(bp);
if (CNIC_SUPPORT(bp))
line += CNIC_ILT_LINES;
ilt_client->end = line - 1;
DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start,
ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* QM */
if (QM_INIT(bp->qm_cid_count)) {
ilt_client = &ilt->clients[ILT_CLIENT_QM];
ilt_client->client_num = ILT_CLIENT_QM;
ilt_client->page_size = QM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
/* 4 bytes for each cid */
line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
QM_ILT_PAGE_SZ);
ilt_client->end = line - 1;
DP(NETIF_MSG_IFUP,
"ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start,
ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
if (CNIC_SUPPORT(bp)) {
/* SRC */
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
ilt_client->client_num = ILT_CLIENT_SRC;
ilt_client->page_size = SRC_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += SRC_ILT_LINES;
ilt_client->end = line - 1;
DP(NETIF_MSG_IFUP,
"ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start,
ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* TM */
ilt_client = &ilt->clients[ILT_CLIENT_TM];
ilt_client->client_num = ILT_CLIENT_TM;
ilt_client->page_size = TM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += TM_ILT_LINES;
ilt_client->end = line - 1;
DP(NETIF_MSG_IFUP,
"ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start,
ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
BUG_ON(line > ILT_MAX_LINES);
}
/**
* bnx2x_pf_q_prep_init - prepare INIT transition parameters
*
* @bp: driver handle
* @fp: pointer to fastpath
* @init_params: pointer to parameters structure
*
* parameters configured:
* - HC configuration
* - Queue's CDU context
*/
static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
{
u8 cos;
int cxt_index, cxt_offset;
/* FCoE Queue uses Default SB, thus has no HC capabilities */
if (!IS_FCOE_FP(fp)) {
__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
/* If HC is supported, enable host coalescing in the transition
* to INIT state.
*/
__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
/* HC rate */
init_params->rx.hc_rate = bp->rx_ticks ?
(1000000 / bp->rx_ticks) : 0;
init_params->tx.hc_rate = bp->tx_ticks ?
(1000000 / bp->tx_ticks) : 0;
/* FW SB ID */
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
fp->fw_sb_id;
/*
* CQ index among the SB indices: FCoE clients uses the default
* SB, therefore it's different.
*/
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
}
/* set maximum number of COSs supported by this queue */
init_params->max_cos = fp->max_cos;
DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
fp->index, init_params->max_cos);
/* set the context pointers queue object */
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
ILT_PAGE_CIDS);
init_params->cxts[cos] =
&bp->context[cxt_index].vcxt[cxt_offset].eth;
}
}
static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
struct bnx2x_queue_state_params *q_params,
struct bnx2x_queue_setup_tx_only_params *tx_only_params,
int tx_index, bool leading)
{
memset(tx_only_params, 0, sizeof(*tx_only_params));
/* Set the command */
q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
/* Set tx-only QUEUE flags: don't zero statistics */
tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
/* choose the index of the cid to send the slow path on */
tx_only_params->cid_index = tx_index;
/* Set general TX_ONLY_SETUP parameters */
bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
/* Set Tx TX_ONLY_SETUP parameters */
bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
DP(NETIF_MSG_IFUP,
"preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
tx_only_params->gen_params.spcl_id, tx_only_params->flags);
/* send the ramrod */
return bnx2x_queue_state_change(bp, q_params);
}
/**
* bnx2x_setup_queue - setup queue
*
* @bp: driver handle
* @fp: pointer to fastpath
* @leading: is leading
*
* This function performs 2 steps in a Queue state machine
* actually: 1) RESET->INIT 2) INIT->SETUP
*/
int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
bool leading)
{
struct bnx2x_queue_state_params q_params = {NULL};
struct bnx2x_queue_setup_params *setup_params =
&q_params.params.setup;
struct bnx2x_queue_setup_tx_only_params *tx_only_params =
&q_params.params.tx_only;
int rc;
u8 tx_index;
DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
/* reset IGU state skip FCoE L2 queue */
if (!IS_FCOE_FP(fp))
bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
IGU_INT_ENABLE, 0);
q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* We want to wait for completion in this context */
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* Prepare the INIT parameters */
bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
/* Set the command */
q_params.cmd = BNX2X_Q_CMD_INIT;
/* Change the state to INIT */
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
return rc;
}
DP(NETIF_MSG_IFUP, "init complete\n");
/* Now move the Queue to the SETUP state... */
memset(setup_params, 0, sizeof(*setup_params));
/* Set QUEUE flags */
setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
/* Set general SETUP parameters */
bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
FIRST_TX_COS_INDEX);
bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
&setup_params->rxq_params);
bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
FIRST_TX_COS_INDEX);
/* Set the command */
q_params.cmd = BNX2X_Q_CMD_SETUP;
if (IS_FCOE_FP(fp))
bp->fcoe_init = true;
/* Change the state to SETUP */
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
return rc;
}
/* loop through the relevant tx-only indices */
for (tx_index = FIRST_TX_ONLY_COS_INDEX;
tx_index < fp->max_cos;
tx_index++) {
/* prepare and send tx-only ramrod*/
rc = bnx2x_setup_tx_only(bp, fp, &q_params,
tx_only_params, tx_index, leading);
if (rc) {
BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
fp->index, tx_index);
return rc;
}
}
return rc;
}
static int bnx2x_stop_queue(struct bnx2x *bp, int index)
{
struct bnx2x_fastpath *fp = &bp->fp[index];
struct bnx2x_fp_txdata *txdata;
struct bnx2x_queue_state_params q_params = {NULL};
int rc, tx_index;
DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* We want to wait for completion in this context */
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* close tx-only connections */
for (tx_index = FIRST_TX_ONLY_COS_INDEX;
tx_index < fp->max_cos;
tx_index++){
/* ascertain this is a normal queue*/
txdata = fp->txdata_ptr[tx_index];
DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
txdata->txq_index);
/* send halt terminate on tx-only connection */
q_params.cmd = BNX2X_Q_CMD_TERMINATE;
memset(&q_params.params.terminate, 0,
sizeof(q_params.params.terminate));
q_params.params.terminate.cid_index = tx_index;
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc)
return rc;
/* send halt terminate on tx-only connection */
q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
memset(&q_params.params.cfc_del, 0,
sizeof(q_params.params.cfc_del));
q_params.params.cfc_del.cid_index = tx_index;
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc)
return rc;
}
/* Stop the primary connection: */
/* ...halt the connection */
q_params.cmd = BNX2X_Q_CMD_HALT;
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc)
return rc;
/* ...terminate the connection */
q_params.cmd = BNX2X_Q_CMD_TERMINATE;
memset(&q_params.params.terminate, 0,
sizeof(q_params.params.terminate));
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc)
return rc;
/* ...delete cfc entry */
q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
memset(&q_params.params.cfc_del, 0,
sizeof(q_params.params.cfc_del));
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
return bnx2x_queue_state_change(bp, &q_params);
}
static void bnx2x_reset_func(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int i;
/* Disable the function in the FW */
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
/* FP SBs */
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
SB_DISABLED);
}
if (CNIC_LOADED(bp))
/* CNIC SB */
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
/* SP SB */
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
SB_DISABLED);
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
0);
/* Configure IGU */
if (bp->common.int_block == INT_BLOCK_HC) {
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
} else {
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
if (CNIC_LOADED(bp)) {
/* Disable Timer scan */
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
/*
* Wait for at least 10ms and up to 2 second for the timers
* scan to complete
*/
for (i = 0; i < 200; i++) {
usleep_range(10000, 20000);
if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
break;
}
}
/* Clear ILT */
bnx2x_clear_func_ilt(bp, func);
/* Timers workaround bug for E2: if this is vnic-3,
* we need to set the entire ilt range for this timers.
*/
if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
struct ilt_client_info ilt_cli;
/* use dummy TM client */
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
}
/* this assumes that reset_port() called before reset_func()*/
if (!CHIP_IS_E1x(bp))
bnx2x_pf_disable(bp);
bp->dmae_ready = 0;
}
static void bnx2x_reset_port(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 val;
/* Reset physical Link */
bnx2x__link_reset(bp);
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
/* Do not rcv packets to BRB */
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
/* Do not direct rcv packets that are not for MCP to the BRB */
REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Configure AEU */
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
msleep(100);
/* Check for BRB port occupancy */
val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
if (val)
DP(NETIF_MSG_IFDOWN,
"BRB1 is not empty %d blocks are occupied\n", val);
/* TODO: Close Doorbell port? */
}
static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
{
struct bnx2x_func_state_params func_params = {NULL};
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_HW_RESET;
func_params.params.hw_init.load_phase = load_code;
return bnx2x_func_state_change(bp, &func_params);
}
static int bnx2x_func_stop(struct bnx2x *bp)
{
struct bnx2x_func_state_params func_params = {NULL};
int rc;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_STOP;
/*
* Try to stop the function the 'good way'. If fails (in case
* of a parity error during bnx2x_chip_cleanup()) and we are
* not in a debug mode, perform a state transaction in order to
* enable further HW_RESET transaction.
*/
rc = bnx2x_func_state_change(bp, &func_params);
if (rc) {
#ifdef BNX2X_STOP_ON_ERROR
return rc;
#else
BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
return bnx2x_func_state_change(bp, &func_params);
#endif
}
return 0;
}
/**
* bnx2x_send_unload_req - request unload mode from the MCP.
*
* @bp: driver handle
* @unload_mode: requested function's unload mode
*
* Return unload mode returned by the MCP: COMMON, PORT or FUNC.
*/
u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
{
u32 reset_code = 0;
int port = BP_PORT(bp);
/* Select the UNLOAD request mode */
if (unload_mode == UNLOAD_NORMAL)
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
else if (bp->flags & NO_WOL_FLAG)
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
else if (bp->wol) {
u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
u8 *mac_addr = bp->dev->dev_addr;
struct pci_dev *pdev = bp->pdev;
u32 val;
u16 pmc;
/* The mac address is written to entries 1-4 to
* preserve entry 0 which is used by the PMF
*/
u8 entry = (BP_VN(bp) + 1)*8;
val = (mac_addr[0] << 8) | mac_addr[1];
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
/* Enable the PME and clear the status */
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
} else
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
/* Send the request to the MCP */
if (!BP_NOMCP(bp))
reset_code = bnx2x_fw_command(bp, reset_code, 0);
else {
int path = BP_PATH(bp);
DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
bnx2x_load_count[path][2]);
bnx2x_load_count[path][0]--;
bnx2x_load_count[path][1 + port]--;
DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
bnx2x_load_count[path][2]);
if (bnx2x_load_count[path][0] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
else if (bnx2x_load_count[path][1 + port] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
else
reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
}
return reset_code;
}
/**
* bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
*
* @bp: driver handle
* @keep_link: true iff link should be kept up
*/
void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
{
u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
/* Report UNLOAD_DONE to MCP */
if (!BP_NOMCP(bp))
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
}
static int bnx2x_func_wait_started(struct bnx2x *bp)
{
int tout = 50;
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
if (!bp->port.pmf)
return 0;
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
* 1. Sync IRS for default SB
* 2. Sync SP queue - this guarantees us that attention handling started
* 3. Wait, that TX disable/enable transaction completes
*
* 1+2 guarantee that if DCBx attention was scheduled it already changed
* pending bit of transaction from STARTED-->TX_STOPPED, if we already
* received completion for the transaction the state is TX_STOPPED.
* State will return to STARTED after completion of TX_STOPPED-->STARTED
* transaction.
*/
/* make sure default SB ISR is done */
if (msix)
synchronize_irq(bp->msix_table[0].vector);
else
synchronize_irq(bp->pdev->irq);
flush_workqueue(bnx2x_wq);
flush_workqueue(bnx2x_iov_wq);
while (bnx2x_func_get_state(bp, &bp->func_obj) !=
BNX2X_F_STATE_STARTED && tout--)
msleep(20);
if (bnx2x_func_get_state(bp, &bp->func_obj) !=
BNX2X_F_STATE_STARTED) {
#ifdef BNX2X_STOP_ON_ERROR
BNX2X_ERR("Wrong function state\n");
return -EBUSY;
#else
/*
* Failed to complete the transaction in a "good way"
* Force both transactions with CLR bit
*/
struct bnx2x_func_state_params func_params = {NULL};
DP(NETIF_MSG_IFDOWN,
"Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
func_params.f_obj = &bp->func_obj;
__set_bit(RAMROD_DRV_CLR_ONLY,
&func_params.ramrod_flags);
/* STARTED-->TX_ST0PPED */
func_params.cmd = BNX2X_F_CMD_TX_STOP;
bnx2x_func_state_change(bp, &func_params);
/* TX_ST0PPED-->STARTED */
func_params.cmd = BNX2X_F_CMD_TX_START;
return bnx2x_func_state_change(bp, &func_params);
#endif
}
return 0;
}
static void bnx2x_disable_ptp(struct bnx2x *bp)
{
int port = BP_PORT(bp);
/* Disable sending PTP packets to host */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
/* Reset PTP event detection rules */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
/* Disable the PTP feature */
REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
NIG_REG_P0_PTP_EN, 0x0);
}
/* Called during unload, to stop PTP-related stuff */
static void bnx2x_stop_ptp(struct bnx2x *bp)
{
/* Cancel PTP work queue. Should be done after the Tx queues are
* drained to prevent additional scheduling.
*/
cancel_work_sync(&bp->ptp_task);
if (bp->ptp_tx_skb) {
dev_kfree_skb_any(bp->ptp_tx_skb);
bp->ptp_tx_skb = NULL;
}
/* Disable PTP in HW */
bnx2x_disable_ptp(bp);
DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
}
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
{
int port = BP_PORT(bp);
int i, rc = 0;
u8 cos;
struct bnx2x_mcast_ramrod_params rparam = {NULL};
u32 reset_code;
/* Wait until tx fastpath tasks complete */
for_each_tx_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
for_each_cos_in_tx_queue(fp, cos)
rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
#ifdef BNX2X_STOP_ON_ERROR
if (rc)
return;
#endif
}
/* Give HW time to discard old tx messages */
usleep_range(1000, 2000);
/* Clean all ETH MACs */
rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
false);
if (rc < 0)
BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
/* Clean up UC list */
rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
true);
if (rc < 0)
BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
rc);
/* The whole *vlan_obj structure may be not initialized if VLAN
* filtering offload is not supported by hardware. Currently this is
* true for all hardware covered by CHIP_IS_E1x().
*/
if (!CHIP_IS_E1x(bp)) {
/* Remove all currently configured VLANs */
rc = bnx2x_del_all_vlans(bp);
if (rc < 0)
BNX2X_ERR("Failed to delete all VLANs\n");
}
/* Disable LLH */
if (!CHIP_IS_E1(bp))
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
/* Set "drop all" (stop Rx).
* We need to take a netif_addr_lock() here in order to prevent
* a race between the completion code and this code.
*/
netif_addr_lock_bh(bp->dev);
/* Schedule the rx_mode command */
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
else
bnx2x_set_storm_rx_mode(bp);
/* Cleanup multicast configuration */
rparam.mcast_obj = &bp->mcast_obj;
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
if (rc < 0)
BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
netif_addr_unlock_bh(bp->dev);
bnx2x_iov_chip_cleanup(bp);
/*
* Send the UNLOAD_REQUEST to the MCP. This will return if
* this function should perform FUNC, PORT or COMMON HW
* reset.
*/
reset_code = bnx2x_send_unload_req(bp, unload_mode);
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
*/
rc = bnx2x_func_wait_started(bp);
if (rc) {
BNX2X_ERR("bnx2x_func_wait_started failed\n");
#ifdef BNX2X_STOP_ON_ERROR
return;
#endif
}
/* Close multi and leading connections
* Completions for ramrods are collected in a synchronous way
*/
for_each_eth_queue(bp, i)
if (bnx2x_stop_queue(bp, i))
#ifdef BNX2X_STOP_ON_ERROR
return;
#else
goto unload_error;
#endif
if (CNIC_LOADED(bp)) {
for_each_cnic_queue(bp, i)
if (bnx2x_stop_queue(bp, i))
#ifdef BNX2X_STOP_ON_ERROR
return;
#else
goto unload_error;
#endif
}
/* If SP settings didn't get completed so far - something
* very wrong has happen.
*/
if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
#ifndef BNX2X_STOP_ON_ERROR
unload_error:
#endif
rc = bnx2x_func_stop(bp);
if (rc) {
BNX2X_ERR("Function stop failed!\n");
#ifdef BNX2X_STOP_ON_ERROR
return;
#endif
}
/* stop_ptp should be after the Tx queues are drained to prevent
* scheduling to the cancelled PTP work queue. It should also be after
* function stop ramrod is sent, since as part of this ramrod FW access
* PTP registers.
*/
if (bp->flags & PTP_SUPPORTED)
bnx2x_stop_ptp(bp);
/* Disable HW interrupts, NAPI */
bnx2x_netif_stop(bp, 1);
/* Delete all NAPI objects */
bnx2x_del_all_napi(bp);
if (CNIC_LOADED(bp))
bnx2x_del_all_napi_cnic(bp);
/* Release IRQs */
bnx2x_free_irq(bp);
/* Reset the chip, unless PCI function is offline. If we reach this
* point following a PCI error handling, it means device is really
* in a bad state and we're about to remove it, so reset the chip
* is not a good idea.
*/
if (!pci_channel_offline(bp->pdev)) {
rc = bnx2x_reset_hw(bp, reset_code);
if (rc)
BNX2X_ERR("HW_RESET failed\n");
}
/* Report UNLOAD_DONE to MCP */
bnx2x_send_unload_done(bp, keep_link);
}
void bnx2x_disable_close_the_gate(struct bnx2x *bp)
{
u32 val;
DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
if (CHIP_IS_E1(bp)) {
int port = BP_PORT(bp);
u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
val = REG_RD(bp, addr);
val &= ~(0x300);
REG_WR(bp, addr, val);
} else {
val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
}
}
/* Close gates #2, #3 and #4: */
static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
{
u32 val;
/* Gates #2 and #4a are closed/opened for "not E1" only */
if (!CHIP_IS_E1(bp)) {
/* #4 */
REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
/* #2 */
REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
}
/* #3 */
if (CHIP_IS_E1x(bp)) {
/* Prevent interrupts from HC on both ports */
val = REG_RD(bp, HC_REG_CONFIG_1);
REG_WR(bp, HC_REG_CONFIG_1,
(!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
(val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
val = REG_RD(bp, HC_REG_CONFIG_0);
REG_WR(bp, HC_REG_CONFIG_0,
(!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
(val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
} else {
/* Prevent incoming interrupts in IGU */
val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
(!close) ?
(val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
(val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
}
DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
close ? "closing" : "opening");
mmiowb();
}
#define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
{
/* Do some magic... */
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
*magic_val = val & SHARED_MF_CLP_MAGIC;
MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
}
/**
* bnx2x_clp_reset_done - restore the value of the `magic' bit.
*
* @bp: driver handle
* @magic_val: old value of the `magic' bit.
*/
static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
{
/* Restore the `magic' bit value... */
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
MF_CFG_WR(bp, shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
}
/**
* bnx2x_reset_mcp_prep - prepare for MCP reset.
*
* @bp: driver handle
* @magic_val: old value of 'magic' bit.
*
* Takes care of CLP configurations.
*/
static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
{
u32 shmem;
u32 validity_offset;
DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
/* Set `magic' bit in order to save MF config */
if (!CHIP_IS_E1(bp))
bnx2x_clp_reset_prep(bp, magic_val);
/* Get shmem offset */
shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
validity_offset =
offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
/* Clear validity map flags */
if (shmem > 0)
REG_WR(bp, shmem + validity_offset, 0);
}
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
/**
* bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
*
* @bp: driver handle
*/
static void bnx2x_mcp_wait_one(struct bnx2x *bp)
{
/* special handling for emulation and FPGA,
wait 10 times longer */
if (CHIP_REV_IS_SLOW(bp))
msleep(MCP_ONE_TIMEOUT*10);
else
msleep(MCP_ONE_TIMEOUT);
}
/*
* initializes bp->common.shmem_base and waits for validity signature to appear
*/
static int bnx2x_init_shmem(struct bnx2x *bp)
{
int cnt = 0;
u32 val = 0;
do {
bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
/* If we read all 0xFFs, means we are in PCI error state and
* should bail out to avoid crashes on adapter's FW reads.
*/
if (bp->common.shmem_base == 0xFFFFFFFF) {
bp->flags |= NO_MCP_FLAG;
return -ENODEV;
}
if (bp->common.shmem_base) {
val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
if (val & SHR_MEM_VALIDITY_MB)
return 0;
}
bnx2x_mcp_wait_one(bp);
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
BNX2X_ERR("BAD MCP validity signature\n");
return -ENODEV;
}
static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
{
int rc = bnx2x_init_shmem(bp);
/* Restore the `magic' bit value */
if (!CHIP_IS_E1(bp))
bnx2x_clp_reset_done(bp, magic_val);
return rc;
}
static void bnx2x_pxp_prep(struct bnx2x *bp)
{
if (!CHIP_IS_E1(bp)) {
REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
mmiowb();
}
}
/*
* Reset the whole chip except for:
* - PCIE core
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
* one reset bit)
* - IGU
* - MISC (including AEU)
* - GRC
* - RBCN, RBCP
*/
static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
{
u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
u32 global_bits2, stay_reset2;
/*
* Bits that have to be set in reset_mask2 if we want to reset 'global'
* (per chip) blocks.
*/
global_bits2 =
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
/* Don't reset the following blocks.
* Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
* reset, as in 4 port device they might still be owned
* by the MCP (there is only one leader per path).
*/
not_reset_mask1 =
MISC_REGISTERS_RESET_REG_1_RST_HC |
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
MISC_REGISTERS_RESET_REG_1_RST_PXP;
not_reset_mask2 =
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
MISC_REGISTERS_RESET_REG_2_RST_GRC |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
MISC_REGISTERS_RESET_REG_2_RST_ATC |
MISC_REGISTERS_RESET_REG_2_PGLC |
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
MISC_REGISTERS_RESET_REG_2_UMAC0 |
MISC_REGISTERS_RESET_REG_2_UMAC1;
/*
* Keep the following blocks in reset:
* - all xxMACs are handled by the bnx2x_link code.
*/
stay_reset2 =
MISC_REGISTERS_RESET_REG_2_XMAC |
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
/* Full reset masks according to the chip */
reset_mask1 = 0xffffffff;
if (CHIP_IS_E1(bp))
reset_mask2 = 0xffff;
else if (CHIP_IS_E1H(bp))
reset_mask2 = 0x1ffff;
else if (CHIP_IS_E2(bp))
reset_mask2 = 0xfffff;
else /* CHIP_IS_E3 */
reset_mask2 = 0x3ffffff;
/* Don't reset global blocks unless we need to */
if (!global)
reset_mask2 &= ~global_bits2;
/*
* In case of attention in the QM, we need to reset PXP
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
* because otherwise QM reset would release 'close the gates' shortly
* before resetting the PXP, then the PSWRQ would send a write
* request to PGLUE. Then when PXP is reset, PGLUE would try to
* read the payload data from PSWWR, but PSWWR would not
* respond. The write queue in PGLUE would stuck, dmae commands
* would not return. Therefore it's important to reset the second
* reset register (containing the
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
* bit).
*/
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
reset_mask2 & (~not_reset_mask2));
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
reset_mask1 & (~not_reset_mask1));
barrier();
mmiowb();
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
reset_mask2 & (~stay_reset2));
barrier();
mmiowb();
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
mmiowb();
}
/**
* bnx2x_er_poll_igu_vq - poll for pending writes bit.
* It should get cleared in no more than 1s.
*
* @bp: driver handle
*
* It should get cleared in no more than 1s. Returns 0 if
* pending writes bit gets cleared.
*/
static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
{
u32 cnt = 1000;
u32 pend_bits = 0;
do {
pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
if (pend_bits == 0)
break;
usleep_range(1000, 2000);
} while (cnt-- > 0);
if (cnt <= 0) {
BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
pend_bits);
return -EBUSY;
}
return 0;
}
static int bnx2x_process_kill(struct bnx2x *bp, bool global)
{
int cnt = 1000;
u32 val = 0;
u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
u32 tags_63_32 = 0;
/* Empty the Tetris buffer, wait for 1s */
do {
sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
if (CHIP_IS_E3(bp))
tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
((port_is_idle_0 & 0x1) == 0x1) &&
((port_is_idle_1 & 0x1) == 0x1) &&
(pgl_exp_rom2 == 0xffffffff) &&
(!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
break;
usleep_range(1000, 2000);
} while (cnt-- > 0);
if (cnt <= 0) {
BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
pgl_exp_rom2);
return -EAGAIN;
}
barrier();
/* Close gates #2, #3 and #4 */
bnx2x_set_234_gates(bp, true);
/* Poll for IGU VQs for 57712 and newer chips */
if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
return -EAGAIN;
/* TBD: Indicate that "process kill" is in progress to MCP */
/* Clear "unprepared" bit */
REG_WR(bp, MISC_REG_UNPREPARED, 0);
barrier();
/* Make sure all is written to the chip before the reset */
mmiowb();
/* Wait for 1ms to empty GLUE and PCI-E core queues,
* PSWHST, GRC and PSWRD Tetris buffer.
*/
usleep_range(1000, 2000);
/* Prepare to chip reset: */
/* MCP */
if (global)
bnx2x_reset_mcp_prep(bp, &val);
/* PXP */
bnx2x_pxp_prep(bp);
barrier();
/* reset the chip */
bnx2x_process_kill_chip_reset(bp, global);
barrier();
/* clear errors in PGB */
if (!CHIP_IS_E1x(bp))
REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
/* Recover after reset: */
/* MCP */
if (global && bnx2x_reset_mcp_comp(bp, val))
return -EAGAIN;
/* TBD: Add resetting the NO_MCP mode DB here */
/* Open the gates #2, #3 and #4 */
bnx2x_set_234_gates(bp, false);
/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
* reset state, re-enable attentions. */
return 0;
}
static int bnx2x_leader_reset(struct bnx2x *bp)
{
int rc = 0;
bool global = bnx2x_reset_is_global(bp);
u32 load_code;
/* if not going to reset MCP - load "fake" driver to reset HW while
* driver is owner of the HW
*/
if (!global && !BP_NOMCP(bp)) {
load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
if (!load_code) {
BNX2X_ERR("MCP response failure, aborting\n");
rc = -EAGAIN;
goto exit_leader_reset;
}
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
BNX2X_ERR("MCP unexpected resp, aborting\n");
rc = -EAGAIN;
goto exit_leader_reset2;
}
load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
BNX2X_ERR("MCP response failure, aborting\n");
rc = -EAGAIN;
goto exit_leader_reset2;
}
}
/* Try to recover after the failure */
if (bnx2x_process_kill(bp, global)) {
BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
BP_PATH(bp));
rc = -EAGAIN;
goto exit_leader_reset2;
}
/*
* Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
* state.
*/
bnx2x_set_reset_done(bp);
if (global)
bnx2x_clear_reset_global(bp);
exit_leader_reset2:
/* unload "fake driver" if it was loaded */
if (!global && !BP_NOMCP(bp)) {
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
exit_leader_reset:
bp->is_leader = 0;
bnx2x_release_leader_lock(bp);
smp_mb();
return rc;
}
static void bnx2x_recovery_failed(struct bnx2x *bp)
{
netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
/* Disconnect this device */
netif_device_detach(bp->dev);
/*
* Block ifup for all function on this engine until "process kill"
* or power cycle.
*/
bnx2x_set_reset_in_progress(bp);
/* Shut down the power */
bnx2x_set_power_state(bp, PCI_D3hot);
bp->recovery_state = BNX2X_RECOVERY_FAILED;
smp_mb();
}
/*
* Assumption: runs under rtnl lock. This together with the fact
* that it's called only from bnx2x_sp_rtnl() ensure that it
* will never be called when netif_running(bp->dev) is false.
*/
static void bnx2x_parity_recover(struct bnx2x *bp)
{
bool global = false;
u32 error_recovered, error_unrecovered;
bool is_parity;
DP(NETIF_MSG_HW, "Handling parity\n");
while (1) {
switch (bp->recovery_state) {
case BNX2X_RECOVERY_INIT:
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
is_parity = bnx2x_chk_parity_attn(bp, &global, false);
WARN_ON(!is_parity);
/* Try to get a LEADER_LOCK HW lock */
if (bnx2x_trylock_leader_lock(bp)) {
bnx2x_set_reset_in_progress(bp);
/*
* Check if there is a global attention and if
* there was a global attention, set the global
* reset bit.
*/
if (global)
bnx2x_set_reset_global(bp);
bp->is_leader = 1;
}
/* Stop the driver */
/* If interface has been removed - break */
if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
return;
bp->recovery_state = BNX2X_RECOVERY_WAIT;
/* Ensure "is_leader", MCP command sequence and
* "recovery_state" update values are seen on other
* CPUs.
*/
smp_mb();
break;
case BNX2X_RECOVERY_WAIT:
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
if (bp->is_leader) {
int other_engine = BP_PATH(bp) ? 0 : 1;
bool other_load_status =
bnx2x_get_load_status(bp, other_engine);
bool load_status =
bnx2x_get_load_status(bp, BP_PATH(bp));
global = bnx2x_reset_is_global(bp);
/*
* In case of a parity in a global block, let
* the first leader that performs a
* leader_reset() reset the global blocks in
* order to clear global attentions. Otherwise
* the gates will remain closed for that
* engine.
*/
if (load_status ||
(global && other_load_status)) {
/* Wait until all other functions get
* down.
*/
schedule_delayed_work(&bp->sp_rtnl_task,
HZ/10);
return;
} else {
/* If all other functions got down -
* try to bring the chip back to
* normal. In any case it's an exit
* point for a leader.
*/
if (bnx2x_leader_reset(bp)) {
bnx2x_recovery_failed(bp);
return;
}
/* If we are here, means that the
* leader has succeeded and doesn't
* want to be a leader any more. Try
* to continue as a none-leader.
*/
break;
}
} else { /* non-leader */
if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
/* Try to get a LEADER_LOCK HW lock as
* long as a former leader may have
* been unloaded by the user or
* released a leadership by another
* reason.
*/
if (bnx2x_trylock_leader_lock(bp)) {
/* I'm a leader now! Restart a
* switch case.
*/
bp->is_leader = 1;
break;
}
schedule_delayed_work(&bp->sp_rtnl_task,
HZ/10);
return;
} else {
/*
* If there was a global attention, wait
* for it to be cleared.
*/
if (bnx2x_reset_is_global(bp)) {
schedule_delayed_work(
&bp->sp_rtnl_task,
HZ/10);
return;
}
error_recovered =
bp->eth_stats.recoverable_error;
error_unrecovered =
bp->eth_stats.unrecoverable_error;
bp->recovery_state =
BNX2X_RECOVERY_NIC_LOADING;
if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
error_unrecovered++;
netdev_err(bp->dev,
"Recovery failed. Power cycle needed\n");
/* Disconnect this device */
netif_device_detach(bp->dev);
/* Shut down the power */
bnx2x_set_power_state(
bp, PCI_D3hot);
smp_mb();
} else {
bp->recovery_state =
BNX2X_RECOVERY_DONE;
error_recovered++;
smp_mb();
}
bp->eth_stats.recoverable_error =
error_recovered;
bp->eth_stats.unrecoverable_error =
error_unrecovered;
return;
}
}
default:
return;
}
}
}
static int bnx2x_udp_port_update(struct bnx2x *bp)
{
struct bnx2x_func_switch_update_params *switch_update_params;
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_udp_tunnel *udp_tunnel;
u16 vxlan_port = 0, geneve_port = 0;
int rc;
switch_update_params = &func_params.params.switch_update;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
/* Function parameters */
__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
&switch_update_params->changes);
if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
geneve_port = udp_tunnel->dst_port;
switch_update_params->geneve_dst_port = geneve_port;
}
if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
vxlan_port = udp_tunnel->dst_port;
switch_update_params->vxlan_dst_port = vxlan_port;
}
/* Re-enable inner-rss for the offloaded UDP tunnels */
__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
&switch_update_params->changes);
rc = bnx2x_func_state_change(bp, &func_params);
if (rc)
BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
vxlan_port, geneve_port, rc);
else
DP(BNX2X_MSG_SP,
"Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
vxlan_port, geneve_port);
return rc;
}
static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
enum bnx2x_udp_port_type type)
{
struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
return;
if (udp_port->count && udp_port->dst_port == port) {
udp_port->count++;
return;
}
if (udp_port->count) {
DP(BNX2X_MSG_SP,
"UDP tunnel [%d] - destination port limit reached\n",
type);
return;
}
udp_port->dst_port = port;
udp_port->count = 1;
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
}
static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
enum bnx2x_udp_port_type type)
{
struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
if (!IS_PF(bp) || CHIP_IS_E1x(bp))
return;
if (!udp_port->count || udp_port->dst_port != port) {
DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
type);
return;
}
/* Remove reference, and make certain it's no longer in use */
udp_port->count--;
if (udp_port->count)
return;
udp_port->dst_port = 0;
if (netif_running(bp->dev))
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
else
DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
type, port);
}
static void bnx2x_udp_tunnel_add(struct net_device *netdev,
struct udp_tunnel_info *ti)
{
struct bnx2x *bp = netdev_priv(netdev);
u16 t_port = ntohs(ti->port);
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
break;
case UDP_TUNNEL_TYPE_GENEVE:
__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
break;
default:
break;
}
}
static void bnx2x_udp_tunnel_del(struct net_device *netdev,
struct udp_tunnel_info *ti)
{
struct bnx2x *bp = netdev_priv(netdev);
u16 t_port = ntohs(ti->port);
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
break;
case UDP_TUNNEL_TYPE_GENEVE:
__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
break;
default:
break;
}
}
static int bnx2x_close(struct net_device *dev);
/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
* scheduled on a general queue in order to prevent a dead lock.
*/
static void bnx2x_sp_rtnl_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
rtnl_lock();
if (!netif_running(bp->dev)) {
rtnl_unlock();
return;
}
if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
#ifdef BNX2X_STOP_ON_ERROR
BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
"you will need to reboot when done\n");
goto sp_rtnl_not_reset;
#endif
/*
* Clear all pending SP commands as we are going to reset the
* function anyway.
*/
bp->sp_rtnl_state = 0;
smp_mb();
bnx2x_parity_recover(bp);
rtnl_unlock();
return;
}
if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
#ifdef BNX2X_STOP_ON_ERROR
BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
"you will need to reboot when done\n");
goto sp_rtnl_not_reset;
#endif
/*
* Clear all pending SP commands as we are going to reset the
* function anyway.
*/
bp->sp_rtnl_state = 0;
smp_mb();
/* Immediately indicate link as down */
bp->link_vars.link_up = 0;
bp->force_link_down = true;
netif_carrier_off(bp->dev);
BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
bnx2x_nic_load(bp, LOAD_NORMAL);
rtnl_unlock();
return;
}
#ifdef BNX2X_STOP_ON_ERROR
sp_rtnl_not_reset:
#endif
if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
bnx2x_after_function_update(bp);
/*
* in case of fan failure we need to reset id if the "stop on error"
* debug flag is set, since we trying to prevent permanent overheating
* damage
*/
if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
netif_device_detach(bp->dev);
bnx2x_close(bp->dev);
rtnl_unlock();
return;
}
if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
DP(BNX2X_MSG_SP,
"sending set mcast vf pf channel message from rtnl sp-task\n");
bnx2x_vfpf_set_mcast(bp->dev);
}
if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
&bp->sp_rtnl_state)){
if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
bnx2x_tx_disable(bp);
BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
}
}
if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
bnx2x_set_rx_mode_inner(bp);
}
if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
&bp->sp_rtnl_state))
bnx2x_pf_set_vfs_vlan(bp);
if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
bnx2x_dcbx_stop_hw_tx(bp);
bnx2x_dcbx_resume_hw_tx(bp);
}
if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
&bp->sp_rtnl_state))
bnx2x_update_mng_version(bp);
if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
bnx2x_handle_update_svid_cmd(bp);
if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
&bp->sp_rtnl_state)) {
if (bnx2x_udp_port_update(bp)) {
/* On error, forget configuration */
memset(bp->udp_tunnel_ports, 0,
sizeof(struct bnx2x_udp_tunnel) *
BNX2X_UDP_PORT_MAX);
} else {
/* Since we don't store additional port information,
* if no ports are configured for any feature ask for
* information about currently configured ports.
*/
if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
!bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
udp_tunnel_get_rx_info(bp->dev);
}
}
/* work which needs rtnl lock not-taken (as it takes the lock itself and
* can be called from other contexts as well)
*/
rtnl_unlock();
/* enable SR-IOV if applicable */
if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
&bp->sp_rtnl_state)) {
bnx2x_disable_sriov(bp);
bnx2x_enable_sriov(bp);
}
}
static void bnx2x_period_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
if (!netif_running(bp->dev))
goto period_task_exit;
if (CHIP_REV_IS_SLOW(bp)) {
BNX2X_ERR("period task called on emulation, ignoring\n");
goto period_task_exit;
}
bnx2x_acquire_phy_lock(bp);
/*
* The barrier is needed to ensure the ordering between the writing to
* the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
* the reading here.
*/
smp_mb();
if (bp->port.pmf) {
bnx2x_period_func(&bp->link_params, &bp->link_vars);
/* Re-queue task in 1 sec */
queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
}
bnx2x_release_phy_lock(bp);
period_task_exit:
return;
}
/*
* Init service functions
*/
static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
{
u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
return base + (BP_ABS_FUNC(bp)) * stride;
}
static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
u8 port, u32 reset_reg,
struct bnx2x_mac_vals *vals)
{
u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
u32 base_addr;
if (!(mask & reset_reg))
return false;
BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
REG_WR(bp, vals->umac_addr[port], 0);
return true;
}
static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
struct bnx2x_mac_vals *vals)
{
u32 val, base_addr, offset, mask, reset_reg;
bool mac_stopped = false;
u8 port = BP_PORT(bp);
/* reset addresses as they also mark which values were changed */
memset(vals, 0, sizeof(*vals));
reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
if (!CHIP_IS_E3(bp)) {
val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
if ((mask & reset_reg) && val) {
u32 wb_data[2];
BNX2X_DEV_INFO("Disable bmac Rx\n");
base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
: NIG_REG_INGRESS_BMAC0_MEM;
offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
: BIGMAC_REGISTER_BMAC_CONTROL;
/*
* use rd/wr since we cannot use dmae. This is safe
* since MCP won't access the bus due to the request
* to unload, and no function on the path can be
* loaded at this time.
*/
wb_data[0] = REG_RD(bp, base_addr + offset);
wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
vals->bmac_addr = base_addr + offset;
vals->bmac_val[0] = wb_data[0];
vals->bmac_val[1] = wb_data[1];
wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
REG_WR(bp, vals->bmac_addr, wb_data[0]);
REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
}
BNX2X_DEV_INFO("Disable emac Rx\n");
vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
vals->emac_val = REG_RD(bp, vals->emac_addr);
REG_WR(bp, vals->emac_addr, 0);
mac_stopped = true;
} else {
if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
BNX2X_DEV_INFO("Disable xmac Rx\n");
base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
val & ~(1 << 1));
REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
val | (1 << 1));
vals->xmac_addr = base_addr + XMAC_REG_CTRL;
vals->xmac_val = REG_RD(bp, vals->xmac_addr);
REG_WR(bp, vals->xmac_addr, 0);
mac_stopped = true;
}
mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
reset_reg, vals);
mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
reset_reg, vals);
}
if (mac_stopped)
msleep(20);
}
#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
0x1848 + ((f) << 4))
#define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
#define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
#define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
#define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
#define BCM_5710_UNDI_FW_MF_MINOR (0x08)
#define BCM_5710_UNDI_FW_MF_VERS (0x05)
static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
{
/* UNDI marks its presence in DORQ -
* it initializes CID offset for normal bell to 0x7
*/
if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
MISC_REGISTERS_RESET_REG_1_RST_DORQ))
return false;
if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
BNX2X_DEV_INFO("UNDI previously loaded\n");
return true;
}
return false;
}
static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
{
u16 rcq, bd;
u32 addr, tmp_reg;
if (BP_FUNC(bp) < 2)
addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
else
addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
tmp_reg = REG_RD(bp, addr);
rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
REG_WR(bp, addr, tmp_reg);
BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
}
static int bnx2x_prev_mcp_done(struct bnx2x *bp)
{
u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
if (!rc) {
BNX2X_ERR("MCP response failure, aborting\n");
return -EBUSY;
}
return 0;
}
static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x *bp)
{
struct bnx2x_prev_path_list *tmp_list;
list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
bp->pdev->bus->number == tmp_list->bus &&
BP_PATH(bp) == tmp_list->path)
return tmp_list;
return NULL;
}
static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
{
struct bnx2x_prev_path_list *tmp_list;
int rc;
rc = down_interruptible(&bnx2x_prev_sem);
if (rc) {
BNX2X_ERR("Received %d when tried to take lock\n", rc);
return rc;
}
tmp_list = bnx2x_prev_path_get_entry(bp);
if (tmp_list) {
tmp_list->aer = 1;
rc = 0;
} else {
BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
BP_PATH(bp));
}
up(&bnx2x_prev_sem);
return rc;
}
static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
{
struct bnx2x_prev_path_list *tmp_list;
bool rc = false;
if (down_trylock(&bnx2x_prev_sem))
return false;
tmp_list = bnx2x_prev_path_get_entry(bp);
if (tmp_list) {
if (tmp_list->aer) {
DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
BP_PATH(bp));
} else {
rc = true;
BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
BP_PATH(bp));
}
}
up(&bnx2x_prev_sem);
return rc;
}
bool bnx2x_port_after_undi(struct bnx2x *bp)
{
struct bnx2x_prev_path_list *entry;
bool val;
down(&bnx2x_prev_sem);
entry = bnx2x_prev_path_get_entry(bp);
val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
up(&bnx2x_prev_sem);
return val;
}
static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
{
struct bnx2x_prev_path_list *tmp_list;
int rc;
rc = down_interruptible(&bnx2x_prev_sem);
if (rc) {
BNX2X_ERR("Received %d when tried to take lock\n", rc);
return rc;
}
/* Check whether the entry for this path already exists */
tmp_list = bnx2x_prev_path_get_entry(bp);
if (tmp_list) {
if (!tmp_list->aer) {
BNX2X_ERR("Re-Marking the path.\n");
} else {
DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
BP_PATH(bp));
tmp_list->aer = 0;
}
up(&bnx2x_prev_sem);
return 0;
}
up(&bnx2x_prev_sem);
/* Create an entry for this path and add it */
tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
if (!tmp_list) {
BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
return -ENOMEM;
}
tmp_list->bus = bp->pdev->bus->number;
tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
tmp_list->path = BP_PATH(bp);
tmp_list->aer = 0;
tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
rc = down_interruptible(&bnx2x_prev_sem);
if (rc) {
BNX2X_ERR("Received %d when tried to take lock\n", rc);
kfree(tmp_list);
} else {
DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
BP_PATH(bp));
list_add(&tmp_list->list, &bnx2x_prev_list);
up(&bnx2x_prev_sem);
}
return rc;
}
static int bnx2x_do_flr(struct bnx2x *bp)
{
struct pci_dev *dev = bp->pdev;
if (CHIP_IS_E1x(bp)) {
BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
return -EINVAL;
}
/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
bp->common.bc_ver);
return -EINVAL;
}
if (!pci_wait_for_pending_transaction(dev))
dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
BNX2X_DEV_INFO("Initiating FLR\n");
bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
return 0;
}
static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
{
int rc;
BNX2X_DEV_INFO("Uncommon unload Flow\n");
/* Test if previous unload process was already finished for this path */
if (bnx2x_prev_is_path_marked(bp))
return bnx2x_prev_mcp_done(bp);
BNX2X_DEV_INFO("Path is unmarked\n");
/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
if (bnx2x_prev_is_after_undi(bp))
goto out;
/* If function has FLR capabilities, and existing FW version matches
* the one required, then FLR will be sufficient to clean any residue
* left by previous driver
*/
rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
if (!rc) {
/* fw version is good */
BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
rc = bnx2x_do_flr(bp);
}
if (!rc) {
/* FLR was performed */
BNX2X_DEV_INFO("FLR successful\n");
return 0;
}
BNX2X_DEV_INFO("Could not FLR\n");
out:
/* Close the MCP request, return failure*/
rc = bnx2x_prev_mcp_done(bp);
if (!rc)
rc = BNX2X_PREV_WAIT_NEEDED;
return rc;
}
static int bnx2x_prev_unload_common(struct bnx2x *bp)
{
u32 reset_reg, tmp_reg = 0, rc;
bool prev_undi = false;
struct bnx2x_mac_vals mac_vals;
/* It is possible a previous function received 'common' answer,
* but hasn't loaded yet, therefore creating a scenario of
* multiple functions receiving 'common' on the same path.
*/
BNX2X_DEV_INFO("Common unload Flow\n");
memset(&mac_vals, 0, sizeof(mac_vals));
if (bnx2x_prev_is_path_marked(bp))
return bnx2x_prev_mcp_done(bp);
reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
/* Reset should be performed after BRB is emptied */
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
u32 timer_count = 1000;
/* Close the MAC Rx to prevent BRB from filling up */
bnx2x_prev_unload_close_mac(bp, &mac_vals);
/* close LLH filters for both ports towards the BRB */
bnx2x_set_rx_filter(&bp->link_params, 0);
bp->link_params.port ^= 1;
bnx2x_set_rx_filter(&bp->link_params, 0);
bp->link_params.port ^= 1;
/* Check if the UNDI driver was previously loaded */
if (bnx2x_prev_is_after_undi(bp)) {
prev_undi = true;
/* clear the UNDI indication */
REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
/* clear possible idle check errors */
REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
}
if (!CHIP_IS_E1x(bp))
/* block FW from writing to host */
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
/* wait until BRB is empty */
tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
while (timer_count) {
u32 prev_brb = tmp_reg;
tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
if (!tmp_reg)
break;
BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
/* reset timer as long as BRB actually gets emptied */
if (prev_brb > tmp_reg)
timer_count = 1000;
else
timer_count--;
/* If UNDI resides in memory, manually increment it */
if (prev_undi)
bnx2x_prev_unload_undi_inc(bp, 1);
udelay(10);
}
if (!timer_count)
BNX2X_ERR("Failed to empty BRB, hope for the best\n");
}
/* No packets are in the pipeline, path is ready for reset */
bnx2x_reset_common(bp);
if (mac_vals.xmac_addr)
REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
if (mac_vals.umac_addr[0])
REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
if (mac_vals.umac_addr[1])
REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
if (mac_vals.emac_addr)
REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
if (mac_vals.bmac_addr) {
REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
}
rc = bnx2x_prev_mark_path(bp, prev_undi);
if (rc) {
bnx2x_prev_mcp_done(bp);
return rc;
}
return bnx2x_prev_mcp_done(bp);
}
static int bnx2x_prev_unload(struct bnx2x *bp)
{
int time_counter = 10;
u32 rc, fw, hw_lock_reg, hw_lock_val;
BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
/* clear hw from errors which may have resulted from an interrupted
* dmae transaction.
*/
bnx2x_clean_pglue_errors(bp);
/* Release previously held locks */
hw_lock_reg = (BP_FUNC(bp) <= 5) ?
(MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
(MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
hw_lock_val = REG_RD(bp, hw_lock_reg);
if (hw_lock_val) {
if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
}
BNX2X_DEV_INFO("Release Previously held hw lock\n");
REG_WR(bp, hw_lock_reg, 0xffffffff);
} else
BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
BNX2X_DEV_INFO("Release previously held alr\n");
bnx2x_release_alr(bp);
}
do {
int aer = 0;
/* Lock MCP using an unload request */
fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
if (!fw) {
BNX2X_ERR("MCP response failure, aborting\n");
rc = -EBUSY;
break;
}
rc = down_interruptible(&bnx2x_prev_sem);
if (rc) {
BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
rc);
} else {
/* If Path is marked by EEH, ignore unload status */
aer = !!(bnx2x_prev_path_get_entry(bp) &&
bnx2x_prev_path_get_entry(bp)->aer);
up(&bnx2x_prev_sem);
}
if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
rc = bnx2x_prev_unload_common(bp);
break;
}
/* non-common reply from MCP might require looping */
rc = bnx2x_prev_unload_uncommon(bp);
if (rc != BNX2X_PREV_WAIT_NEEDED)
break;
msleep(20);
} while (--time_counter);
if (!time_counter || rc) {
BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
rc = -EPROBE_DEFER;
}
/* Mark function if its port was used to boot from SAN */
if (bnx2x_port_after_undi(bp))
bp->link_params.feature_config_flags |=
FEATURE_CONFIG_BOOT_FROM_SAN;
BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
return rc;
}
static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
{
u32 val, val2, val3, val4, id, boot_mode;
u16 pmc;
/* Get the chip revision id and number. */
/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
val = REG_RD(bp, MISC_REG_CHIP_NUM);
id = ((val & 0xffff) << 16);
val = REG_RD(bp, MISC_REG_CHIP_REV);
id |= ((val & 0xf) << 12);
/* Metal is read from PCI regs, but we can't access >=0x400 from
* the configuration space (so we need to reg_rd)
*/
val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
id |= (((val >> 24) & 0xf) << 4);
val = REG_RD(bp, MISC_REG_BOND_ID);
id |= (val & 0xf);
bp->common.chip_id = id;
/* force 57811 according to MISC register */
if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
if (CHIP_IS_57810(bp))
bp->common.chip_id = (CHIP_NUM_57811 << 16) |
(bp->common.chip_id & 0x0000FFFF);
else if (CHIP_IS_57810_MF(bp))
bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
(bp->common.chip_id & 0x0000FFFF);
bp->common.chip_id |= 0x1;
}
/* Set doorbell size */
bp->db_size = (1 << BNX2X_DB_SHIFT);
if (!CHIP_IS_E1x(bp)) {
val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
if ((val & 1) == 0)
val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
else
val = (val >> 1) & 1;
BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
"2_PORT_MODE");
bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
CHIP_2_PORT_MODE;
if (CHIP_MODE_IS_4_PORT(bp))
bp->pfid = (bp->pf_num >> 1); /* 0..3 */
else
bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
} else {
bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
bp->pfid = bp->pf_num; /* 0..7 */
}
BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
bp->link_params.chip_id = bp->common.chip_id;
BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
val = (REG_RD(bp, 0x2874) & 0x55);
if ((bp->common.chip_id & 0x1) ||
(CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
bp->flags |= ONE_PORT_FLAG;
BNX2X_DEV_INFO("single port device\n");
}
val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
(val & MCPR_NVM_CFG4_FLASH_SIZE));
BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
bp->common.flash_size, bp->common.flash_size);
bnx2x_init_shmem(bp);
bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
MISC_REG_GENERIC_CR_1 :
MISC_REG_GENERIC_CR_0));
bp->link_params.shmem_base = bp->common.shmem_base;
bp->link_params.shmem2_base = bp->common.shmem2_base;
if (SHMEM2_RD(bp, size) >
(u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
bp->link_params.lfa_base =
REG_RD(bp, bp->common.shmem2_base +
(u32)offsetof(struct shmem2_region,
lfa_host_addr[BP_PORT(bp)]));
else
bp->link_params.lfa_base = 0;
BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
bp->common.shmem_base, bp->common.shmem2_base);
if (!bp->common.shmem_base) {
BNX2X_DEV_INFO("MCP not active\n");
bp->flags |= NO_MCP_FLAG;
return;
}
bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
bp->link_params.hw_led_mode = ((bp->common.hw_config &
SHARED_HW_CFG_LED_MODE_MASK) >>
SHARED_HW_CFG_LED_MODE_SHIFT);
bp->link_params.feature_config_flags = 0;
val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
bp->link_params.feature_config_flags |=
FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
else
bp->link_params.feature_config_flags &=
~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
bp->common.bc_ver = val;
BNX2X_DEV_INFO("bc_ver %X\n", val);
if (val < BNX2X_BC_VER) {
/* for now only warn
* later we might need to enforce this */
BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
BNX2X_BC_VER, val);
}
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
FEATURE_CONFIG_MT_SUPPORT : 0;
bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
BC_SUPPORTS_PFC_STATS : 0;
bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
BC_SUPPORTS_FCOE_FEATURES : 0;
bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
BC_SUPPORTS_RMMOD_CMD : 0;
boot_mode = SHMEM_RD(bp,
dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
switch (boot_mode) {
case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
break;
case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
break;
case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
break;
case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
break;
}
pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
BNX2X_DEV_INFO("%sWoL capable\n",
(bp->flags & NO_WOL_FLAG) ? "not " : "");
val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
val, val2, val3, val4);
}
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
{
int pfid = BP_FUNC(bp);
int igu_sb_id;
u32 val;
u8 fid, igu_sb_cnt = 0;
bp->igu_base_sb = 0xff;
if (CHIP_INT_MODE_IS_BC(bp)) {
int vn = BP_VN(bp);
igu_sb_cnt = bp->igu_sb_cnt;
bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
FP_SB_MAX_E1x;
bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
return 0;
}
/* IGU in normal mode - read CAM */
for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
igu_sb_id++) {
val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
continue;
fid = IGU_FID(val);
if ((fid & IGU_FID_ENCODE_IS_PF)) {
if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
continue;
if (IGU_VEC(val) == 0)
/* default status block */
bp->igu_dsb_id = igu_sb_id;
else {
if (bp->igu_base_sb == 0xff)
bp->igu_base_sb = igu_sb_id;
igu_sb_cnt++;
}
}
}
#ifdef CONFIG_PCI_MSI
/* Due to new PF resource allocation by MFW T7.4 and above, it's
* optional that number of CAM entries will not be equal to the value
* advertised in PCI.
* Driver should use the minimal value of both as the actual status
* block count
*/
bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
#endif
if (igu_sb_cnt == 0) {
BNX2X_ERR("CAM configuration error\n");
return -EINVAL;
}
return 0;
}
static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
{
int cfg_size = 0, idx, port = BP_PORT(bp);
/* Aggregation of supported attributes of all external phys */
bp->port.supported[0] = 0;
bp->port.supported[1] = 0;
switch (bp->link_params.num_phys) {
case 1:
bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
cfg_size = 1;
break;
case 2:
bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
cfg_size = 1;
break;
case 3:
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
bp->port.supported[1] =
bp->link_params.phy[EXT_PHY1].supported;
bp->port.supported[0] =
bp->link_params.phy[EXT_PHY2].supported;
} else {
bp->port.supported[0] =
bp->link_params.phy[EXT_PHY1].supported;
bp->port.supported[1] =
bp->link_params.phy[EXT_PHY2].supported;
}
cfg_size = 2;
break;
}
if (!(bp->port.supported[0] || bp->port.supported[1])) {
BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config),
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config2));
return;
}
if (CHIP_IS_E3(bp))
bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
else {
switch (switch_cfg) {
case SWITCH_CFG_1G:
bp->port.phy_addr = REG_RD(
bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
break;
case SWITCH_CFG_10G:
bp->port.phy_addr = REG_RD(
bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
break;
default:
BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
bp->port.link_config[0]);
return;
}
}
BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
/* mask what we support according to speed_cap_mask per configuration */
for (idx = 0; idx < cfg_size; idx++) {
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
}
BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
bp->port.supported[1]);
}
static void bnx2x_link_settings_requested(struct bnx2x *bp)
{
u32 link_config, idx, cfg_size = 0;
bp->port.advertising[0] = 0;
bp->port.advertising[1] = 0;
switch (bp->link_params.num_phys) {
case 1:
case 2:
cfg_size = 1;
break;
case 3:
cfg_size = 2;
break;
}
for (idx = 0; idx < cfg_size; idx++) {
bp->link_params.req_duplex[idx] = DUPLEX_FULL;
link_config = bp->port.link_config[idx];
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
bp->link_params.req_line_speed[idx] =
SPEED_AUTO_NEG;
bp->port.advertising[idx] |=
bp->port.supported[idx];
if (bp->link_params.phy[EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
bp->port.advertising[idx] |=
(SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full);
} else {
/* force 10G, no AN */
bp->link_params.req_line_speed[idx] =
SPEED_10000;
bp->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
continue;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_10;
bp->port.advertising[idx] |=
(ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
bp->link_params.req_line_speed[idx] =
SPEED_10;
bp->link_params.req_duplex[idx] =
DUPLEX_HALF;
bp->port.advertising[idx] |=
(ADVERTISED_10baseT_Half |
ADVERTISED_TP);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (bp->port.supported[idx] &
SUPPORTED_100baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_100;
bp->port.advertising[idx] |=
(ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (bp->port.supported[idx] &
SUPPORTED_100baseT_Half) {
bp->link_params.req_line_speed[idx] =
SPEED_100;
bp->link_params.req_duplex[idx] =
DUPLEX_HALF;
bp->port.advertising[idx] |=
(ADVERTISED_100baseT_Half |
ADVERTISED_TP);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (bp->port.supported[idx] &
SUPPORTED_1000baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_1000;
bp->port.advertising[idx] |=
(ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
} else if (bp->port.supported[idx] &
SUPPORTED_1000baseKX_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_1000;
bp->port.advertising[idx] |=
ADVERTISED_1000baseKX_Full;
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (bp->port.supported[idx] &
SUPPORTED_2500baseX_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_2500;
bp->port.advertising[idx] |=
(ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
if (bp->port.supported[idx] &
SUPPORTED_10000baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_10000;
bp->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else if (bp->port.supported[idx] &
SUPPORTED_10000baseKR_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_10000;
bp->port.advertising[idx] |=
(ADVERTISED_10000baseKR_Full |
ADVERTISED_FIBRE);
} else {
BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_20G:
bp->link_params.req_line_speed[idx] = SPEED_20000;
break;
default:
BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
link_config);
bp->link_params.req_line_speed[idx] =
SPEED_AUTO_NEG;
bp->port.advertising[idx] =
bp->port.supported[idx];
break;
}
bp->link_params.req_flow_ctrl[idx] = (link_config &
PORT_FEATURE_FLOW_CONTROL_MASK);
if (bp->link_params.req_flow_ctrl[idx] ==
BNX2X_FLOW_CTRL_AUTO) {
if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
bp->link_params.req_flow_ctrl[idx] =
BNX2X_FLOW_CTRL_NONE;
else
bnx2x_set_requested_fc(bp);
}
BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
bp->link_params.req_line_speed[idx],
bp->link_params.req_duplex[idx],
bp->link_params.req_flow_ctrl[idx],
bp->port.advertising[idx]);
}
}
static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
{
__be16 mac_hi_be = cpu_to_be16(mac_hi);
__be32 mac_lo_be = cpu_to_be32(mac_lo);
memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
}
static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 config;
u32 ext_phy_type, ext_phy_config, eee_mode;
bp->link_params.bp = bp;
bp->link_params.port = port;
bp->link_params.lane_config =
SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
bp->link_params.speed_cap_mask[0] =
SHMEM_RD(bp,
dev_info.port_hw_config[port].speed_capability_mask) &
PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
bp->link_params.speed_cap_mask[1] =
SHMEM_RD(bp,
dev_info.port_hw_config[port].speed_capability_mask2) &
PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
bp->port.link_config[0] =
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
bp->port.link_config[1] =
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
bp->link_params.multi_phy_config =
SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
/* If the device is capable of WoL, set the default state according
* to the HW
*/
config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
(config & PORT_FEATURE_WOL_ENABLED));
if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
bp->flags |= NO_ISCSI_FLAG;
if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
bp->flags |= NO_FCOE_FLAG;
BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
bp->link_params.lane_config,
bp->link_params.speed_cap_mask[0],
bp->port.link_config[0]);
bp->link_params.switch_cfg = (bp->port.link_config[0] &
PORT_FEATURE_CONNECTED_SWITCH_MASK);
bnx2x_phy_probe(&bp->link_params);
bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
bnx2x_link_settings_requested(bp);
/*
* If connected directly, work with the internal PHY, otherwise, work
* with the external PHY
*/
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
bp->mdio.prtad = bp->port.phy_addr;
else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
(ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
bp->mdio.prtad =
XGXS_EXT_PHY_ADDR(ext_phy_config);
/* Configure link feature according to nvram value */
eee_mode = (((SHMEM_RD(bp, dev_info.
port_feature_config[port].eee_power_mode)) &
PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
EEE_MODE_ENABLE_LPI |
EEE_MODE_OUTPUT_TIME;
} else {
bp->link_params.eee_mode = 0;
}
}
void bnx2x_get_iscsi_info(struct bnx2x *bp)
{
u32 no_flags = NO_ISCSI_FLAG;
int port = BP_PORT(bp);
u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
drv_lic_key[port].max_iscsi_conn);
if (!CNIC_SUPPORT(bp)) {
bp->flags |= no_flags;
return;
}
/* Get the number of maximum allowed iSCSI connections */
bp->cnic_eth_dev.max_iscsi_conn =
(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
bp->cnic_eth_dev.max_iscsi_conn);
/*
* If maximum allowed number of connections is zero -
* disable the feature.
*/
if (!bp->cnic_eth_dev.max_iscsi_conn)
bp->flags |= no_flags;
}
static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
{
/* Port info */
bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
/* Node info */
bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
}
static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
{
u8 count = 0;
if (IS_MF(bp)) {
u8 fid;
/* iterate over absolute function ids for this path: */
for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
if (IS_MF_SD(bp)) {
u32 cfg = MF_CFG_RD(bp,
func_mf_config[fid].config);
if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_FCOE))
count++;
} else {
u32 cfg = MF_CFG_RD(bp,
func_ext_config[fid].
func_cfg);
if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
(cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
count++;
}
}
} else { /* SF */
int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
for (port = 0; port < port_cnt; port++) {
u32 lic = SHMEM_RD(bp,
drv_lic_key[port].max_fcoe_conn) ^
FW_ENCODE_32BIT_PATTERN;
if (lic)
count++;
}
}
return count;
}
static void bnx2x_get_fcoe_info(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int func = BP_ABS_FUNC(bp);
u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
drv_lic_key[port].max_fcoe_conn);
u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
if (!CNIC_SUPPORT(bp)) {
bp->flags |= NO_FCOE_FLAG;
return;
}
/* Get the number of maximum allowed FCoE connections */
bp->cnic_eth_dev.max_fcoe_conn =
(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
/* Calculate the number of maximum allowed FCoE tasks */
bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
/* check if FCoE resources must be shared between different functions */
if (num_fcoe_func)
bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
/* Read the WWN: */
if (!IS_MF(bp)) {
/* Port info */
bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
SHMEM_RD(bp,
dev_info.port_hw_config[port].
fcoe_wwn_port_name_upper);
bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
SHMEM_RD(bp,
dev_info.port_hw_config[port].
fcoe_wwn_port_name_lower);
/* Node info */
bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
SHMEM_RD(bp,
dev_info.port_hw_config[port].
fcoe_wwn_node_name_upper);
bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
SHMEM_RD(bp,
dev_info.port_hw_config[port].
fcoe_wwn_node_name_lower);
} else if (!IS_MF_SD(bp)) {
/* Read the WWN info only if the FCoE feature is enabled for
* this function.
*/
if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
bnx2x_get_ext_wwn_info(bp, func);
} else {
if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
bnx2x_get_ext_wwn_info(bp, func);
}
BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
/*
* If maximum allowed number of connections is zero -
* disable the feature.
*/
if (!bp->cnic_eth_dev.max_fcoe_conn) {
bp->flags |= NO_FCOE_FLAG;
eth_zero_addr(bp->fip_mac);
}
}
static void bnx2x_get_cnic_info(struct bnx2x *bp)
{
/*
* iSCSI may be dynamically disabled but reading
* info here we will decrease memory usage by driver
* if the feature is disabled for good
*/
bnx2x_get_iscsi_info(bp);
bnx2x_get_fcoe_info(bp);
}
static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
{
u32 val, val2;
int func = BP_ABS_FUNC(bp);
int port = BP_PORT(bp);
u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
u8 *fip_mac = bp->fip_mac;
if (IS_MF(bp)) {
/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
* FCoE MAC then the appropriate feature should be disabled.
* In non SD mode features configuration comes from struct
* func_ext_config.
*/
if (!IS_MF_SD(bp)) {
u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
val2 = MF_CFG_RD(bp, func_ext_config[func].
iscsi_mac_addr_upper);
val = MF_CFG_RD(bp, func_ext_config[func].
iscsi_mac_addr_lower);
bnx2x_set_mac_buf(iscsi_mac, val, val2);
BNX2X_DEV_INFO
("Read iSCSI MAC: %pM\n", iscsi_mac);
} else {
bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
}
if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
val2 = MF_CFG_RD(bp, func_ext_config[func].
fcoe_mac_addr_upper);
val = MF_CFG_RD(bp, func_ext_config[func].
fcoe_mac_addr_lower);
bnx2x_set_mac_buf(fip_mac, val, val2);
BNX2X_DEV_INFO
("Read FCoE L2 MAC: %pM\n", fip_mac);
} else {
bp->flags |= NO_FCOE_FLAG;
}
bp->mf_ext_config = cfg;
} else { /* SD MODE */
if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
/* use primary mac as iscsi mac */
memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
BNX2X_DEV_INFO("SD ISCSI MODE\n");
BNX2X_DEV_INFO
("Read iSCSI MAC: %pM\n", iscsi_mac);
} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
/* use primary mac as fip mac */
memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
BNX2X_DEV_INFO("SD FCoE MODE\n");
BNX2X_DEV_INFO
("Read FIP MAC: %pM\n", fip_mac);
}
}
/* If this is a storage-only interface, use SAN mac as
* primary MAC. Notice that for SD this is already the case,
* as the SAN mac was copied from the primary MAC.
*/
if (IS_MF_FCOE_AFEX(bp))
memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
} else {
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
iscsi_mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].
iscsi_mac_lower);
bnx2x_set_mac_buf(iscsi_mac, val, val2);
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
fcoe_fip_mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].
fcoe_fip_mac_lower);
bnx2x_set_mac_buf(fip_mac, val, val2);
}
/* Disable iSCSI OOO if MAC configuration is invalid. */
if (!is_valid_ether_addr(iscsi_mac)) {
bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
eth_zero_addr(iscsi_mac);
}
/* Disable FCoE if MAC configuration is invalid. */
if (!is_valid_ether_addr(fip_mac)) {
bp->flags |= NO_FCOE_FLAG;
eth_zero_addr(bp->fip_mac);
}
}
static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
{
u32 val, val2;
int func = BP_ABS_FUNC(bp);
int port = BP_PORT(bp);
/* Zero primary MAC configuration */
eth_zero_addr(bp->dev->dev_addr);
if (BP_NOMCP(bp)) {
BNX2X_ERROR("warning: random MAC workaround active\n");
eth_hw_addr_random(bp->dev);
} else if (IS_MF(bp)) {
val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
(val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
if (CNIC_SUPPORT(bp))
bnx2x_get_cnic_mac_hwinfo(bp);
} else {
/* in SF read MACs from port configuration */
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
if (CNIC_SUPPORT(bp))
bnx2x_get_cnic_mac_hwinfo(bp);
}
if (!BP_NOMCP(bp)) {
/* Read physical port identifier from shmem */
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
bp->flags |= HAS_PHYS_PORT_ID;
}
memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
if (!is_valid_ether_addr(bp->dev->dev_addr))
dev_err(&bp->pdev->dev,
"bad Ethernet MAC address configuration: %pM\n"
"change it manually before bringing up the appropriate network interface\n",
bp->dev->dev_addr);
}
static bool bnx2x_get_dropless_info(struct bnx2x *bp)
{
int tmp;
u32 cfg;
if (IS_VF(bp))
return false;
if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
/* Take function: tmp = func */
tmp = BP_ABS_FUNC(bp);
cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
} else {
/* Take port: tmp = port */
tmp = BP_PORT(bp);
cfg = SHMEM_RD(bp,
dev_info.port_hw_config[tmp].generic_features);
cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
}
return cfg;
}
static void validate_set_si_mode(struct bnx2x *bp)
{
u8 func = BP_ABS_FUNC(bp);
u32 val;
val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
/* check for legal mac (upper bytes) */
if (val != 0xffff) {
bp->mf_mode = MULTI_FUNCTION_SI;
bp->mf_config[BP_VN(bp)] =
MF_CFG_RD(bp, func_mf_config[func].config);
} else
BNX2X_DEV_INFO("illegal MAC address for SI\n");
}
static int bnx2x_get_hwinfo(struct bnx2x *bp)
{
int /*abs*/func = BP_ABS_FUNC(bp);
int vn, mfw_vn;
u32 val = 0, val2 = 0;
int rc = 0;
/* Validate that chip access is feasible */
if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
dev_err(&bp->pdev->dev,
"Chip read returns all Fs. Preventing probe from continuing\n");
return -EINVAL;
}
bnx2x_get_common_hwinfo(bp);
/*
* initialize IGU parameters
*/
if (CHIP_IS_E1x(bp)) {
bp->common.int_block = INT_BLOCK_HC;
bp->igu_dsb_id = DEF_SB_IGU_ID;
bp->igu_base_sb = 0;
} else {
bp->common.int_block = INT_BLOCK_IGU;
/* do not allow device reset during IGU info processing */
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
int tout = 5000;
BNX2X_DEV_INFO("FORCING Normal Mode\n");
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
tout--;
usleep_range(1000, 2000);
}
if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
dev_err(&bp->pdev->dev,
"FORCING Normal Mode failed!!!\n");
bnx2x_release_hw_lock(bp,
HW_LOCK_RESOURCE_RESET);
return -EPERM;
}
}
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
} else
BNX2X_DEV_INFO("IGU Normal Mode\n");
rc = bnx2x_get_igu_cam_info(bp);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
if (rc)
return rc;
}
/*
* set base FW non-default (fast path) status block id, this value is
* used to initialize the fw_sb_id saved on the fp/queue structure to
* determine the id used by the FW.
*/
if (CHIP_IS_E1x(bp))
bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
else /*
* 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
* the same queue are indicated on the same IGU SB). So we prefer
* FW and IGU SBs to be the same value.
*/
bp->base_fw_ndsb = bp->igu_base_sb;
BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
"base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
bp->igu_sb_cnt, bp->base_fw_ndsb);
/*
* Initialize MF configuration
*/
bp->mf_ov = 0;
bp->mf_mode = 0;
bp->mf_sub_mode = 0;
vn = BP_VN(bp);
mfw_vn = BP_FW_MB_IDX(bp);
if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
bp->common.shmem2_base, SHMEM2_RD(bp, size),
(u32)offsetof(struct shmem2_region, mf_cfg_addr));
if (SHMEM2_HAS(bp, mf_cfg_addr))
bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
else
bp->common.mf_cfg_base = bp->common.shmem_base +
offsetof(struct shmem_region, func_mb) +
E1H_FUNC_MAX * sizeof(struct drv_func_mb);
/*
* get mf configuration:
* 1. Existence of MF configuration
* 2. MAC address must be legal (check only upper bytes)
* for Switch-Independent mode;
* OVLAN must be legal for Switch-Dependent mode
* 3. SF_MODE configures specific MF mode
*/
if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
/* get mf configuration */
val = SHMEM_RD(bp,
dev_info.shared_feature_config.config);
val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
switch (val) {
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
validate_set_si_mode(bp);
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
if ((!CHIP_IS_E1x(bp)) &&
(MF_CFG_RD(bp, func_mf_config[func].
mac_upper) != 0xffff) &&
(SHMEM2_HAS(bp,
afex_driver_support))) {
bp->mf_mode = MULTI_FUNCTION_AFEX;
bp->mf_config[vn] = MF_CFG_RD(bp,
func_mf_config[func].config);
} else {
BNX2X_DEV_INFO("can not configure afex mode\n");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
/* get OV configuration */
val = MF_CFG_RD(bp,
func_mf_config[FUNC_0].e1hov_tag);
val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
bp->mf_mode = MULTI_FUNCTION_SD;
bp->mf_config[vn] = MF_CFG_RD(bp,
func_mf_config[func].config);
} else
BNX2X_DEV_INFO("illegal OV for SD\n");
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
bp->mf_mode = MULTI_FUNCTION_SD;
bp->mf_sub_mode = SUB_MF_MODE_BD;
bp->mf_config[vn] =
MF_CFG_RD(bp,
func_mf_config[func].config);
if (SHMEM2_HAS(bp, mtu_size)) {
int mtu_idx = BP_FW_MB_IDX(bp);
u16 mtu_size;
u32 mtu;
mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
mtu_size = (u16)mtu;
DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
mtu_size, mtu);
/* if valid: update device mtu */
if (((mtu_size + ETH_HLEN) >=
ETH_MIN_PACKET_SIZE) &&
(mtu_size <=
ETH_MAX_JUMBO_PACKET_SIZE))
bp->dev->mtu = mtu_size;
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
bp->mf_mode = MULTI_FUNCTION_SD;
bp->mf_sub_mode = SUB_MF_MODE_UFP;
bp->mf_config[vn] =
MF_CFG_RD(bp,
func_mf_config[func].config);
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
bp->mf_config[vn] = 0;
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
val2 = SHMEM_RD(bp,
dev_info.shared_hw_config.config_3);
val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
switch (val2) {
case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
validate_set_si_mode(bp);
bp->mf_sub_mode =
SUB_MF_MODE_NPAR1_DOT_5;
break;
default:
/* Unknown configuration */
bp->mf_config[vn] = 0;
BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
val);
}
break;
default:
/* Unknown configuration: reset mf_config */
bp->mf_config[vn] = 0;
BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
}
}
BNX2X_DEV_INFO("%s function mode\n",
IS_MF(bp) ? "multi" : "single");
switch (bp->mf_mode) {
case MULTI_FUNCTION_SD:
val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK;
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
bp->mf_ov = val;
bp->path_has_ovlan = true;
BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
func, bp->mf_ov, bp->mf_ov);
} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
(bp->mf_sub_mode == SUB_MF_MODE_BD)) {
dev_err(&bp->pdev->dev,
"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
func);
bp->path_has_ovlan = true;
} else {
dev_err(&bp->pdev->dev,
"No valid MF OV for func %d, aborting\n",
func);
return -EPERM;
}
break;
case MULTI_FUNCTION_AFEX:
BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
break;
case MULTI_FUNCTION_SI:
BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
func);
break;
default:
if (vn) {
dev_err(&bp->pdev->dev,
"VN %d is in a single function mode, aborting\n",
vn);
return -EPERM;
}
break;
}
/* check if other port on the path needs ovlan:
* Since MF configuration is shared between ports
* Possible mixed modes are only
* {SF, SI} {SF, SD} {SD, SF} {SI, SF}
*/
if (CHIP_MODE_IS_4_PORT(bp) &&
!bp->path_has_ovlan &&
!IS_MF(bp) &&
bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
u8 other_port = !BP_PORT(bp);
u8 other_func = BP_PATH(bp) + 2*other_port;
val = MF_CFG_RD(bp,
func_mf_config[other_func].e1hov_tag);
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
bp->path_has_ovlan = true;
}
}
/* adjust igu_sb_cnt to MF for E1H */
if (CHIP_IS_E1H(bp) && IS_MF(bp))
bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
/* port info */
bnx2x_get_port_hwinfo(bp);
/* Get MAC addresses */
bnx2x_get_mac_hwinfo(bp);
bnx2x_get_cnic_info(bp);
return rc;
}
static void bnx2x_read_fwinfo(struct bnx2x *bp)
{
int cnt, i, block_end, rodi;
char vpd_start[BNX2X_VPD_LEN+1];
char str_id_reg[VENDOR_ID_LEN+1];
char str_id_cap[VENDOR_ID_LEN+1];
char *vpd_data;
char *vpd_extended_data = NULL;
u8 len;
cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
if (cnt < BNX2X_VPD_LEN)
goto out_not_found;
/* VPD RO tag should be first tag after identifier string, hence
* we should be able to find it in first BNX2X_VPD_LEN chars
*/
i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
PCI_VPD_LRDT_RO_DATA);
if (i < 0)
goto out_not_found;
block_end = i + PCI_VPD_LRDT_TAG_SIZE +
pci_vpd_lrdt_size(&vpd_start[i]);
i += PCI_VPD_LRDT_TAG_SIZE;
if (block_end > BNX2X_VPD_LEN) {
vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
if (vpd_extended_data == NULL)
goto out_not_found;
/* read rest of vpd image into vpd_extended_data */
memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
block_end - BNX2X_VPD_LEN,
vpd_extended_data + BNX2X_VPD_LEN);
if (cnt < (block_end - BNX2X_VPD_LEN))
goto out_not_found;
vpd_data = vpd_extended_data;
} else
vpd_data = vpd_start;
/* now vpd_data holds full vpd content in both cases */
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
PCI_VPD_RO_KEYWORD_MFR_ID);
if (rodi < 0)
goto out_not_found;
len = pci_vpd_info_field_size(&vpd_data[rodi]);
if (len != VENDOR_ID_LEN)
goto out_not_found;
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
/* vendor specific info */
snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
!strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
PCI_VPD_RO_KEYWORD_VENDOR0);
if (rodi >= 0) {
len = pci_vpd_info_field_size(&vpd_data[rodi]);
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
memcpy(bp->fw_ver, &vpd_data[rodi], len);
bp->fw_ver[len] = ' ';
}
}
kfree(vpd_extended_data);
return;
}
out_not_found:
kfree(vpd_extended_data);
return;
}
static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
{
u32 flags = 0;
if (CHIP_REV_IS_FPGA(bp))
SET_FLAGS(flags, MODE_FPGA);
else if (CHIP_REV_IS_EMUL(bp))
SET_FLAGS(flags, MODE_EMUL);
else
SET_FLAGS(flags, MODE_ASIC);
if (CHIP_MODE_IS_4_PORT(bp))
SET_FLAGS(flags, MODE_PORT4);
else
SET_FLAGS(flags, MODE_PORT2);
if (CHIP_IS_E2(bp))
SET_FLAGS(flags, MODE_E2);
else if (CHIP_IS_E3(bp)) {
SET_FLAGS(flags, MODE_E3);
if (CHIP_REV(bp) == CHIP_REV_Ax)
SET_FLAGS(flags, MODE_E3_A0);
else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
}
if (IS_MF(bp)) {
SET_FLAGS(flags, MODE_MF);
switch (bp->mf_mode) {
case MULTI_FUNCTION_SD:
SET_FLAGS(flags, MODE_MF_SD);
break;
case MULTI_FUNCTION_SI:
SET_FLAGS(flags, MODE_MF_SI);
break;
case MULTI_FUNCTION_AFEX:
SET_FLAGS(flags, MODE_MF_AFEX);
break;
}
} else
SET_FLAGS(flags, MODE_SF);
#if defined(__LITTLE_ENDIAN)
SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
#else /*(__BIG_ENDIAN)*/
SET_FLAGS(flags, MODE_BIG_ENDIAN);
#endif
INIT_MODE_FLAGS(bp) = flags;
}
static int bnx2x_init_bp(struct bnx2x *bp)
{
int func;
int rc;
mutex_init(&bp->port.phy_mutex);
mutex_init(&bp->fw_mb_mutex);
mutex_init(&bp->drv_info_mutex);
sema_init(&bp->stats_lock, 1);
bp->drv_info_mng_owner = false;
INIT_LIST_HEAD(&bp->vlan_reg);
INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
if (IS_PF(bp)) {
rc = bnx2x_get_hwinfo(bp);
if (rc)
return rc;
} else {
eth_zero_addr(bp->dev->dev_addr);
}
bnx2x_set_modes_bitmap(bp);
rc = bnx2x_alloc_mem_bp(bp);
if (rc)
return rc;
bnx2x_read_fwinfo(bp);
func = BP_FUNC(bp);
/* need to reset chip if undi was active */
if (IS_PF(bp) && !BP_NOMCP(bp)) {
/* init fw_seq */
bp->fw_seq =
SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK;
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
rc = bnx2x_prev_unload(bp);
if (rc) {
bnx2x_free_mem_bp(bp);
return rc;
}
}
if (CHIP_REV_IS_FPGA(bp))
dev_err(&bp->pdev->dev, "FPGA detected\n");
if (BP_NOMCP(bp) && (func == 0))
dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
bp->disable_tpa = disable_tpa;
bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
/* Reduce memory usage in kdump environment by disabling TPA */
bp->disable_tpa |= is_kdump_kernel();
/* Set TPA flags */
if (bp->disable_tpa) {
bp->dev->hw_features &= ~NETIF_F_LRO;
bp->dev->features &= ~NETIF_F_LRO;
}
if (CHIP_IS_E1(bp))
bp->dropless_fc = 0;
else
bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
bp->mrrs = mrrs;
bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
if (IS_VF(bp))
bp->rx_ring_size = MAX_RX_AVAIL;
/* make sure that the numbers are in the right granularity */
bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
init_timer(&bp->timer);
bp->timer.expires = jiffies + bp->current_interval;
bp->timer.data = (unsigned long) bp;
bp->timer.function = bnx2x_timer;
if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
SHMEM2_HAS(bp, dcbx_en) &&
SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
bnx2x_dcbx_init_params(bp);
} else {
bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
}
if (CHIP_IS_E1x(bp))
bp->cnic_base_cl_id = FP_SB_MAX_E1x;
else
bp->cnic_base_cl_id = FP_SB_MAX_E2;
/* multiple tx priority */
if (IS_VF(bp))
bp->max_cos = 1;
else if (CHIP_IS_E1x(bp))
bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
else if (CHIP_IS_E3B0(bp))
bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
else
BNX2X_ERR("unknown chip %x revision %x\n",
CHIP_NUM(bp), CHIP_REV(bp));
BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
/* We need at least one default status block for slow-path events,
* second status block for the L2 queue, and a third status block for
* CNIC if supported.
*/
if (IS_VF(bp))
bp->min_msix_vec_cnt = 1;
else if (CNIC_SUPPORT(bp))
bp->min_msix_vec_cnt = 3;
else /* PF w/o cnic */
bp->min_msix_vec_cnt = 2;
BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
bp->dump_preset_idx = 1;
if (CHIP_IS_E3B0(bp))
bp->flags |= PTP_SUPPORTED;
return rc;
}
/****************************************************************************
* General service functions
****************************************************************************/
/*
* net_device service functions
*/
/* called with rtnl_lock */
static int bnx2x_open(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
int rc;
bp->stats_init = true;
netif_carrier_off(dev);
bnx2x_set_power_state(bp, PCI_D0);
/* If parity had happen during the unload, then attentions
* and/or RECOVERY_IN_PROGRES may still be set. In this case we
* want the first function loaded on the current engine to
* complete the recovery.
* Parity recovery is only relevant for PF driver.
*/
if (IS_PF(bp)) {
int other_engine = BP_PATH(bp) ? 0 : 1;
bool other_load_status, load_status;
bool global = false;
other_load_status = bnx2x_get_load_status(bp, other_engine);
load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
bnx2x_chk_parity_attn(bp, &global, true)) {
do {
/* If there are attentions and they are in a
* global blocks, set the GLOBAL_RESET bit
* regardless whether it will be this function
* that will complete the recovery or not.
*/
if (global)
bnx2x_set_reset_global(bp);
/* Only the first function on the current
* engine should try to recover in open. In case
* of attentions in global blocks only the first
* in the chip should try to recover.
*/
if ((!load_status &&
(!global || !other_load_status)) &&
bnx2x_trylock_leader_lock(bp) &&
!bnx2x_leader_reset(bp)) {
netdev_info(bp->dev,
"Recovered in open\n");
break;
}
/* recovery has failed... */
bnx2x_set_power_state(bp, PCI_D3hot);
bp->recovery_state = BNX2X_RECOVERY_FAILED;
BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
"If you still see this message after a few retries then power cycle is required.\n");
return -EAGAIN;
} while (0);
}
}
bp->recovery_state = BNX2X_RECOVERY_DONE;
rc = bnx2x_nic_load(bp, LOAD_OPEN);
if (rc)
return rc;
if (IS_PF(bp))
udp_tunnel_get_rx_info(dev);
return 0;
}
/* called with rtnl_lock */
static int bnx2x_close(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
/* Unload the driver, release IRQs */
bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
return 0;
}
struct bnx2x_mcast_list_elem_group
{
struct list_head mcast_group_link;
struct bnx2x_mcast_list_elem mcast_elems[];
};
#define MCAST_ELEMS_PER_PG \
((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
sizeof(struct bnx2x_mcast_list_elem))
static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
{
struct bnx2x_mcast_list_elem_group *current_mcast_group;
while (!list_empty(mcast_group_list)) {
current_mcast_group = list_first_entry(mcast_group_list,
struct bnx2x_mcast_list_elem_group,
mcast_group_link);
list_del(&current_mcast_group->mcast_group_link);
free_page((unsigned long)current_mcast_group);
}
}
static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
struct list_head *mcast_group_list)
{
struct bnx2x_mcast_list_elem *mc_mac;
struct netdev_hw_addr *ha;
struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
int mc_count = netdev_mc_count(bp->dev);
int offset = 0;
INIT_LIST_HEAD(&p->mcast_list);
netdev_for_each_mc_addr(ha, bp->dev) {
if (!offset) {
current_mcast_group =
(struct bnx2x_mcast_list_elem_group *)
__get_free_page(GFP_ATOMIC);
if (!current_mcast_group) {
bnx2x_free_mcast_macs_list(mcast_group_list);
BNX2X_ERR("Failed to allocate mc MAC list\n");
return -ENOMEM;
}
list_add(&current_mcast_group->mcast_group_link,
mcast_group_list);
}
mc_mac = &current_mcast_group->mcast_elems[offset];
mc_mac->mac = bnx2x_mc_addr(ha);
list_add_tail(&mc_mac->link, &p->mcast_list);
offset++;
if (offset == MCAST_ELEMS_PER_PG)
offset = 0;
}
p->mcast_list_len = mc_count;
return 0;
}
/**
* bnx2x_set_uc_list - configure a new unicast MACs list.
*
* @bp: driver handle
*
* We will use zero (0) as a MAC type for these MACs.
*/
static int bnx2x_set_uc_list(struct bnx2x *bp)
{
int rc;
struct net_device *dev = bp->dev;
struct netdev_hw_addr *ha;
struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
unsigned long ramrod_flags = 0;
/* First schedule a cleanup up of old configuration */
rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
if (rc < 0) {
BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
return rc;
}
netdev_for_each_uc_addr(ha, dev) {
rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
BNX2X_UC_LIST_MAC, &ramrod_flags);
if (rc == -EEXIST) {
DP(BNX2X_MSG_SP,
"Failed to schedule ADD operations: %d\n", rc);
/* do not treat adding same MAC as error */
rc = 0;
} else if (rc < 0) {
BNX2X_ERR("Failed to schedule ADD operations: %d\n",
rc);
return rc;
}
}
/* Execute the pending commands */
__set_bit(RAMROD_CONT, &ramrod_flags);
return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
BNX2X_UC_LIST_MAC, &ramrod_flags);
}
static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
{
LIST_HEAD(mcast_group_list);
struct net_device *dev = bp->dev;
struct bnx2x_mcast_ramrod_params rparam = {NULL};
int rc = 0;
rparam.mcast_obj = &bp->mcast_obj;
/* first, clear all configured multicast MACs */
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
if (rc < 0) {
BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
return rc;
}
/* then, configure a new MACs list */
if (netdev_mc_count(dev)) {
rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
if (rc)
return rc;
/* Now add the new MACs */
rc = bnx2x_config_mcast(bp, &rparam,
BNX2X_MCAST_CMD_ADD);
if (rc < 0)
BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
rc);
bnx2x_free_mcast_macs_list(&mcast_group_list);
}
return rc;
}
static int bnx2x_set_mc_list(struct bnx2x *bp)
{
LIST_HEAD(mcast_group_list);
struct bnx2x_mcast_ramrod_params rparam = {NULL};
struct net_device *dev = bp->dev;
int rc = 0;
/* On older adapters, we need to flush and re-add filters */
if (CHIP_IS_E1x(bp))
return bnx2x_set_mc_list_e1x(bp);
rparam.mcast_obj = &bp->mcast_obj;
if (netdev_mc_count(dev)) {
rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
if (rc)
return rc;
/* Override the curently configured set of mc filters */
rc = bnx2x_config_mcast(bp, &rparam,
BNX2X_MCAST_CMD_SET);
if (rc < 0)
BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
rc);
bnx2x_free_mcast_macs_list(&mcast_group_list);
} else {
/* If no mc addresses are required, flush the configuration */
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
if (rc)
BNX2X_ERR("Failed to clear multicast configuration %d\n",
rc);
}
return rc;
}
/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
static void bnx2x_set_rx_mode(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->state != BNX2X_STATE_OPEN) {
DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
return;
} else {
/* Schedule an SP task to handle rest of change */
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
NETIF_MSG_IFUP);
}
}
void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
{
u32 rx_mode = BNX2X_RX_MODE_NORMAL;
DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
netif_addr_lock_bh(bp->dev);
if (bp->dev->flags & IFF_PROMISC) {
rx_mode = BNX2X_RX_MODE_PROMISC;
} else if ((bp->dev->flags & IFF_ALLMULTI) ||
((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
CHIP_IS_E1(bp))) {
rx_mode = BNX2X_RX_MODE_ALLMULTI;
} else {
if (IS_PF(bp)) {
/* some multicasts */
if (bnx2x_set_mc_list(bp) < 0)
rx_mode = BNX2X_RX_MODE_ALLMULTI;
/* release bh lock, as bnx2x_set_uc_list might sleep */
netif_addr_unlock_bh(bp->dev);
if (bnx2x_set_uc_list(bp) < 0)
rx_mode = BNX2X_RX_MODE_PROMISC;
netif_addr_lock_bh(bp->dev);
} else {
/* configuring mcast to a vf involves sleeping (when we
* wait for the pf's response).
*/
bnx2x_schedule_sp_rtnl(bp,
BNX2X_SP_RTNL_VFPF_MCAST, 0);
}
}
bp->rx_mode = rx_mode;
/* handle ISCSI SD mode */
if (IS_MF_ISCSI_ONLY(bp))
bp->rx_mode = BNX2X_RX_MODE_NONE;
/* Schedule the rx_mode command */
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
netif_addr_unlock_bh(bp->dev);
return;
}
if (IS_PF(bp)) {
bnx2x_set_storm_rx_mode(bp);
netif_addr_unlock_bh(bp->dev);
} else {
/* VF will need to request the PF to make this change, and so
* the VF needs to release the bottom-half lock prior to the
* request (as it will likely require sleep on the VF side)
*/
netif_addr_unlock_bh(bp->dev);
bnx2x_vfpf_storm_rx_mode(bp);
}
}
/* called with rtnl_lock */
static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
int devad, u16 addr)
{
struct bnx2x *bp = netdev_priv(netdev);
u16 value;
int rc;
DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
prtad, devad, addr);
/* The HW expects different devad if CL22 is used */
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
bnx2x_release_phy_lock(bp);
DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
if (!rc)
rc = value;
return rc;
}
/* called with rtnl_lock */
static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
u16 addr, u16 value)
{
struct bnx2x *bp = netdev_priv(netdev);
int rc;
DP(NETIF_MSG_LINK,
"mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
prtad, devad, addr, value);
/* The HW expects different devad if CL22 is used */
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
bnx2x_release_phy_lock(bp);
return rc;
}
/* called with rtnl_lock */
static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct bnx2x *bp = netdev_priv(dev);
struct mii_ioctl_data *mdio = if_mii(ifr);
if (!netif_running(dev))
return -EAGAIN;
switch (cmd) {
case SIOCSHWTSTAMP:
return bnx2x_hwtstamp_ioctl(bp, ifr);
default:
DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
mdio->phy_id, mdio->reg_num, mdio->val_in);
return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void poll_bnx2x(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
int i;
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
napi_schedule(&bnx2x_fp(bp, fp->index, napi));
}
}
#endif
static int bnx2x_validate_addr(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
/* query the bulletin board for mac address configured by the PF */
if (IS_VF(bp))
bnx2x_sample_bulletin(bp);
if (!is_valid_ether_addr(dev->dev_addr)) {
BNX2X_ERR("Non-valid Ethernet address\n");
return -EADDRNOTAVAIL;
}
return 0;
}
static int bnx2x_get_phys_port_id(struct net_device *netdev,
struct netdev_phys_item_id *ppid)
{
struct bnx2x *bp = netdev_priv(netdev);
if (!(bp->flags & HAS_PHYS_PORT_ID))
return -EOPNOTSUPP;
ppid->id_len = sizeof(bp->phys_port_id);
memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
return 0;
}
static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
/*
* A skb with gso_size + header length > 9700 will cause a
* firmware panic. Drop GSO support.
*
* Eventually the upper layer should not pass these packets down.
*
* For speed, if the gso_size is <= 9000, assume there will
* not be 700 bytes of headers and pass it through. Only do a
* full (slow) validation if the gso_size is > 9000.
*
* (Due to the way SKB_BY_FRAGS works this will also do a full
* validation in that case.)
*/
if (unlikely(skb_is_gso(skb) &&
(skb_shinfo(skb)->gso_size > 9000) &&
!skb_gso_validate_mac_len(skb, 9700)))
features &= ~NETIF_F_GSO_MASK;
features = vlan_features_check(skb, features);
return vxlan_features_check(skb, features);
}
static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
{
int rc;
if (IS_PF(bp)) {
unsigned long ramrod_flags = 0;
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
add, &ramrod_flags);
} else {
rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
}
return rc;
}
static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
{
struct bnx2x_vlan_entry *vlan;
int rc = 0;
/* Configure all non-configured entries */
list_for_each_entry(vlan, &bp->vlan_reg, link) {
if (vlan->hw)
continue;
if (bp->vlan_cnt >= bp->vlan_credit)
return -ENOBUFS;
rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
if (rc) {
BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
return rc;
}
DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
vlan->hw = true;
bp->vlan_cnt++;
}
return 0;
}
static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
{
bool need_accept_any_vlan;
need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
if (bp->accept_any_vlan != need_accept_any_vlan) {
bp->accept_any_vlan = need_accept_any_vlan;
DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
bp->accept_any_vlan ? "raised" : "cleared");
if (set_rx_mode) {
if (IS_PF(bp))
bnx2x_set_rx_mode_inner(bp);
else
bnx2x_vfpf_storm_rx_mode(bp);
}
}
}
int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
{
/* Don't set rx mode here. Our caller will do it. */
bnx2x_vlan_configure(bp, false);
return 0;
}
static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct bnx2x *bp = netdev_priv(dev);
struct bnx2x_vlan_entry *vlan;
DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan)
return -ENOMEM;
vlan->vid = vid;
vlan->hw = false;
list_add_tail(&vlan->link, &bp->vlan_reg);
if (netif_running(dev))
bnx2x_vlan_configure(bp, true);
return 0;
}
static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct bnx2x *bp = netdev_priv(dev);
struct bnx2x_vlan_entry *vlan;
bool found = false;
int rc = 0;
DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
list_for_each_entry(vlan, &bp->vlan_reg, link)
if (vlan->vid == vid) {
found = true;
break;
}
if (!found) {
BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
return -EINVAL;
}
if (netif_running(dev) && vlan->hw) {
rc = __bnx2x_vlan_configure_vid(bp, vid, false);
DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
bp->vlan_cnt--;
}
list_del(&vlan->link);
kfree(vlan);
if (netif_running(dev))
bnx2x_vlan_configure(bp, true);
DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
return rc;
}
static const struct net_device_ops bnx2x_netdev_ops = {
.ndo_open = bnx2x_open,
.ndo_stop = bnx2x_close,
.ndo_start_xmit = bnx2x_start_xmit,
.ndo_select_queue = bnx2x_select_queue,
.ndo_set_rx_mode = bnx2x_set_rx_mode,
.ndo_set_mac_address = bnx2x_change_mac_addr,
.ndo_validate_addr = bnx2x_validate_addr,
.ndo_do_ioctl = bnx2x_ioctl,
.ndo_change_mtu = bnx2x_change_mtu,
.ndo_fix_features = bnx2x_fix_features,
.ndo_set_features = bnx2x_set_features,
.ndo_tx_timeout = bnx2x_tx_timeout,
.ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = poll_bnx2x,
#endif
.ndo_setup_tc = __bnx2x_setup_tc,
#ifdef CONFIG_BNX2X_SRIOV
.ndo_set_vf_mac = bnx2x_set_vf_mac,
.ndo_set_vf_vlan = bnx2x_set_vf_vlan,
.ndo_get_vf_config = bnx2x_get_vf_config,
#endif
#ifdef NETDEV_FCOE_WWNN
.ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
#endif
.ndo_get_phys_port_id = bnx2x_get_phys_port_id,
.ndo_set_vf_link_state = bnx2x_set_vf_link_state,
.ndo_features_check = bnx2x_features_check,
.ndo_udp_tunnel_add = bnx2x_udp_tunnel_add,
.ndo_udp_tunnel_del = bnx2x_udp_tunnel_del,
};
static int bnx2x_set_coherency_mask(struct bnx2x *bp)
{
struct device *dev = &bp->pdev->dev;
if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
dev_err(dev, "System does not support DMA, aborting\n");
return -EIO;
}
return 0;
}
static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
{
if (bp->flags & AER_ENABLED) {
pci_disable_pcie_error_reporting(bp->pdev);
bp->flags &= ~AER_ENABLED;
}
}
static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
struct net_device *dev, unsigned long board_type)
{
int rc;
u32 pci_cfg_dword;
bool chip_is_e1x = (board_type == BCM57710 ||
board_type == BCM57711 ||
board_type == BCM57711E);
SET_NETDEV_DEV(dev, &pdev->dev);
bp->dev = dev;
bp->pdev = pdev;
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&bp->pdev->dev,
"Cannot enable PCI device, aborting\n");
goto err_out;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&bp->pdev->dev,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
PCICFG_REVESION_ID_ERROR_VAL) {
pr_err("PCI device error, probably due to fan failure, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
if (atomic_read(&pdev->enable_cnt) == 1) {
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&bp->pdev->dev,
"Cannot obtain PCI resources, aborting\n");
goto err_out_disable;
}
pci_set_master(pdev);
pci_save_state(pdev);
}
if (IS_PF(bp)) {
if (!pdev->pm_cap) {
dev_err(&bp->pdev->dev,
"Cannot find power management capability, aborting\n");
rc = -EIO;
goto err_out_release;
}
}
if (!pci_is_pcie(pdev)) {
dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
rc = -EIO;
goto err_out_release;
}
rc = bnx2x_set_coherency_mask(bp);
if (rc)
goto err_out_release;
dev->mem_start = pci_resource_start(pdev, 0);
dev->base_addr = dev->mem_start;
dev->mem_end = pci_resource_end(pdev, 0);
dev->irq = pdev->irq;
bp->regview = pci_ioremap_bar(pdev, 0);
if (!bp->regview) {
dev_err(&bp->pdev->dev,
"Cannot map register space, aborting\n");
rc = -ENOMEM;
goto err_out_release;
}
/* In E1/E1H use pci device function given by kernel.
* In E2/E3 read physical function from ME register since these chips
* support Physical Device Assignment where kernel BDF maybe arbitrary
* (depending on hypervisor).
*/
if (chip_is_e1x) {
bp->pf_num = PCI_FUNC(pdev->devfn);
} else {
/* chip is E2/3*/
pci_read_config_dword(bp->pdev,
PCICFG_ME_REGISTER, &pci_cfg_dword);
bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
ME_REG_ABS_PF_NUM_SHIFT);
}
BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
/* clean indirect addresses */
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
/* Set PCIe reset type to fundamental for EEH recovery */
pdev->needs_freset = 1;
/* AER (Advanced Error reporting) configuration */
rc = pci_enable_pcie_error_reporting(pdev);
if (!rc)
bp->flags |= AER_ENABLED;
else
BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
/*
* Clean the following indirect addresses for all functions since it
* is not used by the driver.
*/
if (IS_PF(bp)) {
REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
if (chip_is_e1x) {
REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
}
/* Enable internal target-read (in case we are probed after PF
* FLR). Must be done prior to any BAR read access. Only for
* 57712 and up
*/
if (!chip_is_e1x)
REG_WR(bp,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
dev->watchdog_timeo = TX_TIMEOUT;
dev->netdev_ops = &bnx2x_netdev_ops;
bnx2x_set_ethtool_ops(bp, dev);
dev->priv_flags |= IFF_UNICAST_FLT;
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
if (!chip_is_e1x) {
dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_PARTIAL;
dev->hw_enc_features =
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_PARTIAL;
dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_UDP_TUNNEL_CSUM;
}
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
if (IS_PF(bp)) {
if (chip_is_e1x)
bp->accept_any_vlan = true;
else
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
}
/* For VF we'll know whether to enable VLAN filtering after
* getting a response to CHANNEL_TLV_ACQUIRE from PF.
*/
dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
dev->features |= NETIF_F_HIGHDMA;
/* Add Loopback capability to the device */
dev->hw_features |= NETIF_F_LOOPBACK;
#ifdef BCM_DCBNL
dev->dcbnl_ops = &bnx2x_dcbnl_ops;
#endif
/* get_port_hwinfo() will set prtad and mmds properly */
bp->mdio.prtad = MDIO_PRTAD_NONE;
bp->mdio.mmds = 0;
bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
bp->mdio.dev = dev;
bp->mdio.mdio_read = bnx2x_mdio_read;
bp->mdio.mdio_write = bnx2x_mdio_write;
return 0;
err_out_release:
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
err_out:
return rc;
}
static int bnx2x_check_firmware(struct bnx2x *bp)
{
const struct firmware *firmware = bp->firmware;
struct bnx2x_fw_file_hdr *fw_hdr;
struct bnx2x_fw_file_section *sections;
u32 offset, len, num_ops;
__be16 *ops_offsets;
int i;
const u8 *fw_ver;
if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
BNX2X_ERR("Wrong FW size\n");
return -EINVAL;
}
fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
sections = (struct bnx2x_fw_file_section *)fw_hdr;
/* Make sure none of the offsets and sizes make us read beyond
* the end of the firmware data */
for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
offset = be32_to_cpu(sections[i].offset);
len = be32_to_cpu(sections[i].len);
if (offset + len > firmware->size) {
BNX2X_ERR("Section %d length is out of bounds\n", i);
return -EINVAL;
}
}
/* Likewise for the init_ops offsets */
offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
ops_offsets = (__force __be16 *)(firmware->data + offset);
num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
if (be16_to_cpu(ops_offsets[i]) > num_ops) {
BNX2X_ERR("Section offset %d is out of bounds\n", i);
return -EINVAL;
}
}
/* Check FW version */
offset = be32_to_cpu(fw_hdr->fw_version.offset);
fw_ver = firmware->data + offset;
if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
(fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
(fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
(fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION,
BCM_5710_FW_ENGINEERING_VERSION);
return -EINVAL;
}
return 0;
}
static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
{
const __be32 *source = (const __be32 *)_source;
u32 *target = (u32 *)_target;
u32 i;
for (i = 0; i < n/4; i++)
target[i] = be32_to_cpu(source[i]);
}
/*
Ops array is stored in the following format:
{op(8bit), offset(24bit, big endian), data(32bit, big endian)}
*/
static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
{
const __be32 *source = (const __be32 *)_source;
struct raw_op *target = (struct raw_op *)_target;
u32 i, j, tmp;
for (i = 0, j = 0; i < n/8; i++, j += 2) {
tmp = be32_to_cpu(source[j]);
target[i].op = (tmp >> 24) & 0xff;
target[i].offset = tmp & 0xffffff;
target[i].raw_data = be32_to_cpu(source[j + 1]);
}
}
/* IRO array is stored in the following format:
* {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
*/
static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
{
const __be32 *source = (const __be32 *)_source;
struct iro *target = (struct iro *)_target;
u32 i, j, tmp;
for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
target[i].base = be32_to_cpu(source[j]);
j++;
tmp = be32_to_cpu(source[j]);
target[i].m1 = (tmp >> 16) & 0xffff;
target[i].m2 = tmp & 0xffff;
j++;
tmp = be32_to_cpu(source[j]);
target[i].m3 = (tmp >> 16) & 0xffff;
target[i].size = tmp & 0xffff;
j++;
}
}
static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
{
const __be16 *source = (const __be16 *)_source;
u16 *target = (u16 *)_target;
u32 i;
for (i = 0; i < n/2; i++)
target[i] = be16_to_cpu(source[i]);
}
#define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
do { \
u32 len = be32_to_cpu(fw_hdr->arr.len); \
bp->arr = kmalloc(len, GFP_KERNEL); \
if (!bp->arr) \
goto lbl; \
func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
(u8 *)bp->arr, len); \
} while (0)
static int bnx2x_init_firmware(struct bnx2x *bp)
{
const char *fw_file_name;
struct bnx2x_fw_file_hdr *fw_hdr;
int rc;
if (bp->firmware)
return 0;
if (CHIP_IS_E1(bp))
fw_file_name = FW_FILE_NAME_E1;
else if (CHIP_IS_E1H(bp))
fw_file_name = FW_FILE_NAME_E1H;
else if (!CHIP_IS_E1x(bp))
fw_file_name = FW_FILE_NAME_E2;
else {
BNX2X_ERR("Unsupported chip revision\n");
return -EINVAL;
}
BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
if (rc) {
BNX2X_ERR("Can't load firmware file %s\n",
fw_file_name);
goto request_firmware_exit;
}
rc = bnx2x_check_firmware(bp);
if (rc) {
BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
goto request_firmware_exit;
}
fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
/* Initialize the pointers to the init arrays */
/* Blob */
rc = -ENOMEM;
BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
/* Opcodes */
BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
/* Offsets */
BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
be16_to_cpu_n);
/* STORMs firmware */
INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_pram_data.offset);
INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_int_table_data.offset);
INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_pram_data.offset);
INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_pram_data.offset);
INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_int_table_data.offset);
INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_pram_data.offset);
/* IRO */
BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
return 0;
iro_alloc_err:
kfree(bp->init_ops_offsets);
init_offsets_alloc_err:
kfree(bp->init_ops);
init_ops_alloc_err:
kfree(bp->init_data);
request_firmware_exit:
release_firmware(bp->firmware);
bp->firmware = NULL;
return rc;
}
static void bnx2x_release_firmware(struct bnx2x *bp)
{
kfree(bp->init_ops_offsets);
kfree(bp->init_ops);
kfree(bp->init_data);
release_firmware(bp->firmware);
bp->firmware = NULL;
}
static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
.init_hw_cmn = bnx2x_init_hw_common,
.init_hw_port = bnx2x_init_hw_port,
.init_hw_func = bnx2x_init_hw_func,
.reset_hw_cmn = bnx2x_reset_common,
.reset_hw_port = bnx2x_reset_port,
.reset_hw_func = bnx2x_reset_func,
.gunzip_init = bnx2x_gunzip_init,
.gunzip_end = bnx2x_gunzip_end,
.init_fw = bnx2x_init_firmware,
.release_fw = bnx2x_release_firmware,
};
void bnx2x__init_func_obj(struct bnx2x *bp)
{
/* Prepare DMAE related driver resources */
bnx2x_setup_dmae(bp);
bnx2x_init_func_obj(bp, &bp->func_obj,
bnx2x_sp(bp, func_rdata),
bnx2x_sp_mapping(bp, func_rdata),
bnx2x_sp(bp, func_afex_rdata),
bnx2x_sp_mapping(bp, func_afex_rdata),
&bnx2x_func_sp_drv);
}
/* must be called after sriov-enable */
static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
{
int cid_count = BNX2X_L2_MAX_CID(bp);
if (IS_SRIOV(bp))
cid_count += BNX2X_VF_CIDS;
if (CNIC_SUPPORT(bp))
cid_count += CNIC_CID_MAX;
return roundup(cid_count, QM_CID_ROUND);
}
/**
* bnx2x_get_num_none_def_sbs - return the number of none default SBs
*
* @dev: pci device
*
*/
static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
{
int index;
u16 control = 0;
/*
* If MSI-X is not supported - return number of SBs needed to support
* one fast path queue: one FP queue + SB for CNIC
*/
if (!pdev->msix_cap) {
dev_info(&pdev->dev, "no msix capability found\n");
return 1 + cnic_cnt;
}
dev_info(&pdev->dev, "msix capability found\n");
/*
* The value in the PCI configuration space is the index of the last
* entry, namely one less than the actual size of the table, which is
* exactly what we want to return from this function: number of all SBs
* without the default SB.
* For VFs there is no default SB, then we return (index+1).
*/
pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
index = control & PCI_MSIX_FLAGS_QSIZE;
return index;
}
static int set_max_cos_est(int chip_id)
{
switch (chip_id) {
case BCM57710:
case BCM57711:
case BCM57711E:
return BNX2X_MULTI_TX_COS_E1X;
case BCM57712:
case BCM57712_MF:
return BNX2X_MULTI_TX_COS_E2_E3A0;
case BCM57800:
case BCM57800_MF:
case BCM57810:
case BCM57810_MF:
case BCM57840_4_10:
case BCM57840_2_20:
case BCM57840_O:
case BCM57840_MFO:
case BCM57840_MF:
case BCM57811:
case BCM57811_MF:
return BNX2X_MULTI_TX_COS_E3B0;
case BCM57712_VF:
case BCM57800_VF:
case BCM57810_VF:
case BCM57840_VF:
case BCM57811_VF:
return 1;
default:
pr_err("Unknown board_type (%d), aborting\n", chip_id);
return -ENODEV;
}
}
static int set_is_vf(int chip_id)
{
switch (chip_id) {
case BCM57712_VF:
case BCM57800_VF:
case BCM57810_VF:
case BCM57840_VF:
case BCM57811_VF:
return true;
default:
return false;
}
}
/* nig_tsgen registers relative address */
#define tsgen_ctrl 0x0
#define tsgen_freecount 0x10
#define tsgen_synctime_t0 0x20
#define tsgen_offset_t0 0x28
#define tsgen_drift_t0 0x30
#define tsgen_synctime_t1 0x58
#define tsgen_offset_t1 0x60
#define tsgen_drift_t1 0x68
/* FW workaround for setting drift */
static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
int best_val, int best_period)
{
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_set_timesync_params *set_timesync_params =
&func_params.params.set_timesync;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
/* Function parameters */
set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
set_timesync_params->add_sub_drift_adjust_value =
drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
set_timesync_params->drift_adjust_value = best_val;
set_timesync_params->drift_adjust_period = best_period;
return bnx2x_func_state_change(bp, &func_params);
}
static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
int rc;
int drift_dir = 1;
int val, period, period1, period2, dif, dif1, dif2;
int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
if (!netif_running(bp->dev)) {
DP(BNX2X_MSG_PTP,
"PTP adjfreq called while the interface is down\n");
return -ENETDOWN;
}
if (ppb < 0) {
ppb = -ppb;
drift_dir = 0;
}
if (ppb == 0) {
best_val = 1;
best_period = 0x1FFFFFF;
} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
best_val = 31;
best_period = 1;
} else {
/* Changed not to allow val = 8, 16, 24 as these values
* are not supported in workaround.
*/
for (val = 0; val <= 31; val++) {
if ((val & 0x7) == 0)
continue;
period1 = val * 1000000 / ppb;
period2 = period1 + 1;
if (period1 != 0)
dif1 = ppb - (val * 1000000 / period1);
else
dif1 = BNX2X_MAX_PHC_DRIFT;
if (dif1 < 0)
dif1 = -dif1;
dif2 = ppb - (val * 1000000 / period2);
if (dif2 < 0)
dif2 = -dif2;
dif = (dif1 < dif2) ? dif1 : dif2;
period = (dif1 < dif2) ? period1 : period2;
if (dif < best_dif) {
best_dif = dif;
best_val = val;
best_period = period;
}
}
}
rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
best_period);
if (rc) {
BNX2X_ERR("Failed to set drift\n");
return -EFAULT;
}
DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
best_period);
return 0;
}
static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
if (!netif_running(bp->dev)) {
DP(BNX2X_MSG_PTP,
"PTP adjtime called while the interface is down\n");
return -ENETDOWN;
}
DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
timecounter_adjtime(&bp->timecounter, delta);
return 0;
}
static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
u64 ns;
if (!netif_running(bp->dev)) {
DP(BNX2X_MSG_PTP,
"PTP gettime called while the interface is down\n");
return -ENETDOWN;
}
ns = timecounter_read(&bp->timecounter);
DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
*ts = ns_to_timespec64(ns);
return 0;
}
static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
u64 ns;
if (!netif_running(bp->dev)) {
DP(BNX2X_MSG_PTP,
"PTP settime called while the interface is down\n");
return -ENETDOWN;
}
ns = timespec64_to_ns(ts);
DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
/* Re-init the timecounter */
timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
return 0;
}
/* Enable (or disable) ancillary features of the phc subsystem */
static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
BNX2X_ERR("PHC ancillary features are not supported\n");
return -ENOTSUPP;
}
static void bnx2x_register_phc(struct bnx2x *bp)
{
/* Fill the ptp_clock_info struct and register PTP clock*/
bp->ptp_clock_info.owner = THIS_MODULE;
snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
bp->ptp_clock_info.n_alarm = 0;
bp->ptp_clock_info.n_ext_ts = 0;
bp->ptp_clock_info.n_per_out = 0;
bp->ptp_clock_info.pps = 0;
bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
bp->ptp_clock_info.enable = bnx2x_ptp_enable;
bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
if (IS_ERR(bp->ptp_clock)) {
bp->ptp_clock = NULL;
BNX2X_ERR("PTP clock registeration failed\n");
}
}
static int bnx2x_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
struct bnx2x *bp;
enum pcie_link_width pcie_width;
enum pci_bus_speed pcie_speed;
int rc, max_non_def_sbs;
int rx_count, tx_count, rss_count, doorbell_size;
int max_cos_est;
bool is_vf;
int cnic_cnt;
/* Management FW 'remembers' living interfaces. Allow it some time
* to forget previously living interfaces, allowing a proper re-load.
*/
if (is_kdump_kernel()) {
ktime_t now = ktime_get_boottime();
ktime_t fw_ready_time = ktime_set(5, 0);
if (ktime_before(now, fw_ready_time))
msleep(ktime_ms_delta(fw_ready_time, now));
}
/* An estimated maximum supported CoS number according to the chip
* version.
* We will try to roughly estimate the maximum number of CoSes this chip
* may support in order to minimize the memory allocated for Tx
* netdev_queue's. This number will be accurately calculated during the
* initialization of bp->max_cos based on the chip versions AND chip
* revision in the bnx2x_init_bp().
*/
max_cos_est = set_max_cos_est(ent->driver_data);
if (max_cos_est < 0)
return max_cos_est;
is_vf = set_is_vf(ent->driver_data);
cnic_cnt = is_vf ? 0 : 1;
max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
/* add another SB for VF as it has no default SB */
max_non_def_sbs += is_vf ? 1 : 0;
/* Maximum number of RSS queues: one IGU SB goes to CNIC */
rss_count = max_non_def_sbs - cnic_cnt;
if (rss_count < 1)
return -EINVAL;
/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
rx_count = rss_count + cnic_cnt;
/* Maximum number of netdev Tx queues:
* Maximum TSS queues * Maximum supported number of CoS + FCoE L2
*/
tx_count = rss_count * max_cos_est + cnic_cnt;
/* dev zeroed in init_etherdev */
dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
if (!dev)
return -ENOMEM;
bp = netdev_priv(dev);
bp->flags = 0;
if (is_vf)
bp->flags |= IS_VF_FLAG;
bp->igu_sb_cnt = max_non_def_sbs;
bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
bp->msg_enable = debug;
bp->cnic_support = cnic_cnt;
bp->cnic_probe = bnx2x_cnic_probe;
pci_set_drvdata(pdev, dev);
rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
if (rc < 0) {
free_netdev(dev);
return rc;
}
BNX2X_DEV_INFO("This is a %s function\n",
IS_PF(bp) ? "physical" : "virtual");
BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
tx_count, rx_count);
rc = bnx2x_init_bp(bp);
if (rc)
goto init_one_exit;
/* Map doorbells here as we need the real value of bp->max_cos which
* is initialized in bnx2x_init_bp() to determine the number of
* l2 connections.
*/
if (IS_VF(bp)) {
bp->doorbells = bnx2x_vf_doorbells(bp);
rc = bnx2x_vf_pci_alloc(bp);
if (rc)
goto init_one_freemem;
} else {
doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
if (doorbell_size > pci_resource_len(pdev, 2)) {
dev_err(&bp->pdev->dev,
"Cannot map doorbells, bar size too small, aborting\n");
rc = -ENOMEM;
goto init_one_freemem;
}
bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
doorbell_size);
}
if (!bp->doorbells) {
dev_err(&bp->pdev->dev,
"Cannot map doorbell space, aborting\n");
rc = -ENOMEM;
goto init_one_freemem;
}
if (IS_VF(bp)) {
rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
if (rc)
goto init_one_freemem;
#ifdef CONFIG_BNX2X_SRIOV
/* VF with OLD Hypervisor or old PF do not support filtering */
if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
}
#endif
}
/* Enable SRIOV if capability found in configuration space */
rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
if (rc)
goto init_one_freemem;
/* calc qm_cid_count */
bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
/* disable FCOE L2 queue for E1x*/
if (CHIP_IS_E1x(bp))
bp->flags |= NO_FCOE_FLAG;
/* Set bp->num_queues for MSI-X mode*/
bnx2x_set_num_queues(bp);
/* Configure interrupt mode: try to enable MSI-X/MSI if
* needed.
*/
rc = bnx2x_set_int_mode(bp);
if (rc) {
dev_err(&pdev->dev, "Cannot set interrupts\n");
goto init_one_freemem;
}
BNX2X_DEV_INFO("set interrupts successfully\n");
/* register the net device */
rc = register_netdev(dev);
if (rc) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto init_one_freemem;
}
BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
if (!NO_FCOE(bp)) {
/* Add storage MAC address */
rtnl_lock();
dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
rtnl_unlock();
}
if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
pcie_speed == PCI_SPEED_UNKNOWN ||
pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
else
BNX2X_DEV_INFO(
"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
board_info[ent->driver_data].name,
(CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
pcie_width,
pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
"Unknown",
dev->base_addr, bp->pdev->irq, dev->dev_addr);
bnx2x_register_phc(bp);
if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
return 0;
init_one_freemem:
bnx2x_free_mem_bp(bp);
init_one_exit:
bnx2x_disable_pcie_error_reporting(bp);
if (bp->regview)
iounmap(bp->regview);
if (IS_PF(bp) && bp->doorbells)
iounmap(bp->doorbells);
free_netdev(dev);
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
pci_disable_device(pdev);
return rc;
}
static void __bnx2x_remove(struct pci_dev *pdev,
struct net_device *dev,
struct bnx2x *bp,
bool remove_netdev)
{
if (bp->ptp_clock) {
ptp_clock_unregister(bp->ptp_clock);
bp->ptp_clock = NULL;
}
/* Delete storage MAC address */
if (!NO_FCOE(bp)) {
rtnl_lock();
dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
rtnl_unlock();
}
#ifdef BCM_DCBNL
/* Delete app tlvs from dcbnl */
bnx2x_dcbnl_update_applist(bp, true);
#endif
if (IS_PF(bp) &&
!BP_NOMCP(bp) &&
(bp->flags & BC_SUPPORTS_RMMOD_CMD))
bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
/* Close the interface - either directly or implicitly */
if (remove_netdev) {
unregister_netdev(dev);
} else {
rtnl_lock();
dev_close(dev);
rtnl_unlock();
}
bnx2x_iov_remove_one(bp);
/* Power on: we can't let PCI layer write to us while we are in D3 */
if (IS_PF(bp)) {
bnx2x_set_power_state(bp, PCI_D0);
bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
/* Set endianity registers to reset values in case next driver
* boots in different endianty environment.
*/
bnx2x_reset_endianity(bp);
}
/* Disable MSI/MSI-X */
bnx2x_disable_msi(bp);
/* Power off */
if (IS_PF(bp))
bnx2x_set_power_state(bp, PCI_D3hot);
/* Make sure RESET task is not scheduled before continuing */
cancel_delayed_work_sync(&bp->sp_rtnl_task);
/* send message via vfpf channel to release the resources of this vf */
if (IS_VF(bp))
bnx2x_vfpf_release(bp);
/* Assumes no further PCIe PM changes will occur */
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, bp->wol);
pci_set_power_state(pdev, PCI_D3hot);
}
bnx2x_disable_pcie_error_reporting(bp);
if (remove_netdev) {
if (bp->regview)
iounmap(bp->regview);
/* For vfs, doorbells are part of the regview and were unmapped
* along with it. FW is only loaded by PF.
*/
if (IS_PF(bp)) {
if (bp->doorbells)
iounmap(bp->doorbells);
bnx2x_release_firmware(bp);
} else {
bnx2x_vf_pci_dealloc(bp);
}
bnx2x_free_mem_bp(bp);
free_netdev(dev);
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
pci_disable_device(pdev);
}
}
static void bnx2x_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp;
if (!dev) {
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
return;
}
bp = netdev_priv(dev);
__bnx2x_remove(pdev, dev, bp, true);
}
static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
{
bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
bp->rx_mode = BNX2X_RX_MODE_NONE;
if (CNIC_LOADED(bp))
bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
/* Stop Tx */
bnx2x_tx_disable(bp);
/* Delete all NAPI objects */
bnx2x_del_all_napi(bp);
if (CNIC_LOADED(bp))
bnx2x_del_all_napi_cnic(bp);
netdev_reset_tc(bp->dev);
del_timer_sync(&bp->timer);
cancel_delayed_work_sync(&bp->sp_task);
cancel_delayed_work_sync(&bp->period_task);
if (!down_timeout(&bp->stats_lock, HZ / 10)) {
bp->stats_state = STATS_STATE_DISABLED;
up(&bp->stats_lock);
}
bnx2x_save_statistics(bp);
netif_carrier_off(bp->dev);
return 0;
}
/**
* bnx2x_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
rtnl_lock();
BNX2X_ERR("IO error detected\n");
netif_device_detach(dev);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (netif_running(dev))
bnx2x_eeh_nic_unload(bp);
bnx2x_prev_path_mark_eeh(bp);
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot reset */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnx2x_io_slot_reset - called after the PCI bus has been reset
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
int i;
rtnl_lock();
BNX2X_ERR("IO slot reset initializing...\n");
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset\n");
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
if (netif_running(dev))
bnx2x_set_power_state(bp, PCI_D0);
if (netif_running(dev)) {
BNX2X_ERR("IO slot reset --> driver unload\n");
/* MCP should have been reset; Need to wait for validity */
if (bnx2x_init_shmem(bp)) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
u32 v;
v = SHMEM2_RD(bp,
drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
}
bnx2x_drain_tx_queues(bp);
bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
bnx2x_netif_stop(bp, 1);
bnx2x_free_irq(bp);
/* Report UNLOAD_DONE to MCP */
bnx2x_send_unload_done(bp, true);
bp->sp_state = 0;
bp->port.pmf = 0;
bnx2x_prev_unload(bp);
/* We should have reseted the engine, so It's fair to
* assume the FW will no longer write to the bnx2x driver.
*/
bnx2x_squeeze_objects(bp);
bnx2x_free_skbs(bp);
for_each_rx_queue(bp, i)
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
bnx2x_free_fp_mem(bp);
bnx2x_free_mem(bp);
bp->state = BNX2X_STATE_CLOSED;
}
rtnl_unlock();
/* If AER, perform cleanup of the PCIe registers */
if (bp->flags & AER_ENABLED) {
if (pci_cleanup_aer_uncorrect_error_status(pdev))
BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
else
DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
}
return PCI_ERS_RESULT_RECOVERED;
}
/**
* bnx2x_io_resume - called when traffic can start flowing again
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void bnx2x_io_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
return;
}
rtnl_lock();
bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK;
if (netif_running(dev))
bnx2x_nic_load(bp, LOAD_NORMAL);
netif_device_attach(dev);
rtnl_unlock();
}
static const struct pci_error_handlers bnx2x_err_handler = {
.error_detected = bnx2x_io_error_detected,
.slot_reset = bnx2x_io_slot_reset,
.resume = bnx2x_io_resume,
};
static void bnx2x_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp;
if (!dev)
return;
bp = netdev_priv(dev);
if (!bp)
return;
rtnl_lock();
netif_device_detach(dev);
rtnl_unlock();
/* Don't remove the netdevice, as there are scenarios which will cause
* the kernel to hang, e.g., when trying to remove bnx2i while the
* rootfs is mounted from SAN.
*/
__bnx2x_remove(pdev, dev, bp, false);
}
static struct pci_driver bnx2x_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnx2x_pci_tbl,
.probe = bnx2x_init_one,
.remove = bnx2x_remove_one,
.suspend = bnx2x_suspend,
.resume = bnx2x_resume,
.err_handler = &bnx2x_err_handler,
#ifdef CONFIG_BNX2X_SRIOV
.sriov_configure = bnx2x_sriov_configure,
#endif
.shutdown = bnx2x_shutdown,
};
static int __init bnx2x_init(void)
{
int ret;
pr_info("%s", version);
bnx2x_wq = create_singlethread_workqueue("bnx2x");
if (bnx2x_wq == NULL) {
pr_err("Cannot create workqueue\n");
return -ENOMEM;
}
bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
if (!bnx2x_iov_wq) {
pr_err("Cannot create iov workqueue\n");
destroy_workqueue(bnx2x_wq);
return -ENOMEM;
}
ret = pci_register_driver(&bnx2x_pci_driver);
if (ret) {
pr_err("Cannot register driver\n");
destroy_workqueue(bnx2x_wq);
destroy_workqueue(bnx2x_iov_wq);
}
return ret;
}
static void __exit bnx2x_cleanup(void)
{
struct list_head *pos, *q;
pci_unregister_driver(&bnx2x_pci_driver);
destroy_workqueue(bnx2x_wq);
destroy_workqueue(bnx2x_iov_wq);
/* Free globally allocated resources */
list_for_each_safe(pos, q, &bnx2x_prev_list) {
struct bnx2x_prev_path_list *tmp =
list_entry(pos, struct bnx2x_prev_path_list, list);
list_del(pos);
kfree(tmp);
}
}
void bnx2x_notify_link_changed(struct bnx2x *bp)
{
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
}
module_init(bnx2x_init);
module_exit(bnx2x_cleanup);
/**
* bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
*
* @bp: driver handle
* @set: set or clear the CAM entry
*
* This function will wait until the ramrod completion returns.
* Return 0 if success, -ENODEV if ramrod doesn't return.
*/
static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
{
unsigned long ramrod_flags = 0;
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
&bp->iscsi_l2_mac_obj, true,
BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
}
/* count denotes the number of new completions we have seen */
static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
{
struct eth_spe *spe;
int cxt_index, cxt_offset;
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return;
#endif
spin_lock_bh(&bp->spq_lock);
BUG_ON(bp->cnic_spq_pending < count);
bp->cnic_spq_pending -= count;
for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
& SPE_HDR_CONN_TYPE) >>
SPE_HDR_CONN_TYPE_SHIFT;
u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
/* Set validation for iSCSI L2 client before sending SETUP
* ramrod
*/
if (type == ETH_CONNECTION_TYPE) {
if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
ILT_PAGE_CIDS;
cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
(cxt_index * ILT_PAGE_CIDS);
bnx2x_set_ctx_validation(bp,
&bp->context[cxt_index].
vcxt[cxt_offset].eth,
BNX2X_ISCSI_ETH_CID(bp));
}
}
/*
* There may be not more than 8 L2, not more than 8 L5 SPEs
* and in the air. We also check that number of outstanding
* COMMON ramrods is not more than the EQ and SPQ can
* accommodate.
*/
if (type == ETH_CONNECTION_TYPE) {
if (!atomic_read(&bp->cq_spq_left))
break;
else
atomic_dec(&bp->cq_spq_left);
} else if (type == NONE_CONNECTION_TYPE) {
if (!atomic_read(&bp->eq_spq_left))
break;
else
atomic_dec(&bp->eq_spq_left);
} else if ((type == ISCSI_CONNECTION_TYPE) ||
(type == FCOE_CONNECTION_TYPE)) {
if (bp->cnic_spq_pending >=
bp->cnic_eth_dev.max_kwqe_pending)
break;
else
bp->cnic_spq_pending++;
} else {
BNX2X_ERR("Unknown SPE type: %d\n", type);
bnx2x_panic();
break;
}
spe = bnx2x_sp_get_next(bp);
*spe = *bp->cnic_kwq_cons;
DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
bp->cnic_kwq_cons = bp->cnic_kwq;
else
bp->cnic_kwq_cons++;
}
bnx2x_sp_prod_update(bp);
spin_unlock_bh(&bp->spq_lock);
}
static int bnx2x_cnic_sp_queue(struct net_device *dev,
struct kwqe_16 *kwqes[], u32 count)
{
struct bnx2x *bp = netdev_priv(dev);
int i;
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic)) {
BNX2X_ERR("Can't post to SP queue while panic\n");
return -EIO;
}
#endif
if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
(bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
BNX2X_ERR("Handling parity error recovery. Try again later\n");
return -EAGAIN;
}
spin_lock_bh(&bp->spq_lock);
for (i = 0; i < count; i++) {
struct eth_spe *spe = (struct eth_spe *)kwqes[i];
if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
break;
*bp->cnic_kwq_prod = *spe;
bp->cnic_kwq_pending++;
DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
spe->hdr.conn_and_cmd_data, spe->hdr.type,
spe->data.update_data_addr.hi,
spe->data.update_data_addr.lo,
bp->cnic_kwq_pending);
if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
bp->cnic_kwq_prod = bp->cnic_kwq;
else
bp->cnic_kwq_prod++;
}
spin_unlock_bh(&bp->spq_lock);
if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
bnx2x_cnic_sp_post(bp, 0);
return i;
}
static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
{
struct cnic_ops *c_ops;
int rc = 0;
mutex_lock(&bp->cnic_mutex);
c_ops = rcu_dereference_protected(bp->cnic_ops,
lockdep_is_held(&bp->cnic_mutex));
if (c_ops)
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
mutex_unlock(&bp->cnic_mutex);
return rc;
}
static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
{
struct cnic_ops *c_ops;
int rc = 0;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
rcu_read_unlock();
return rc;
}
/*
* for commands that have no data
*/
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
{
struct cnic_ctl_info ctl = {0};
ctl.cmd = cmd;
return bnx2x_cnic_ctl_send(bp, &ctl);
}
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
{
struct cnic_ctl_info ctl = {0};
/* first we tell CNIC and only then we count this as a completion */
ctl.cmd = CNIC_CTL_COMPLETION_CMD;
ctl.data.comp.cid = cid;
ctl.data.comp.error = err;
bnx2x_cnic_ctl_send_bh(bp, &ctl);
bnx2x_cnic_sp_post(bp, 0);
}
/* Called with netif_addr_lock_bh() taken.
* Sets an rx_mode config for an iSCSI ETH client.
* Doesn't block.
* Completion should be checked outside.
*/
static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
{
unsigned long accept_flags = 0, ramrod_flags = 0;
u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
if (start) {
/* Start accepting on iSCSI L2 ring. Accept all multicasts
* because it's the only way for UIO Queue to accept
* multicasts (in non-promiscuous mode only one Queue per
* function will receive multicast packets (leading in our
* case).
*/
__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
/* Clear STOP_PENDING bit if START is requested */
clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
} else
/* Clear START_PENDING bit if STOP is requested */
clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
set_bit(sched_state, &bp->sp_state);
else {
__set_bit(RAMROD_RX, &ramrod_flags);
bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
ramrod_flags);
}
}
static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
{
struct bnx2x *bp = netdev_priv(dev);
int rc = 0;
switch (ctl->cmd) {
case DRV_CTL_CTXTBL_WR_CMD: {
u32 index = ctl->data.io.offset;
dma_addr_t addr = ctl->data.io.dma_addr;
bnx2x_ilt_wr(bp, index, addr);
break;
}
case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
int count = ctl->data.credit.credit_count;
bnx2x_cnic_sp_post(bp, count);
break;
}
/* rtnl_lock is held. */
case DRV_CTL_START_L2_CMD: {
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
unsigned long sp_bits = 0;
/* Configure the iSCSI classification object */
bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
cp->iscsi_l2_client_id,
cp->iscsi_l2_cid, BP_FUNC(bp),
bnx2x_sp(bp, mac_rdata),
bnx2x_sp_mapping(bp, mac_rdata),
BNX2X_FILTER_MAC_PENDING,
&bp->sp_state, BNX2X_OBJ_TYPE_RX,
&bp->macs_pool);
/* Set iSCSI MAC address */
rc = bnx2x_set_iscsi_eth_mac_addr(bp);
if (rc)
break;
mmiowb();
barrier();
/* Start accepting on iSCSI L2 ring */
netif_addr_lock_bh(dev);
bnx2x_set_iscsi_eth_rx_mode(bp, true);
netif_addr_unlock_bh(dev);
/* bits to wait on */
__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
if (!bnx2x_wait_sp_comp(bp, sp_bits))
BNX2X_ERR("rx_mode completion timed out!\n");
break;
}
/* rtnl_lock is held. */
case DRV_CTL_STOP_L2_CMD: {
unsigned long sp_bits = 0;
/* Stop accepting on iSCSI L2 ring */
netif_addr_lock_bh(dev);
bnx2x_set_iscsi_eth_rx_mode(bp, false);
netif_addr_unlock_bh(dev);
/* bits to wait on */
__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
if (!bnx2x_wait_sp_comp(bp, sp_bits))
BNX2X_ERR("rx_mode completion timed out!\n");
mmiowb();
barrier();
/* Unset iSCSI L2 MAC */
rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
BNX2X_ISCSI_ETH_MAC, true);
break;
}
case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
int count = ctl->data.credit.credit_count;
smp_mb__before_atomic();
atomic_add(count, &bp->cq_spq_left);
smp_mb__after_atomic();
break;
}
case DRV_CTL_ULP_REGISTER_CMD: {
int ulp_type = ctl->data.register_data.ulp_type;
if (CHIP_IS_E3(bp)) {
int idx = BP_FW_MB_IDX(bp);
u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
int path = BP_PATH(bp);
int port = BP_PORT(bp);
int i;
u32 scratch_offset;
u32 *host_addr;
/* first write capability to shmem2 */
if (ulp_type == CNIC_ULP_ISCSI)
cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
else if (ulp_type == CNIC_ULP_FCOE)
cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
if ((ulp_type != CNIC_ULP_FCOE) ||
(!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
(!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
break;
/* if reached here - should write fcoe capabilities */
scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
if (!scratch_offset)
break;
scratch_offset += offsetof(struct glob_ncsi_oem_data,
fcoe_features[path][port]);
host_addr = (u32 *) &(ctl->data.register_data.
fcoe_features);
for (i = 0; i < sizeof(struct fcoe_capabilities);
i += 4)
REG_WR(bp, scratch_offset + i,
*(host_addr + i/4));
}
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
break;
}
case DRV_CTL_ULP_UNREGISTER_CMD: {
int ulp_type = ctl->data.ulp_type;
if (CHIP_IS_E3(bp)) {
int idx = BP_FW_MB_IDX(bp);
u32 cap;
cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
if (ulp_type == CNIC_ULP_ISCSI)
cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
else if (ulp_type == CNIC_ULP_FCOE)
cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
}
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
break;
}
default:
BNX2X_ERR("unknown command %x\n", ctl->cmd);
rc = -EINVAL;
}
/* For storage-only interfaces, change driver state */
if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
switch (ctl->drv_state) {
case DRV_NOP:
break;
case DRV_ACTIVE:
bnx2x_set_os_driver_state(bp,
OS_DRIVER_STATE_ACTIVE);
break;
case DRV_INACTIVE:
bnx2x_set_os_driver_state(bp,
OS_DRIVER_STATE_DISABLED);
break;
case DRV_UNLOADED:
bnx2x_set_os_driver_state(bp,
OS_DRIVER_STATE_NOT_LOADED);
break;
default:
BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
}
}
return rc;
}
static int bnx2x_get_fc_npiv(struct net_device *dev,
struct cnic_fc_npiv_tbl *cnic_tbl)
{
struct bnx2x *bp = netdev_priv(dev);
struct bdn_fc_npiv_tbl *tbl = NULL;
u32 offset, entries;
int rc = -EINVAL;
int i;
if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
goto out;
DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
if (!tbl) {
BNX2X_ERR("Failed to allocate fc_npiv table\n");
goto out;
}
offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
if (!offset) {
DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
goto out;
}
DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
/* Read the table contents from nvram */
if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
BNX2X_ERR("Failed to read FC-NPIV table\n");
goto out;
}
/* Since bnx2x_nvram_read() returns data in be32, we need to convert
* the number of entries back to cpu endianness.
*/
entries = tbl->fc_npiv_cfg.num_of_npiv;
entries = (__force u32)be32_to_cpu((__force __be32)entries);
tbl->fc_npiv_cfg.num_of_npiv = entries;
if (!tbl->fc_npiv_cfg.num_of_npiv) {
DP(BNX2X_MSG_MCP,
"No FC-NPIV table [valid, simply not present]\n");
goto out;
} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
tbl->fc_npiv_cfg.num_of_npiv);
goto out;
} else {
DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
tbl->fc_npiv_cfg.num_of_npiv);
}
/* Copy the data into cnic-provided struct */
cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
for (i = 0; i < cnic_tbl->count; i++) {
memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
}
rc = 0;
out:
kfree(tbl);
return rc;
}
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
{
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
if (bp->flags & USING_MSIX_FLAG) {
cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
cp->irq_arr[0].vector = bp->msix_table[1].vector;
} else {
cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
}
if (!CHIP_IS_E1x(bp))
cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
else
cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
cp->irq_arr[1].status_blk = bp->def_status_blk;
cp->irq_arr[1].status_blk_num = DEF_SB_ID;
cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
cp->num_irq = 2;
}
void bnx2x_setup_cnic_info(struct bnx2x *bp)
{
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
bnx2x_cid_ilt_lines(bp);
cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
cp->iscsi_l2_cid);
if (NO_ISCSI_OOO(bp))
cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
}
static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
void *data)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
int rc;
DP(NETIF_MSG_IFUP, "Register_cnic called\n");
if (ops == NULL) {
BNX2X_ERR("NULL ops received\n");
return -EINVAL;
}
if (!CNIC_SUPPORT(bp)) {
BNX2X_ERR("Can't register CNIC when not supported\n");
return -EOPNOTSUPP;
}
if (!CNIC_LOADED(bp)) {
rc = bnx2x_load_cnic(bp);
if (rc) {
BNX2X_ERR("CNIC-related load failed\n");
return rc;
}
}
bp->cnic_enabled = true;
bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!bp->cnic_kwq)
return -ENOMEM;
bp->cnic_kwq_cons = bp->cnic_kwq;
bp->cnic_kwq_prod = bp->cnic_kwq;
bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
bp->cnic_spq_pending = 0;
bp->cnic_kwq_pending = 0;
bp->cnic_data = data;
cp->num_irq = 0;
cp->drv_state |= CNIC_DRV_STATE_REGD;
cp->iro_arr = bp->iro_arr;
bnx2x_setup_cnic_irq_info(bp);
rcu_assign_pointer(bp->cnic_ops, ops);
/* Schedule driver to read CNIC driver versions */
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
return 0;
}
static int bnx2x_unregister_cnic(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
mutex_lock(&bp->cnic_mutex);
cp->drv_state = 0;
RCU_INIT_POINTER(bp->cnic_ops, NULL);
mutex_unlock(&bp->cnic_mutex);
synchronize_rcu();
bp->cnic_enabled = false;
kfree(bp->cnic_kwq);
bp->cnic_kwq = NULL;
return 0;
}
static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
/* If both iSCSI and FCoE are disabled - return NULL in
* order to indicate CNIC that it should not try to work
* with this device.
*/
if (NO_ISCSI(bp) && NO_FCOE(bp))
return NULL;
cp->drv_owner = THIS_MODULE;
cp->chip_id = CHIP_ID(bp);
cp->pdev = bp->pdev;
cp->io_base = bp->regview;
cp->io_base2 = bp->doorbells;
cp->max_kwqe_pending = 8;
cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
bnx2x_cid_ilt_lines(bp);
cp->ctx_tbl_len = CNIC_ILT_LINES;
cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
cp->drv_ctl = bnx2x_drv_ctl;
cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
cp->drv_register_cnic = bnx2x_register_cnic;
cp->drv_unregister_cnic = bnx2x_unregister_cnic;
cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
cp->iscsi_l2_client_id =
bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
if (NO_ISCSI_OOO(bp))
cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
if (NO_ISCSI(bp))
cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
if (NO_FCOE(bp))
cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
BNX2X_DEV_INFO(
"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
cp->ctx_blk_size,
cp->ctx_tbl_offset,
cp->ctx_tbl_len,
cp->starting_cid);
return cp;
}
static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
{
struct bnx2x *bp = fp->bp;
u32 offset = BAR_USTRORM_INTMEM;
if (IS_VF(bp))
return bnx2x_vf_ustorm_prods_offset(bp, fp);
else if (!CHIP_IS_E1x(bp))
offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
else
offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
return offset;
}
/* called only on E1H or E2.
* When pretending to be PF, the pretend value is the function number 0...7
* When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
* combination
*/
int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
{
u32 pretend_reg;
if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
return -1;
/* get my own pretend register */
pretend_reg = bnx2x_get_pretend_reg(bp);
REG_WR(bp, pretend_reg, pretend_func_val);
REG_RD(bp, pretend_reg);
return 0;
}
static void bnx2x_ptp_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
int port = BP_PORT(bp);
u32 val_seq;
u64 timestamp, ns;
struct skb_shared_hwtstamps shhwtstamps;
/* Read Tx timestamp registers */
val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
NIG_REG_P0_TLLH_PTP_BUF_SEQID);
if (val_seq & 0x10000) {
/* There is a valid timestamp value */
timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
timestamp <<= 32;
timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
/* Reset timestamp register to allow new timestamp */
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
ns = timecounter_cyc2time(&bp->timecounter, timestamp);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
dev_kfree_skb_any(bp->ptp_tx_skb);
bp->ptp_tx_skb = NULL;
DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
timestamp, ns);
} else {
DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
/* Reschedule to keep checking for a valid timestamp value */
schedule_work(&bp->ptp_task);
}
}
void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
{
int port = BP_PORT(bp);
u64 timestamp, ns;
timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
timestamp <<= 32;
timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
/* Reset timestamp register to allow new timestamp */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
ns = timecounter_cyc2time(&bp->timecounter, timestamp);
skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
timestamp, ns);
}
/* Read the PHC */
static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
{
struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
int port = BP_PORT(bp);
u32 wb_data[2];
u64 phc_cycles;
REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
phc_cycles = wb_data[1];
phc_cycles = (phc_cycles << 32) + wb_data[0];
DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
return phc_cycles;
}
static void bnx2x_init_cyclecounter(struct bnx2x *bp)
{
memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
bp->cyclecounter.read = bnx2x_cyclecounter_read;
bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
bp->cyclecounter.shift = 0;
bp->cyclecounter.mult = 1;
}
static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
{
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_set_timesync_params *set_timesync_params =
&func_params.params.set_timesync;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
/* Function parameters */
set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
return bnx2x_func_state_change(bp, &func_params);
}
static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
{
struct bnx2x_queue_state_params q_params;
int rc, i;
/* send queue update ramrod to enable PTP packets */
memset(&q_params, 0, sizeof(q_params));
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
q_params.cmd = BNX2X_Q_CMD_UPDATE;
__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
&q_params.params.update.update_flags);
__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
&q_params.params.update.update_flags);
/* send the ramrod on all the queues of the PF */
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
/* Set the appropriate Queue object */
q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* Update the Queue state */
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Failed to enable PTP packets\n");
return rc;
}
}
return 0;
}
int bnx2x_configure_ptp_filters(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int rc;
if (!bp->hwtstamp_ioctl_called)
return 0;
switch (bp->tx_type) {
case HWTSTAMP_TX_ON:
bp->flags |= TX_TIMESTAMPING_EN;
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
BNX2X_ERR("One-step timestamping is not supported\n");
return -ERANGE;
}
switch (bp->rx_filter) {
case HWTSTAMP_FILTER_NONE:
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
bp->rx_filter = HWTSTAMP_FILTER_NONE;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
/* Initialize PTP detection for UDP/IPv4 events */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
/* Initialize PTP detection L2 events */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
break;
}
/* Indicate to FW that this PF expects recorded PTP packets */
rc = bnx2x_enable_ptp_packets(bp);
if (rc)
return rc;
/* Enable sending PTP packets to host */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
return 0;
}
static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
{
struct hwtstamp_config config;
int rc;
DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
config.tx_type, config.rx_filter);
if (config.flags) {
BNX2X_ERR("config.flags is reserved for future use\n");
return -EINVAL;
}
bp->hwtstamp_ioctl_called = 1;
bp->tx_type = config.tx_type;
bp->rx_filter = config.rx_filter;
rc = bnx2x_configure_ptp_filters(bp);
if (rc)
return rc;
config.rx_filter = bp->rx_filter;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/* Configures HW for PTP */
static int bnx2x_configure_ptp(struct bnx2x *bp)
{
int rc, port = BP_PORT(bp);
u32 wb_data[2];
/* Reset PTP event detection rules - will be configured in the IOCTL */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
/* Disable PTP packets to host - will be configured in the IOCTL*/
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
/* Enable the PTP feature */
REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
NIG_REG_P0_PTP_EN, 0x3F);
/* Enable the free-running counter */
wb_data[0] = 0;
wb_data[1] = 0;
REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
/* Reset drift register (offset register is not reset) */
rc = bnx2x_send_reset_timesync_ramrod(bp);
if (rc) {
BNX2X_ERR("Failed to reset PHC drift register\n");
return -EFAULT;
}
/* Reset possibly old timestamps */
REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
return 0;
}
/* Called during load, to initialize PTP-related stuff */
void bnx2x_init_ptp(struct bnx2x *bp)
{
int rc;
/* Configure PTP in HW */
rc = bnx2x_configure_ptp(bp);
if (rc) {
BNX2X_ERR("Stopping PTP initialization\n");
return;
}
/* Init work queue for Tx timestamping */
INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
/* Init cyclecounter and timecounter. This is done only in the first
* load. If done in every load, PTP application will fail when doing
* unload / load (e.g. MTU change) while it is running.
*/
if (!bp->timecounter_init_done) {
bnx2x_init_cyclecounter(bp);
timecounter_init(&bp->timecounter, &bp->cyclecounter,
ktime_to_ns(ktime_get_real()));
bp->timecounter_init_done = 1;
}
DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
}