| #ifndef _PERF_LINUX_BITOPS_H_ |
| #define _PERF_LINUX_BITOPS_H_ |
| |
| #include <linux/kernel.h> |
| #include <linux/compiler.h> |
| #include <asm/hweight.h> |
| |
| #ifndef __WORDSIZE |
| #define __WORDSIZE (__SIZEOF_LONG__ * 8) |
| #endif |
| |
| #define BITS_PER_LONG __WORDSIZE |
| #define BITS_PER_BYTE 8 |
| #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) |
| #define BITS_TO_U64(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(u64)) |
| #define BITS_TO_U32(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(u32)) |
| #define BITS_TO_BYTES(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE) |
| |
| #define for_each_set_bit(bit, addr, size) \ |
| for ((bit) = find_first_bit((addr), (size)); \ |
| (bit) < (size); \ |
| (bit) = find_next_bit((addr), (size), (bit) + 1)) |
| |
| /* same as for_each_set_bit() but use bit as value to start with */ |
| #define for_each_set_bit_from(bit, addr, size) \ |
| for ((bit) = find_next_bit((addr), (size), (bit)); \ |
| (bit) < (size); \ |
| (bit) = find_next_bit((addr), (size), (bit) + 1)) |
| |
| static inline void set_bit(int nr, unsigned long *addr) |
| { |
| addr[nr / BITS_PER_LONG] |= 1UL << (nr % BITS_PER_LONG); |
| } |
| |
| static inline void clear_bit(int nr, unsigned long *addr) |
| { |
| addr[nr / BITS_PER_LONG] &= ~(1UL << (nr % BITS_PER_LONG)); |
| } |
| |
| static __always_inline int test_bit(unsigned int nr, const unsigned long *addr) |
| { |
| return ((1UL << (nr % BITS_PER_LONG)) & |
| (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0; |
| } |
| |
| static inline unsigned long hweight_long(unsigned long w) |
| { |
| return sizeof(w) == 4 ? hweight32(w) : hweight64(w); |
| } |
| |
| #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __always_inline unsigned long __ffs(unsigned long word) |
| { |
| int num = 0; |
| |
| #if BITS_PER_LONG == 64 |
| if ((word & 0xffffffff) == 0) { |
| num += 32; |
| word >>= 32; |
| } |
| #endif |
| if ((word & 0xffff) == 0) { |
| num += 16; |
| word >>= 16; |
| } |
| if ((word & 0xff) == 0) { |
| num += 8; |
| word >>= 8; |
| } |
| if ((word & 0xf) == 0) { |
| num += 4; |
| word >>= 4; |
| } |
| if ((word & 0x3) == 0) { |
| num += 2; |
| word >>= 2; |
| } |
| if ((word & 0x1) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /* |
| * Find the first set bit in a memory region. |
| */ |
| static inline unsigned long |
| find_first_bit(const unsigned long *addr, unsigned long size) |
| { |
| const unsigned long *p = addr; |
| unsigned long result = 0; |
| unsigned long tmp; |
| |
| while (size & ~(BITS_PER_LONG-1)) { |
| if ((tmp = *(p++))) |
| goto found; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| |
| tmp = (*p) & (~0UL >> (BITS_PER_LONG - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found: |
| return result + __ffs(tmp); |
| } |
| |
| /* |
| * Find the next set bit in a memory region. |
| */ |
| static inline unsigned long |
| find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BITOP_WORD(offset); |
| unsigned long result = offset & ~(BITS_PER_LONG-1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset %= BITS_PER_LONG; |
| if (offset) { |
| tmp = *(p++); |
| tmp &= (~0UL << offset); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG-1)) { |
| if ((tmp = *(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= (~0UL >> (BITS_PER_LONG - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| #endif |