| /* |
| * Fast Ethernet Controller (FCC) driver for Motorola MPC8260. |
| * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net) |
| * |
| * This version of the driver is a combination of the 8xx fec and |
| * 8260 SCC Ethernet drivers. This version has some additional |
| * configuration options, which should probably be moved out of |
| * here. This driver currently works for the EST SBC8260, |
| * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others. |
| * |
| * Right now, I am very watseful with the buffers. I allocate memory |
| * pages and then divide them into 2K frame buffers. This way I know I |
| * have buffers large enough to hold one frame within one buffer descriptor. |
| * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| * will be much more memory efficient and will easily handle lots of |
| * small packets. Since this is a cache coherent processor and CPM, |
| * I could also preallocate SKB's and use them directly on the interface. |
| * |
| * 2004-12 Leo Li (leoli@freescale.com) |
| * - Rework the FCC clock configuration part, make it easier to configure. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/mii.h> |
| #include <linux/workqueue.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/immap_cpm2.h> |
| #include <asm/pgtable.h> |
| #include <asm/mpc8260.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/signal.h> |
| |
| /* We can't use the PHY interrupt if we aren't using MDIO. */ |
| #if !defined(CONFIG_USE_MDIO) |
| #undef PHY_INTERRUPT |
| #endif |
| |
| /* If we have a PHY interrupt, we will advertise both full-duplex and half- |
| * duplex capabilities. If we don't have a PHY interrupt, then we will only |
| * advertise half-duplex capabilities. |
| */ |
| #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \ |
| ADVERTISE_CSMA) |
| #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \ |
| MII_ADVERTISE_HALF) |
| #ifdef PHY_INTERRUPT |
| #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL |
| #else |
| #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF |
| #endif |
| #include <asm/cpm2.h> |
| |
| /* The transmitter timeout |
| */ |
| #define TX_TIMEOUT (2*HZ) |
| |
| #ifdef CONFIG_USE_MDIO |
| /* Forward declarations of some structures to support different PHYs */ |
| |
| typedef struct { |
| uint mii_data; |
| void (*funct)(uint mii_reg, struct net_device *dev); |
| } phy_cmd_t; |
| |
| typedef struct { |
| uint id; |
| char *name; |
| |
| const phy_cmd_t *config; |
| const phy_cmd_t *startup; |
| const phy_cmd_t *ack_int; |
| const phy_cmd_t *shutdown; |
| } phy_info_t; |
| |
| /* values for phy_status */ |
| |
| #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ |
| #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ |
| #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ |
| #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ |
| #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ |
| #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ |
| #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ |
| |
| #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ |
| #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ |
| #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ |
| #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ |
| #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ |
| #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ |
| #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ |
| #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ |
| #endif /* CONFIG_USE_MDIO */ |
| |
| /* The number of Tx and Rx buffers. These are allocated from the page |
| * pool. The code may assume these are power of two, so it is best |
| * to keep them that size. |
| * We don't need to allocate pages for the transmitter. We just use |
| * the skbuffer directly. |
| */ |
| #define FCC_ENET_RX_PAGES 16 |
| #define FCC_ENET_RX_FRSIZE 2048 |
| #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE) |
| #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES) |
| #define TX_RING_SIZE 16 /* Must be power of two */ |
| #define TX_RING_MOD_MASK 15 /* for this to work */ |
| |
| /* The FCC stores dest/src/type, data, and checksum for receive packets. |
| * size includes support for VLAN |
| */ |
| #define PKT_MAXBUF_SIZE 1522 |
| #define PKT_MINBUF_SIZE 64 |
| |
| /* Maximum input DMA size. Must be a should(?) be a multiple of 4. |
| * size includes support for VLAN |
| */ |
| #define PKT_MAXDMA_SIZE 1524 |
| |
| /* Maximum input buffer size. Must be a multiple of 32. |
| */ |
| #define PKT_MAXBLR_SIZE 1536 |
| |
| static int fcc_enet_open(struct net_device *dev); |
| static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| static int fcc_enet_rx(struct net_device *dev); |
| static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id); |
| static int fcc_enet_close(struct net_device *dev); |
| static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev); |
| /* static void set_multicast_list(struct net_device *dev); */ |
| static void fcc_restart(struct net_device *dev, int duplex); |
| static void fcc_stop(struct net_device *dev); |
| static int fcc_enet_set_mac_address(struct net_device *dev, void *addr); |
| |
| /* These will be configurable for the FCC choice. |
| * Multiple ports can be configured. There is little choice among the |
| * I/O pins to the PHY, except the clocks. We will need some board |
| * dependent clock selection. |
| * Why in the hell did I put these inside #ifdef's? I dunno, maybe to |
| * help show what pins are used for each device. |
| */ |
| |
| /* Since the CLK setting changes greatly from board to board, I changed |
| * it to a easy way. You just need to specify which CLK number to use. |
| * Note that only limited choices can be make on each port. |
| */ |
| |
| /* FCC1 Clock Source Configuration. There are board specific. |
| Can only choose from CLK9-12 */ |
| #ifdef CONFIG_SBC82xx |
| #define F1_RXCLK 9 |
| #define F1_TXCLK 10 |
| #else |
| #define F1_RXCLK 12 |
| #define F1_TXCLK 11 |
| #endif |
| |
| /* FCC2 Clock Source Configuration. There are board specific. |
| Can only choose from CLK13-16 */ |
| #define F2_RXCLK 13 |
| #define F2_TXCLK 14 |
| |
| /* FCC3 Clock Source Configuration. There are board specific. |
| Can only choose from CLK13-16 */ |
| #define F3_RXCLK 15 |
| #define F3_TXCLK 16 |
| |
| /* Automatically generates register configurations */ |
| #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */ |
| |
| #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */ |
| #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */ |
| #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */ |
| #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */ |
| #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */ |
| #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */ |
| |
| #define PC_F1RXCLK PC_CLK(F1_RXCLK) |
| #define PC_F1TXCLK PC_CLK(F1_TXCLK) |
| #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK)) |
| #define CMX1_CLK_MASK ((uint)0xff000000) |
| |
| #define PC_F2RXCLK PC_CLK(F2_RXCLK) |
| #define PC_F2TXCLK PC_CLK(F2_TXCLK) |
| #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK)) |
| #define CMX2_CLK_MASK ((uint)0x00ff0000) |
| |
| #define PC_F3RXCLK PC_CLK(F3_RXCLK) |
| #define PC_F3TXCLK PC_CLK(F3_TXCLK) |
| #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK)) |
| #define CMX3_CLK_MASK ((uint)0x0000ff00) |
| |
| |
| /* I/O Pin assignment for FCC1. I don't yet know the best way to do this, |
| * but there is little variation among the choices. |
| */ |
| #define PA1_COL ((uint)0x00000001) |
| #define PA1_CRS ((uint)0x00000002) |
| #define PA1_TXER ((uint)0x00000004) |
| #define PA1_TXEN ((uint)0x00000008) |
| #define PA1_RXDV ((uint)0x00000010) |
| #define PA1_RXER ((uint)0x00000020) |
| #define PA1_TXDAT ((uint)0x00003c00) |
| #define PA1_RXDAT ((uint)0x0003c000) |
| #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT) |
| #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \ |
| PA1_RXDV | PA1_RXER) |
| #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV) |
| #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER) |
| |
| |
| /* I/O Pin assignment for FCC2. I don't yet know the best way to do this, |
| * but there is little variation among the choices. |
| */ |
| #define PB2_TXER ((uint)0x00000001) |
| #define PB2_RXDV ((uint)0x00000002) |
| #define PB2_TXEN ((uint)0x00000004) |
| #define PB2_RXER ((uint)0x00000008) |
| #define PB2_COL ((uint)0x00000010) |
| #define PB2_CRS ((uint)0x00000020) |
| #define PB2_TXDAT ((uint)0x000003c0) |
| #define PB2_RXDAT ((uint)0x00003c00) |
| #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \ |
| PB2_RXER | PB2_RXDV | PB2_TXER) |
| #define PB2_PSORB_BIN (PB2_TXEN) |
| #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV) |
| #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER) |
| |
| |
| /* I/O Pin assignment for FCC3. I don't yet know the best way to do this, |
| * but there is little variation among the choices. |
| */ |
| #define PB3_RXDV ((uint)0x00004000) |
| #define PB3_RXER ((uint)0x00008000) |
| #define PB3_TXER ((uint)0x00010000) |
| #define PB3_TXEN ((uint)0x00020000) |
| #define PB3_COL ((uint)0x00040000) |
| #define PB3_CRS ((uint)0x00080000) |
| #ifndef CONFIG_RPX8260 |
| #define PB3_TXDAT ((uint)0x0f000000) |
| #define PC3_TXDAT ((uint)0x00000000) |
| #else |
| #define PB3_TXDAT ((uint)0x0f000000) |
| #define PC3_TXDAT 0 |
| #endif |
| #define PB3_RXDAT ((uint)0x00f00000) |
| #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \ |
| PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN) |
| #define PB3_PSORB_BIN (0) |
| #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV) |
| #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER) |
| |
| #define PC3_PSORC_BOUT (PC3_TXDAT) |
| #define PC3_PSORC_BIN (0) |
| #define PC3_DIRC_BOUT (0) |
| #define PC3_DIRC_BIN (PC3_TXDAT) |
| |
| |
| /* MII status/control serial interface. |
| */ |
| #if defined(CONFIG_RPX8260) |
| /* The EP8260 doesn't use Port C for MDIO */ |
| #define PC_MDIO ((uint)0x00000000) |
| #define PC_MDCK ((uint)0x00000000) |
| #elif defined(CONFIG_TQM8260) |
| /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */ |
| #define PC_MDIO ((uint)0x00000002) |
| #define PC_MDCK ((uint)0x00000001) |
| #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) |
| #define PC_MDIO ((uint)0x00400000) |
| #define PC_MDCK ((uint)0x00200000) |
| #else |
| #define PC_MDIO ((uint)0x00000004) |
| #define PC_MDCK ((uint)0x00000020) |
| #endif |
| |
| #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK)) |
| #error "Must define PC_MDIO and PC_MDCK if using MDIO" |
| #endif |
| |
| /* PHY addresses */ |
| /* default to dynamic config of phy addresses */ |
| #define FCC1_PHY_ADDR 0 |
| #ifdef CONFIG_PQ2FADS |
| #define FCC2_PHY_ADDR 0 |
| #else |
| #define FCC2_PHY_ADDR 2 |
| #endif |
| #define FCC3_PHY_ADDR 3 |
| |
| /* A table of information for supporting FCCs. This does two things. |
| * First, we know how many FCCs we have and they are always externally |
| * numbered from zero. Second, it holds control register and I/O |
| * information that could be different among board designs. |
| */ |
| typedef struct fcc_info { |
| uint fc_fccnum; |
| uint fc_phyaddr; |
| uint fc_cpmblock; |
| uint fc_cpmpage; |
| uint fc_proff; |
| uint fc_interrupt; |
| uint fc_trxclocks; |
| uint fc_clockroute; |
| uint fc_clockmask; |
| uint fc_mdio; |
| uint fc_mdck; |
| } fcc_info_t; |
| |
| static fcc_info_t fcc_ports[] = { |
| #ifdef CONFIG_FCC1_ENET |
| { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1, |
| (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK, |
| PC_MDIO, PC_MDCK }, |
| #endif |
| #ifdef CONFIG_FCC2_ENET |
| { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2, |
| (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK, |
| PC_MDIO, PC_MDCK }, |
| #endif |
| #ifdef CONFIG_FCC3_ENET |
| { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3, |
| (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK, |
| PC_MDIO, PC_MDCK }, |
| #endif |
| }; |
| |
| /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and |
| * tx_bd_base always point to the base of the buffer descriptors. The |
| * cur_rx and cur_tx point to the currently available buffer. |
| * The dirty_tx tracks the current buffer that is being sent by the |
| * controller. The cur_tx and dirty_tx are equal under both completely |
| * empty and completely full conditions. The empty/ready indicator in |
| * the buffer descriptor determines the actual condition. |
| */ |
| struct fcc_enet_private { |
| /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| ushort skb_cur; |
| ushort skb_dirty; |
| |
| /* CPM dual port RAM relative addresses. |
| */ |
| cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| cbd_t *tx_bd_base; |
| cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| volatile fcc_t *fccp; |
| volatile fcc_enet_t *ep; |
| struct net_device_stats stats; |
| uint tx_free; |
| spinlock_t lock; |
| |
| #ifdef CONFIG_USE_MDIO |
| uint phy_id; |
| uint phy_id_done; |
| uint phy_status; |
| phy_info_t *phy; |
| struct work_struct phy_relink; |
| struct work_struct phy_display_config; |
| struct net_device *dev; |
| |
| uint sequence_done; |
| |
| uint phy_addr; |
| #endif /* CONFIG_USE_MDIO */ |
| |
| int link; |
| int old_link; |
| int full_duplex; |
| |
| fcc_info_t *fip; |
| }; |
| |
| static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, |
| volatile cpm2_map_t *immap); |
| static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev); |
| static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, |
| volatile cpm2_map_t *immap); |
| static void init_fcc_param(fcc_info_t *fip, struct net_device *dev, |
| volatile cpm2_map_t *immap); |
| |
| #ifdef CONFIG_USE_MDIO |
| static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *)); |
| static uint mii_send_receive(fcc_info_t *fip, uint cmd); |
| static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c); |
| |
| /* Make MII read/write commands for the FCC. |
| */ |
| #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18)) |
| #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \ |
| ((VAL) & 0xffff)) |
| #define mk_mii_end 0 |
| #endif /* CONFIG_USE_MDIO */ |
| |
| |
| static int |
| fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| volatile cbd_t *bdp; |
| |
| /* Fill in a Tx ring entry */ |
| bdp = cep->cur_tx; |
| |
| #ifndef final_version |
| if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) { |
| /* Ooops. All transmit buffers are full. Bail out. |
| * This should not happen, since the tx queue should be stopped. |
| */ |
| printk("%s: tx queue full!.\n", dev->name); |
| return 1; |
| } |
| #endif |
| |
| /* Clear all of the status flags. */ |
| bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| |
| /* If the frame is short, tell CPM to pad it. */ |
| if (skb->len <= ETH_ZLEN) |
| bdp->cbd_sc |= BD_ENET_TX_PAD; |
| else |
| bdp->cbd_sc &= ~BD_ENET_TX_PAD; |
| |
| /* Set buffer length and buffer pointer. */ |
| bdp->cbd_datlen = skb->len; |
| bdp->cbd_bufaddr = __pa(skb->data); |
| |
| spin_lock_irq(&cep->lock); |
| |
| /* Save skb pointer. */ |
| cep->tx_skbuff[cep->skb_cur] = skb; |
| |
| cep->stats.tx_bytes += skb->len; |
| cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; |
| |
| /* Send it on its way. Tell CPM its ready, interrupt when done, |
| * its the last BD of the frame, and to put the CRC on the end. |
| */ |
| bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| |
| #if 0 |
| /* Errata says don't do this. */ |
| cep->fccp->fcc_ftodr = 0x8000; |
| #endif |
| dev->trans_start = jiffies; |
| |
| /* If this was the last BD in the ring, start at the beginning again. */ |
| if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| bdp = cep->tx_bd_base; |
| else |
| bdp++; |
| |
| if (!--cep->tx_free) |
| netif_stop_queue(dev); |
| |
| cep->cur_tx = (cbd_t *)bdp; |
| |
| spin_unlock_irq(&cep->lock); |
| |
| return 0; |
| } |
| |
| |
| static void |
| fcc_enet_timeout(struct net_device *dev) |
| { |
| struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| |
| printk("%s: transmit timed out.\n", dev->name); |
| cep->stats.tx_errors++; |
| #ifndef final_version |
| { |
| int i; |
| cbd_t *bdp; |
| printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n", |
| cep->cur_tx, cep->tx_free, |
| cep->cur_rx); |
| bdp = cep->tx_bd_base; |
| printk(" Tx @base %p :\n", bdp); |
| for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) |
| printk("%04x %04x %08x\n", |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| bdp->cbd_bufaddr); |
| bdp = cep->rx_bd_base; |
| printk(" Rx @base %p :\n", bdp); |
| for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) |
| printk("%04x %04x %08x\n", |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| bdp->cbd_bufaddr); |
| } |
| #endif |
| if (cep->tx_free) |
| netif_wake_queue(dev); |
| } |
| |
| /* The interrupt handler. */ |
| static irqreturn_t |
| fcc_enet_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| volatile struct fcc_enet_private *cep; |
| volatile cbd_t *bdp; |
| ushort int_events; |
| int must_restart; |
| |
| cep = dev->priv; |
| |
| /* Get the interrupt events that caused us to be here. |
| */ |
| int_events = cep->fccp->fcc_fcce; |
| cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm); |
| must_restart = 0; |
| |
| #ifdef PHY_INTERRUPT |
| /* We have to be careful here to make sure that we aren't |
| * interrupted by a PHY interrupt. |
| */ |
| disable_irq_nosync(PHY_INTERRUPT); |
| #endif |
| |
| /* Handle receive event in its own function. |
| */ |
| if (int_events & FCC_ENET_RXF) |
| fcc_enet_rx(dev_id); |
| |
| /* Check for a transmit error. The manual is a little unclear |
| * about this, so the debug code until I get it figured out. It |
| * appears that if TXE is set, then TXB is not set. However, |
| * if carrier sense is lost during frame transmission, the TXE |
| * bit is set, "and continues the buffer transmission normally." |
| * I don't know if "normally" implies TXB is set when the buffer |
| * descriptor is closed.....trial and error :-). |
| */ |
| |
| /* Transmit OK, or non-fatal error. Update the buffer descriptors. |
| */ |
| if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) { |
| spin_lock(&cep->lock); |
| bdp = cep->dirty_tx; |
| while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { |
| if (cep->tx_free == TX_RING_SIZE) |
| break; |
| |
| if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| cep->stats.tx_heartbeat_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| cep->stats.tx_window_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| cep->stats.tx_aborted_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| cep->stats.tx_fifo_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| cep->stats.tx_carrier_errors++; |
| |
| |
| /* No heartbeat or Lost carrier are not really bad errors. |
| * The others require a restart transmit command. |
| */ |
| if (bdp->cbd_sc & |
| (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { |
| must_restart = 1; |
| cep->stats.tx_errors++; |
| } |
| |
| cep->stats.tx_packets++; |
| |
| /* Deferred means some collisions occurred during transmit, |
| * but we eventually sent the packet OK. |
| */ |
| if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| cep->stats.collisions++; |
| |
| /* Free the sk buffer associated with this last transmit. */ |
| dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); |
| cep->tx_skbuff[cep->skb_dirty] = NULL; |
| cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| |
| /* Update pointer to next buffer descriptor to be transmitted. */ |
| if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| bdp = cep->tx_bd_base; |
| else |
| bdp++; |
| |
| /* I don't know if we can be held off from processing these |
| * interrupts for more than one frame time. I really hope |
| * not. In such a case, we would now want to check the |
| * currently available BD (cur_tx) and determine if any |
| * buffers between the dirty_tx and cur_tx have also been |
| * sent. We would want to process anything in between that |
| * does not have BD_ENET_TX_READY set. |
| */ |
| |
| /* Since we have freed up a buffer, the ring is no longer |
| * full. |
| */ |
| if (!cep->tx_free++) { |
| if (netif_queue_stopped(dev)) { |
| netif_wake_queue(dev); |
| } |
| } |
| |
| cep->dirty_tx = (cbd_t *)bdp; |
| } |
| |
| if (must_restart) { |
| volatile cpm_cpm2_t *cp; |
| |
| /* Some transmit errors cause the transmitter to shut |
| * down. We now issue a restart transmit. Since the |
| * errors close the BD and update the pointers, the restart |
| * _should_ pick up without having to reset any of our |
| * pointers either. Also, To workaround 8260 device erratum |
| * CPM37, we must disable and then re-enable the transmitter |
| * following a Late Collision, Underrun, or Retry Limit error. |
| */ |
| cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT; |
| udelay(10); /* wait a few microseconds just on principle */ |
| cep->fccp->fcc_gfmr |= FCC_GFMR_ENT; |
| |
| cp = cpmp; |
| cp->cp_cpcr = |
| mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, |
| 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| } |
| spin_unlock(&cep->lock); |
| } |
| |
| /* Check for receive busy, i.e. packets coming but no place to |
| * put them. |
| */ |
| if (int_events & FCC_ENET_BSY) { |
| cep->fccp->fcc_fcce = FCC_ENET_BSY; |
| cep->stats.rx_dropped++; |
| } |
| |
| #ifdef PHY_INTERRUPT |
| enable_irq(PHY_INTERRUPT); |
| #endif |
| return IRQ_HANDLED; |
| } |
| |
| /* During a receive, the cur_rx points to the current incoming buffer. |
| * When we update through the ring, if the next incoming buffer has |
| * not been given to the system, we just set the empty indicator, |
| * effectively tossing the packet. |
| */ |
| static int |
| fcc_enet_rx(struct net_device *dev) |
| { |
| struct fcc_enet_private *cep; |
| volatile cbd_t *bdp; |
| struct sk_buff *skb; |
| ushort pkt_len; |
| |
| cep = dev->priv; |
| |
| /* First, grab all of the stats for the incoming packet. |
| * These get messed up if we get called due to a busy condition. |
| */ |
| bdp = cep->cur_rx; |
| |
| for (;;) { |
| if (bdp->cbd_sc & BD_ENET_RX_EMPTY) |
| break; |
| |
| #ifndef final_version |
| /* Since we have allocated space to hold a complete frame, both |
| * the first and last indicators should be set. |
| */ |
| if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != |
| (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) |
| printk("CPM ENET: rcv is not first+last\n"); |
| #endif |
| |
| /* Frame too long or too short. */ |
| if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| cep->stats.rx_length_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| cep->stats.rx_frame_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| cep->stats.rx_crc_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| cep->stats.rx_crc_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */ |
| cep->stats.rx_frame_errors++; |
| |
| if (!(bdp->cbd_sc & |
| (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR |
| | BD_ENET_RX_OV | BD_ENET_RX_CL))) |
| { |
| /* Process the incoming frame. */ |
| cep->stats.rx_packets++; |
| |
| /* Remove the FCS from the packet length. */ |
| pkt_len = bdp->cbd_datlen - 4; |
| cep->stats.rx_bytes += pkt_len; |
| |
| /* This does 16 byte alignment, much more than we need. */ |
| skb = dev_alloc_skb(pkt_len); |
| |
| if (skb == NULL) { |
| printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| cep->stats.rx_dropped++; |
| } |
| else { |
| skb_put(skb,pkt_len); /* Make room */ |
| skb_copy_to_linear_data(skb, |
| (unsigned char *)__va(bdp->cbd_bufaddr), |
| pkt_len); |
| skb->protocol=eth_type_trans(skb,dev); |
| netif_rx(skb); |
| } |
| } |
| |
| /* Clear the status flags for this buffer. */ |
| bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| |
| /* Mark the buffer empty. */ |
| bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| |
| /* Update BD pointer to next entry. */ |
| if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| bdp = cep->rx_bd_base; |
| else |
| bdp++; |
| |
| } |
| cep->cur_rx = (cbd_t *)bdp; |
| |
| return 0; |
| } |
| |
| static int |
| fcc_enet_close(struct net_device *dev) |
| { |
| #ifdef CONFIG_USE_MDIO |
| struct fcc_enet_private *fep = dev->priv; |
| #endif |
| |
| netif_stop_queue(dev); |
| fcc_stop(dev); |
| #ifdef CONFIG_USE_MDIO |
| if (fep->phy) |
| mii_do_cmd(dev, fep->phy->shutdown); |
| #endif |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev) |
| { |
| struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| |
| return &cep->stats; |
| } |
| |
| #ifdef CONFIG_USE_MDIO |
| |
| /* NOTE: Most of the following comes from the FEC driver for 860. The |
| * overall structure of MII code has been retained (as it's proved stable |
| * and well-tested), but actual transfer requests are processed "at once" |
| * instead of being queued (there's no interrupt-driven MII transfer |
| * mechanism, one has to toggle the data/clock bits manually). |
| */ |
| static int |
| mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) |
| { |
| struct fcc_enet_private *fep; |
| int retval, tmp; |
| |
| /* Add PHY address to register command. */ |
| fep = dev->priv; |
| regval |= fep->phy_addr << 23; |
| |
| retval = 0; |
| |
| tmp = mii_send_receive(fep->fip, regval); |
| if (func) |
| func(tmp, dev); |
| |
| return retval; |
| } |
| |
| static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) |
| { |
| int k; |
| |
| if(!c) |
| return; |
| |
| for(k = 0; (c+k)->mii_data != mk_mii_end; k++) |
| mii_queue(dev, (c+k)->mii_data, (c+k)->funct); |
| } |
| |
| static void mii_parse_sr(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
| |
| if (mii_reg & BMSR_LSTATUS) |
| s |= PHY_STAT_LINK; |
| if (mii_reg & BMSR_RFAULT) |
| s |= PHY_STAT_FAULT; |
| if (mii_reg & BMSR_ANEGCOMPLETE) |
| s |= PHY_STAT_ANC; |
| |
| fep->phy_status = s; |
| } |
| |
| static void mii_parse_cr(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
| |
| if (mii_reg & BMCR_ANENABLE) |
| s |= PHY_CONF_ANE; |
| if (mii_reg & BMCR_LOOPBACK) |
| s |= PHY_CONF_LOOP; |
| |
| fep->phy_status = s; |
| } |
| |
| static void mii_parse_anar(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_CONF_SPMASK); |
| |
| if (mii_reg & ADVERTISE_10HALF) |
| s |= PHY_CONF_10HDX; |
| if (mii_reg & ADVERTISE_10FULL) |
| s |= PHY_CONF_10FDX; |
| if (mii_reg & ADVERTISE_100HALF) |
| s |= PHY_CONF_100HDX; |
| if (mii_reg & ADVERTISE_100FULL) |
| s |= PHY_CONF_100FDX; |
| |
| fep->phy_status = s; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| /* Generic PHY support. Should work for all PHYs, but does not support link |
| * change interrupts. |
| */ |
| #ifdef CONFIG_FCC_GENERIC_PHY |
| |
| static phy_info_t phy_info_generic = { |
| 0x00000000, /* 0-->match any PHY */ |
| "GENERIC", |
| |
| (const phy_cmd_t []) { /* config */ |
| /* advertise only half-duplex capabilities */ |
| { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF), |
| mii_parse_anar }, |
| |
| /* enable auto-negotiation */ |
| { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup */ |
| /* restart auto-negotiation */ |
| { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), |
| NULL }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int */ |
| /* We don't actually use the ack_int table with a generic |
| * PHY, but putting a reference to mii_parse_sr here keeps |
| * us from getting a compiler warning about unused static |
| * functions in the case where we only compile in generic |
| * PHY support. |
| */ |
| { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown */ |
| { mk_mii_end, } |
| }, |
| }; |
| #endif /* ifdef CONFIG_FCC_GENERIC_PHY */ |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Level one LXT970 is used by many boards */ |
| |
| #ifdef CONFIG_FCC_LXT970 |
| |
| #define MII_LXT970_MIRROR 16 /* Mirror register */ |
| #define MII_LXT970_IER 17 /* Interrupt Enable Register */ |
| #define MII_LXT970_ISR 18 /* Interrupt Status Register */ |
| #define MII_LXT970_CONFIG 19 /* Configuration Register */ |
| #define MII_LXT970_CSR 20 /* Chip Status Register */ |
| |
| static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_SPMASK); |
| |
| if (mii_reg & 0x0800) { |
| if (mii_reg & 0x1000) |
| s |= PHY_STAT_100FDX; |
| else |
| s |= PHY_STAT_100HDX; |
| } else { |
| if (mii_reg & 0x1000) |
| s |= PHY_STAT_10FDX; |
| else |
| s |= PHY_STAT_10HDX; |
| } |
| |
| fep->phy_status = s; |
| } |
| |
| static phy_info_t phy_info_lxt970 = { |
| 0x07810000, |
| "LXT970", |
| |
| (const phy_cmd_t []) { /* config */ |
| #if 0 |
| // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL }, |
| |
| /* Set default operation of 100-TX....for some reason |
| * some of these bits are set on power up, which is wrong. |
| */ |
| { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, |
| #endif |
| { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup - enable interrupts */ |
| { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
| { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int */ |
| /* read SR and ISR to acknowledge */ |
| |
| { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| { mk_mii_read(MII_LXT970_ISR), NULL }, |
| |
| /* find out the current status */ |
| |
| { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
| { mk_mii_end, } |
| }, |
| }; |
| |
| #endif /* CONFIG_FEC_LXT970 */ |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Level one LXT971 is used on some of my custom boards */ |
| |
| #ifdef CONFIG_FCC_LXT971 |
| |
| /* register definitions for the 971 */ |
| |
| #define MII_LXT971_PCR 16 /* Port Control Register */ |
| #define MII_LXT971_SR2 17 /* Status Register 2 */ |
| #define MII_LXT971_IER 18 /* Interrupt Enable Register */ |
| #define MII_LXT971_ISR 19 /* Interrupt Status Register */ |
| #define MII_LXT971_LCR 20 /* LED Control Register */ |
| #define MII_LXT971_TCR 30 /* Transmit Control Register */ |
| |
| /* |
| * I had some nice ideas of running the MDIO faster... |
| * The 971 should support 8MHz and I tried it, but things acted really |
| * weird, so 2.5 MHz ought to be enough for anyone... |
| */ |
| |
| static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_SPMASK); |
| |
| if (mii_reg & 0x4000) { |
| if (mii_reg & 0x0200) |
| s |= PHY_STAT_100FDX; |
| else |
| s |= PHY_STAT_100HDX; |
| } else { |
| if (mii_reg & 0x0200) |
| s |= PHY_STAT_10FDX; |
| else |
| s |= PHY_STAT_10HDX; |
| } |
| if (mii_reg & 0x0008) |
| s |= PHY_STAT_FAULT; |
| |
| fep->phy_status = s; |
| } |
| |
| static phy_info_t phy_info_lxt971 = { |
| 0x0001378e, |
| "LXT971", |
| |
| (const phy_cmd_t []) { /* config */ |
| /* configure link capabilities to advertise */ |
| { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT), |
| mii_parse_anar }, |
| |
| /* enable auto-negotiation */ |
| { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup - enable interrupts */ |
| { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
| |
| /* restart auto-negotiation */ |
| { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), |
| NULL }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int */ |
| /* find out the current status */ |
| { mk_mii_read(MII_BMSR), NULL }, |
| { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| |
| /* we only need to read ISR to acknowledge */ |
| { mk_mii_read(MII_LXT971_ISR), NULL }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
| { mk_mii_end, } |
| }, |
| }; |
| |
| #endif /* CONFIG_FCC_LXT971 */ |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ |
| |
| #ifdef CONFIG_FCC_QS6612 |
| |
| /* register definitions */ |
| |
| #define MII_QS6612_MCR 17 /* Mode Control Register */ |
| #define MII_QS6612_FTR 27 /* Factory Test Register */ |
| #define MII_QS6612_MCO 28 /* Misc. Control Register */ |
| #define MII_QS6612_ISR 29 /* Interrupt Source Register */ |
| #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ |
| #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ |
| |
| static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_SPMASK); |
| |
| switch((mii_reg >> 2) & 7) { |
| case 1: s |= PHY_STAT_10HDX; break; |
| case 2: s |= PHY_STAT_100HDX; break; |
| case 5: s |= PHY_STAT_10FDX; break; |
| case 6: s |= PHY_STAT_100FDX; break; |
| } |
| |
| fep->phy_status = s; |
| } |
| |
| static phy_info_t phy_info_qs6612 = { |
| 0x00181440, |
| "QS6612", |
| |
| (const phy_cmd_t []) { /* config */ |
| // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */ |
| |
| /* The PHY powers up isolated on the RPX, |
| * so send a command to allow operation. |
| */ |
| |
| { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, |
| |
| /* parse cr and anar to get some info */ |
| |
| { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup - enable interrupts */ |
| { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
| { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int */ |
| |
| /* we need to read ISR, SR and ANER to acknowledge */ |
| |
| { mk_mii_read(MII_QS6612_ISR), NULL }, |
| { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| { mk_mii_read(MII_EXPANSION), NULL }, |
| |
| /* read pcr to get info */ |
| |
| { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
| { mk_mii_end, } |
| }, |
| }; |
| |
| |
| #endif /* CONFIG_FEC_QS6612 */ |
| |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Davicom DM9131 is used on the HYMOD board */ |
| |
| #ifdef CONFIG_FCC_DM9131 |
| |
| /* register definitions */ |
| |
| #define MII_DM9131_ACR 16 /* Aux. Config Register */ |
| #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */ |
| #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */ |
| #define MII_DM9131_INTR 21 /* Interrupt Register */ |
| #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */ |
| #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */ |
| |
| static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_SPMASK); |
| |
| switch ((mii_reg >> 12) & 0xf) { |
| case 1: s |= PHY_STAT_10HDX; break; |
| case 2: s |= PHY_STAT_10FDX; break; |
| case 4: s |= PHY_STAT_100HDX; break; |
| case 8: s |= PHY_STAT_100FDX; break; |
| } |
| |
| fep->phy_status = s; |
| } |
| |
| static phy_info_t phy_info_dm9131 = { |
| 0x00181b80, |
| "DM9131", |
| |
| (const phy_cmd_t []) { /* config */ |
| /* parse cr and anar to get some info */ |
| { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup - enable interrupts */ |
| { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL }, |
| { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int */ |
| |
| /* we need to read INTR, SR and ANER to acknowledge */ |
| |
| { mk_mii_read(MII_DM9131_INTR), NULL }, |
| { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| { mk_mii_read(MII_EXPANSION), NULL }, |
| |
| /* read acsr to get info */ |
| |
| { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL }, |
| { mk_mii_end, } |
| }, |
| }; |
| |
| |
| #endif /* CONFIG_FEC_DM9131 */ |
| #ifdef CONFIG_FCC_DM9161 |
| /* ------------------------------------------------------------------------- */ |
| /* DM9161 Control register values */ |
| #define MIIM_DM9161_CR_STOP 0x0400 |
| #define MIIM_DM9161_CR_RSTAN 0x1200 |
| |
| #define MIIM_DM9161_SCR 0x10 |
| #define MIIM_DM9161_SCR_INIT 0x0610 |
| |
| /* DM9161 Specified Configuration and Status Register */ |
| #define MIIM_DM9161_SCSR 0x11 |
| #define MIIM_DM9161_SCSR_100F 0x8000 |
| #define MIIM_DM9161_SCSR_100H 0x4000 |
| #define MIIM_DM9161_SCSR_10F 0x2000 |
| #define MIIM_DM9161_SCSR_10H 0x1000 |
| /* DM9161 10BT register */ |
| #define MIIM_DM9161_10BTCSR 0x12 |
| #define MIIM_DM9161_10BTCSR_INIT 0x7800 |
| /* DM9161 Interrupt Register */ |
| #define MIIM_DM9161_INTR 0x15 |
| #define MIIM_DM9161_INTR_PEND 0x8000 |
| #define MIIM_DM9161_INTR_DPLX_MASK 0x0800 |
| #define MIIM_DM9161_INTR_SPD_MASK 0x0400 |
| #define MIIM_DM9161_INTR_LINK_MASK 0x0200 |
| #define MIIM_DM9161_INTR_MASK 0x0100 |
| #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010 |
| #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008 |
| #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004 |
| #define MIIM_DM9161_INTR_INIT 0x0000 |
| #define MIIM_DM9161_INTR_STOP \ |
| (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \ |
| | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK) |
| |
| static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint regstat, timeout=0xffff; |
| |
| while(!(mii_reg & 0x0020) && timeout--) |
| { |
| regstat=mk_mii_read(MII_BMSR); |
| regstat |= fep->phy_addr <<23; |
| mii_reg = mii_send_receive(fep->fip,regstat); |
| } |
| |
| mii_parse_sr(mii_reg, dev); |
| } |
| |
| static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev) |
| { |
| volatile struct fcc_enet_private *fep = dev->priv; |
| uint s = fep->phy_status; |
| |
| s &= ~(PHY_STAT_SPMASK); |
| switch((mii_reg >>12) & 0xf) { |
| case 1: |
| { |
| s |= PHY_STAT_10HDX; |
| printk("10BaseT Half Duplex\n"); |
| break; |
| } |
| case 2: |
| { |
| s |= PHY_STAT_10FDX; |
| printk("10BaseT Full Duplex\n"); |
| break; |
| } |
| case 4: |
| { |
| s |= PHY_STAT_100HDX; |
| printk("100BaseT Half Duplex\n"); |
| break; |
| } |
| case 8: |
| { |
| s |= PHY_STAT_100FDX; |
| printk("100BaseT Full Duplex\n"); |
| break; |
| } |
| } |
| |
| fep->phy_status = s; |
| |
| } |
| |
| static void mii_dm9161_wait(uint mii_reg, struct net_device *dev) |
| { |
| int timeout = HZ; |
| |
| /* Davicom takes a bit to come up after a reset, |
| * so wait here for a bit */ |
| schedule_timeout_uninterruptible(timeout); |
| } |
| |
| static phy_info_t phy_info_dm9161 = { |
| 0x00181b88, |
| "Davicom DM9161E", |
| (const phy_cmd_t[]) { /* config */ |
| { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL}, |
| /* Do not bypass the scrambler/descrambler */ |
| { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL}, |
| /* Configure 10BTCSR register */ |
| { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL}, |
| /* Configure some basic stuff */ |
| { mk_mii_write(MII_BMCR, 0x1000), NULL}, |
| { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| { mk_mii_end,} |
| }, |
| (const phy_cmd_t[]) { /* startup */ |
| /* Restart Auto Negotiation */ |
| { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL}, |
| /* Status is read once to clear old link state */ |
| { mk_mii_read(MII_BMSR), mii_dm9161_wait}, |
| /* Auto-negotiate */ |
| { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, |
| /* Read the status */ |
| { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, |
| /* Clear any pending interrupts */ |
| { mk_mii_read(MIIM_DM9161_INTR), NULL}, |
| /* Enable Interrupts */ |
| { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL}, |
| { mk_mii_end,} |
| }, |
| (const phy_cmd_t[]) { /* ack_int */ |
| { mk_mii_read(MIIM_DM9161_INTR), NULL}, |
| #if 0 |
| { mk_mii_read(MII_BMSR), NULL}, |
| { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, |
| { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, |
| #endif |
| { mk_mii_end,} |
| }, |
| (const phy_cmd_t[]) { /* shutdown */ |
| { mk_mii_read(MIIM_DM9161_INTR),NULL}, |
| { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL}, |
| { mk_mii_end,} |
| }, |
| }; |
| #endif /* CONFIG_FCC_DM9161 */ |
| |
| static phy_info_t *phy_info[] = { |
| |
| #ifdef CONFIG_FCC_LXT970 |
| &phy_info_lxt970, |
| #endif /* CONFIG_FEC_LXT970 */ |
| |
| #ifdef CONFIG_FCC_LXT971 |
| &phy_info_lxt971, |
| #endif /* CONFIG_FEC_LXT971 */ |
| |
| #ifdef CONFIG_FCC_QS6612 |
| &phy_info_qs6612, |
| #endif /* CONFIG_FEC_QS6612 */ |
| |
| #ifdef CONFIG_FCC_DM9131 |
| &phy_info_dm9131, |
| #endif /* CONFIG_FEC_DM9131 */ |
| |
| #ifdef CONFIG_FCC_DM9161 |
| &phy_info_dm9161, |
| #endif /* CONFIG_FCC_DM9161 */ |
| |
| #ifdef CONFIG_FCC_GENERIC_PHY |
| /* Generic PHY support. This must be the last PHY in the table. |
| * It will be used to support any PHY that doesn't match a previous |
| * entry in the table. |
| */ |
| &phy_info_generic, |
| #endif /* CONFIG_FCC_GENERIC_PHY */ |
| |
| NULL |
| }; |
| |
| static void mii_display_status(struct work_struct *work) |
| { |
| volatile struct fcc_enet_private *fep = |
| container_of(work, struct fcc_enet_private, phy_relink); |
| struct net_device *dev = fep->dev; |
| uint s = fep->phy_status; |
| |
| if (!fep->link && !fep->old_link) { |
| /* Link is still down - don't print anything */ |
| return; |
| } |
| |
| printk("%s: status: ", dev->name); |
| |
| if (!fep->link) { |
| printk("link down"); |
| } else { |
| printk("link up"); |
| |
| switch(s & PHY_STAT_SPMASK) { |
| case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; |
| case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; |
| case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; |
| case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; |
| default: |
| printk(", Unknown speed/duplex"); |
| } |
| |
| if (s & PHY_STAT_ANC) |
| printk(", auto-negotiation complete"); |
| } |
| |
| if (s & PHY_STAT_FAULT) |
| printk(", remote fault"); |
| |
| printk(".\n"); |
| } |
| |
| static void mii_display_config(struct work_struct *work) |
| { |
| volatile struct fcc_enet_private *fep = |
| container_of(work, struct fcc_enet_private, |
| phy_display_config); |
| struct net_device *dev = fep->dev; |
| uint s = fep->phy_status; |
| |
| printk("%s: config: auto-negotiation ", dev->name); |
| |
| if (s & PHY_CONF_ANE) |
| printk("on"); |
| else |
| printk("off"); |
| |
| if (s & PHY_CONF_100FDX) |
| printk(", 100FDX"); |
| if (s & PHY_CONF_100HDX) |
| printk(", 100HDX"); |
| if (s & PHY_CONF_10FDX) |
| printk(", 10FDX"); |
| if (s & PHY_CONF_10HDX) |
| printk(", 10HDX"); |
| if (!(s & PHY_CONF_SPMASK)) |
| printk(", No speed/duplex selected?"); |
| |
| if (s & PHY_CONF_LOOP) |
| printk(", loopback enabled"); |
| |
| printk(".\n"); |
| |
| fep->sequence_done = 1; |
| } |
| |
| static void mii_relink(struct net_device *dev) |
| { |
| struct fcc_enet_private *fep = dev->priv; |
| int duplex = 0; |
| |
| fep->old_link = fep->link; |
| fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; |
| |
| #ifdef MDIO_DEBUG |
| printk(" mii_relink: link=%d\n", fep->link); |
| #endif |
| |
| if (fep->link) { |
| if (fep->phy_status |
| & (PHY_STAT_100FDX | PHY_STAT_10FDX)) |
| duplex = 1; |
| fcc_restart(dev, duplex); |
| #ifdef MDIO_DEBUG |
| printk(" mii_relink: duplex=%d\n", duplex); |
| #endif |
| } |
| } |
| |
| static void mii_queue_relink(uint mii_reg, struct net_device *dev) |
| { |
| struct fcc_enet_private *fep = dev->priv; |
| |
| mii_relink(dev); |
| |
| schedule_work(&fep->phy_relink); |
| } |
| |
| static void mii_queue_config(uint mii_reg, struct net_device *dev) |
| { |
| struct fcc_enet_private *fep = dev->priv; |
| |
| schedule_work(&fep->phy_display_config); |
| } |
| |
| phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink }, |
| { mk_mii_end, } }; |
| phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config }, |
| { mk_mii_end, } }; |
| |
| |
| /* Read remainder of PHY ID. |
| */ |
| static void |
| mii_discover_phy3(uint mii_reg, struct net_device *dev) |
| { |
| struct fcc_enet_private *fep; |
| int i; |
| |
| fep = dev->priv; |
| printk("mii_reg: %08x\n", mii_reg); |
| fep->phy_id |= (mii_reg & 0xffff); |
| |
| for(i = 0; phy_info[i]; i++) |
| if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id) |
| break; |
| |
| if(!phy_info[i]) |
| panic("%s: PHY id 0x%08x is not supported!\n", |
| dev->name, fep->phy_id); |
| |
| fep->phy = phy_info[i]; |
| fep->phy_id_done = 1; |
| |
| printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", |
| dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); |
| } |
| |
| /* Scan all of the MII PHY addresses looking for someone to respond |
| * with a valid ID. This usually happens quickly. |
| */ |
| static void |
| mii_discover_phy(uint mii_reg, struct net_device *dev) |
| { |
| struct fcc_enet_private *fep; |
| uint phytype; |
| |
| fep = dev->priv; |
| |
| if ((phytype = (mii_reg & 0xffff)) != 0xffff) { |
| |
| /* Got first part of ID, now get remainder. */ |
| fep->phy_id = phytype << 16; |
| mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3); |
| } else { |
| fep->phy_addr++; |
| if (fep->phy_addr < 32) { |
| mii_queue(dev, mk_mii_read(MII_PHYSID1), |
| mii_discover_phy); |
| } else { |
| printk("fec: No PHY device found.\n"); |
| } |
| } |
| } |
| #endif /* CONFIG_USE_MDIO */ |
| |
| #ifdef PHY_INTERRUPT |
| /* This interrupt occurs when the PHY detects a link change. */ |
| static irqreturn_t |
| mii_link_interrupt(int irq, void * dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct fcc_enet_private *fep = dev->priv; |
| fcc_info_t *fip = fep->fip; |
| |
| if (fep->phy) { |
| /* We don't want to be interrupted by an FCC |
| * interrupt here. |
| */ |
| disable_irq_nosync(fip->fc_interrupt); |
| |
| mii_do_cmd(dev, fep->phy->ack_int); |
| /* restart and display status */ |
| mii_do_cmd(dev, phy_cmd_relink); |
| |
| enable_irq(fip->fc_interrupt); |
| } |
| return IRQ_HANDLED; |
| } |
| #endif /* ifdef PHY_INTERRUPT */ |
| |
| #if 0 /* This should be fixed someday */ |
| /* Set or clear the multicast filter for this adaptor. |
| * Skeleton taken from sunlance driver. |
| * The CPM Ethernet implementation allows Multicast as well as individual |
| * MAC address filtering. Some of the drivers check to make sure it is |
| * a group multicast address, and discard those that are not. I guess I |
| * will do the same for now, but just remove the test if you want |
| * individual filtering as well (do the upper net layers want or support |
| * this kind of feature?). |
| */ |
| static void |
| set_multicast_list(struct net_device *dev) |
| { |
| struct fcc_enet_private *cep; |
| struct dev_mc_list *dmi; |
| u_char *mcptr, *tdptr; |
| volatile fcc_enet_t *ep; |
| int i, j; |
| |
| cep = (struct fcc_enet_private *)dev->priv; |
| |
| return; |
| /* Get pointer to FCC area in parameter RAM. |
| */ |
| ep = (fcc_enet_t *)dev->base_addr; |
| |
| if (dev->flags&IFF_PROMISC) { |
| |
| /* Log any net taps. */ |
| printk("%s: Promiscuous mode enabled.\n", dev->name); |
| cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO; |
| } else { |
| |
| cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO; |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Catch all multicast addresses, so set the |
| * filter to all 1's. |
| */ |
| ep->fen_gaddrh = 0xffffffff; |
| ep->fen_gaddrl = 0xffffffff; |
| } |
| else { |
| /* Clear filter and add the addresses in the list. |
| */ |
| ep->fen_gaddrh = 0; |
| ep->fen_gaddrl = 0; |
| |
| dmi = dev->mc_list; |
| |
| for (i=0; i<dev->mc_count; i++, dmi = dmi->next) { |
| |
| /* Only support group multicast for now. |
| */ |
| if (!(dmi->dmi_addr[0] & 1)) |
| continue; |
| |
| /* The address in dmi_addr is LSB first, |
| * and taddr is MSB first. We have to |
| * copy bytes MSB first from dmi_addr. |
| */ |
| mcptr = (u_char *)dmi->dmi_addr + 5; |
| tdptr = (u_char *)&ep->fen_taddrh; |
| for (j=0; j<6; j++) |
| *tdptr++ = *mcptr--; |
| |
| /* Ask CPM to run CRC and set bit in |
| * filter mask. |
| */ |
| cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, |
| cep->fip->fc_cpmblock, 0x0c, |
| CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| udelay(10); |
| while (cpmp->cp_cpcr & CPM_CR_FLG); |
| } |
| } |
| } |
| } |
| #endif /* if 0 */ |
| |
| |
| /* Set the individual MAC address. |
| */ |
| int fcc_enet_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr= (struct sockaddr *) p; |
| struct fcc_enet_private *cep; |
| volatile fcc_enet_t *ep; |
| unsigned char *eap; |
| int i; |
| |
| cep = (struct fcc_enet_private *)(dev->priv); |
| ep = cep->ep; |
| |
| if (netif_running(dev)) |
| return -EBUSY; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| eap = (unsigned char *) &(ep->fen_paddrh); |
| for (i=5; i>=0; i--) |
| *eap++ = addr->sa_data[i]; |
| |
| return 0; |
| } |
| |
| |
| /* Initialize the CPM Ethernet on FCC. |
| */ |
| static int __init fec_enet_init(void) |
| { |
| struct net_device *dev; |
| struct fcc_enet_private *cep; |
| fcc_info_t *fip; |
| int i, np, err; |
| volatile cpm2_map_t *immap; |
| volatile iop_cpm2_t *io; |
| |
| immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ |
| io = &immap->im_ioport; |
| |
| np = sizeof(fcc_ports) / sizeof(fcc_info_t); |
| fip = fcc_ports; |
| |
| while (np-- > 0) { |
| /* Create an Ethernet device instance. |
| */ |
| dev = alloc_etherdev(sizeof(*cep)); |
| if (!dev) |
| return -ENOMEM; |
| |
| cep = dev->priv; |
| spin_lock_init(&cep->lock); |
| cep->fip = fip; |
| |
| init_fcc_shutdown(fip, cep, immap); |
| init_fcc_ioports(fip, io, immap); |
| init_fcc_param(fip, dev, immap); |
| |
| dev->base_addr = (unsigned long)(cep->ep); |
| |
| /* The CPM Ethernet specific entries in the device |
| * structure. |
| */ |
| dev->open = fcc_enet_open; |
| dev->hard_start_xmit = fcc_enet_start_xmit; |
| dev->tx_timeout = fcc_enet_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->stop = fcc_enet_close; |
| dev->get_stats = fcc_enet_get_stats; |
| /* dev->set_multicast_list = set_multicast_list; */ |
| dev->set_mac_address = fcc_enet_set_mac_address; |
| |
| init_fcc_startup(fip, dev); |
| |
| err = register_netdev(dev); |
| if (err) { |
| free_netdev(dev); |
| return err; |
| } |
| |
| printk("%s: FCC ENET Version 0.3, ", dev->name); |
| for (i=0; i<5; i++) |
| printk("%02x:", dev->dev_addr[i]); |
| printk("%02x\n", dev->dev_addr[5]); |
| |
| #ifdef CONFIG_USE_MDIO |
| /* Queue up command to detect the PHY and initialize the |
| * remainder of the interface. |
| */ |
| cep->phy_id_done = 0; |
| cep->phy_addr = fip->fc_phyaddr; |
| mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy); |
| INIT_WORK(&cep->phy_relink, mii_display_status); |
| INIT_WORK(&cep->phy_display_config, mii_display_config); |
| cep->dev = dev; |
| #endif /* CONFIG_USE_MDIO */ |
| |
| fip++; |
| } |
| |
| return 0; |
| } |
| module_init(fec_enet_init); |
| |
| /* Make sure the device is shut down during initialization. |
| */ |
| static void __init |
| init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, |
| volatile cpm2_map_t *immap) |
| { |
| volatile fcc_enet_t *ep; |
| volatile fcc_t *fccp; |
| |
| /* Get pointer to FCC area in parameter RAM. |
| */ |
| ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]); |
| |
| /* And another to the FCC register area. |
| */ |
| fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]); |
| cep->fccp = fccp; /* Keep the pointers handy */ |
| cep->ep = ep; |
| |
| /* Disable receive and transmit in case someone left it running. |
| */ |
| fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); |
| } |
| |
| /* Initialize the I/O pins for the FCC Ethernet. |
| */ |
| static void __init |
| init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, |
| volatile cpm2_map_t *immap) |
| { |
| |
| /* FCC1 pins are on port A/C. FCC2/3 are port B/C. |
| */ |
| if (fip->fc_proff == PROFF_FCC1) { |
| /* Configure port A and C pins for FCC1 Ethernet. |
| */ |
| io->iop_pdira &= ~PA1_DIRA_BOUT; |
| io->iop_pdira |= PA1_DIRA_BIN; |
| io->iop_psora &= ~PA1_PSORA_BOUT; |
| io->iop_psora |= PA1_PSORA_BIN; |
| io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN); |
| } |
| if (fip->fc_proff == PROFF_FCC2) { |
| /* Configure port B and C pins for FCC Ethernet. |
| */ |
| io->iop_pdirb &= ~PB2_DIRB_BOUT; |
| io->iop_pdirb |= PB2_DIRB_BIN; |
| io->iop_psorb &= ~PB2_PSORB_BOUT; |
| io->iop_psorb |= PB2_PSORB_BIN; |
| io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN); |
| } |
| if (fip->fc_proff == PROFF_FCC3) { |
| /* Configure port B and C pins for FCC Ethernet. |
| */ |
| io->iop_pdirb &= ~PB3_DIRB_BOUT; |
| io->iop_pdirb |= PB3_DIRB_BIN; |
| io->iop_psorb &= ~PB3_PSORB_BOUT; |
| io->iop_psorb |= PB3_PSORB_BIN; |
| io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN); |
| |
| io->iop_pdirc &= ~PC3_DIRC_BOUT; |
| io->iop_pdirc |= PC3_DIRC_BIN; |
| io->iop_psorc &= ~PC3_PSORC_BOUT; |
| io->iop_psorc |= PC3_PSORC_BIN; |
| io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN); |
| |
| } |
| |
| /* Port C has clocks...... |
| */ |
| io->iop_psorc &= ~(fip->fc_trxclocks); |
| io->iop_pdirc &= ~(fip->fc_trxclocks); |
| io->iop_pparc |= fip->fc_trxclocks; |
| |
| #ifdef CONFIG_USE_MDIO |
| /* ....and the MII serial clock/data. |
| */ |
| io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck); |
| io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck); |
| io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); |
| io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck); |
| #endif /* CONFIG_USE_MDIO */ |
| |
| /* Configure Serial Interface clock routing. |
| * First, clear all FCC bits to zero, |
| * then set the ones we want. |
| */ |
| immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask); |
| immap->im_cpmux.cmx_fcr |= fip->fc_clockroute; |
| } |
| |
| static void __init |
| init_fcc_param(fcc_info_t *fip, struct net_device *dev, |
| volatile cpm2_map_t *immap) |
| { |
| unsigned char *eap; |
| unsigned long mem_addr; |
| bd_t *bd; |
| int i, j; |
| struct fcc_enet_private *cep; |
| volatile fcc_enet_t *ep; |
| volatile cbd_t *bdp; |
| volatile cpm_cpm2_t *cp; |
| |
| cep = (struct fcc_enet_private *)(dev->priv); |
| ep = cep->ep; |
| cp = cpmp; |
| |
| bd = (bd_t *)__res; |
| |
| /* Zero the whole thing.....I must have missed some individually. |
| * It works when I do this. |
| */ |
| memset((char *)ep, 0, sizeof(fcc_enet_t)); |
| |
| /* Allocate space for the buffer descriptors from regular memory. |
| * Initialize base addresses for the buffer descriptors. |
| */ |
| cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE, |
| GFP_KERNEL | GFP_DMA); |
| ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base); |
| cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE, |
| GFP_KERNEL | GFP_DMA); |
| ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base); |
| |
| cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; |
| cep->cur_rx = cep->rx_bd_base; |
| |
| ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24; |
| ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24; |
| |
| /* Set maximum bytes per receive buffer. |
| * It must be a multiple of 32. |
| */ |
| ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE; |
| |
| /* Allocate space in the reserved FCC area of DPRAM for the |
| * internal buffers. No one uses this space (yet), so we |
| * can do this. Later, we will add resource management for |
| * this area. |
| */ |
| mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128); |
| ep->fen_genfcc.fcc_riptr = mem_addr; |
| ep->fen_genfcc.fcc_tiptr = mem_addr+32; |
| ep->fen_padptr = mem_addr+64; |
| memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32); |
| |
| ep->fen_genfcc.fcc_rbptr = 0; |
| ep->fen_genfcc.fcc_tbptr = 0; |
| ep->fen_genfcc.fcc_rcrc = 0; |
| ep->fen_genfcc.fcc_tcrc = 0; |
| ep->fen_genfcc.fcc_res1 = 0; |
| ep->fen_genfcc.fcc_res2 = 0; |
| |
| ep->fen_camptr = 0; /* CAM isn't used in this driver */ |
| |
| /* Set CRC preset and mask. |
| */ |
| ep->fen_cmask = 0xdebb20e3; |
| ep->fen_cpres = 0xffffffff; |
| |
| ep->fen_crcec = 0; /* CRC Error counter */ |
| ep->fen_alec = 0; /* alignment error counter */ |
| ep->fen_disfc = 0; /* discard frame counter */ |
| ep->fen_retlim = 15; /* Retry limit threshold */ |
| ep->fen_pper = 0; /* Normal persistence */ |
| |
| /* Clear hash filter tables. |
| */ |
| ep->fen_gaddrh = 0; |
| ep->fen_gaddrl = 0; |
| ep->fen_iaddrh = 0; |
| ep->fen_iaddrl = 0; |
| |
| /* Clear the Out-of-sequence TxBD. |
| */ |
| ep->fen_tfcstat = 0; |
| ep->fen_tfclen = 0; |
| ep->fen_tfcptr = 0; |
| |
| ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ |
| ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ |
| |
| /* Set Ethernet station address. |
| * |
| * This is supplied in the board information structure, so we |
| * copy that into the controller. |
| * So, far we have only been given one Ethernet address. We make |
| * it unique by setting a few bits in the upper byte of the |
| * non-static part of the address. |
| */ |
| eap = (unsigned char *)&(ep->fen_paddrh); |
| for (i=5; i>=0; i--) { |
| |
| /* |
| * The EP8260 only uses FCC3, so we can safely give it the real |
| * MAC address. |
| */ |
| #ifdef CONFIG_SBC82xx |
| if (i == 5) { |
| /* bd->bi_enetaddr holds the SCC0 address; the FCC |
| devices count up from there */ |
| dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3; |
| dev->dev_addr[i] += 1 + fip->fc_fccnum; |
| *eap++ = dev->dev_addr[i]; |
| } |
| #else |
| #ifndef CONFIG_RPX8260 |
| if (i == 3) { |
| dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum)); |
| *eap++ = dev->dev_addr[i]; |
| } else |
| #endif |
| { |
| *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| } |
| #endif |
| } |
| |
| ep->fen_taddrh = 0; |
| ep->fen_taddrm = 0; |
| ep->fen_taddrl = 0; |
| |
| ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */ |
| ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */ |
| |
| /* Clear stat counters, in case we ever enable RMON. |
| */ |
| ep->fen_octc = 0; |
| ep->fen_colc = 0; |
| ep->fen_broc = 0; |
| ep->fen_mulc = 0; |
| ep->fen_uspc = 0; |
| ep->fen_frgc = 0; |
| ep->fen_ospc = 0; |
| ep->fen_jbrc = 0; |
| ep->fen_p64c = 0; |
| ep->fen_p65c = 0; |
| ep->fen_p128c = 0; |
| ep->fen_p256c = 0; |
| ep->fen_p512c = 0; |
| ep->fen_p1024c = 0; |
| |
| ep->fen_rfthr = 0; /* Suggested by manual */ |
| ep->fen_rfcnt = 0; |
| ep->fen_cftype = 0; |
| |
| /* Now allocate the host memory pages and initialize the |
| * buffer descriptors. |
| */ |
| bdp = cep->tx_bd_base; |
| for (i=0; i<TX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| bdp->cbd_sc = 0; |
| bdp->cbd_datlen = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| bdp = cep->rx_bd_base; |
| for (i=0; i<FCC_ENET_RX_PAGES; i++) { |
| |
| /* Allocate a page. |
| */ |
| mem_addr = __get_free_page(GFP_KERNEL); |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| for (j=0; j<FCC_ENET_RX_FRPPG; j++) { |
| bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; |
| bdp->cbd_datlen = 0; |
| bdp->cbd_bufaddr = __pa(mem_addr); |
| mem_addr += FCC_ENET_RX_FRSIZE; |
| bdp++; |
| } |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* Let's re-initialize the channel now. We have to do it later |
| * than the manual describes because we have just now finished |
| * the BD initialization. |
| */ |
| cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, |
| CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| |
| cep->skb_cur = cep->skb_dirty = 0; |
| } |
| |
| /* Let 'er rip. |
| */ |
| static void __init |
| init_fcc_startup(fcc_info_t *fip, struct net_device *dev) |
| { |
| volatile fcc_t *fccp; |
| struct fcc_enet_private *cep; |
| |
| cep = (struct fcc_enet_private *)(dev->priv); |
| fccp = cep->fccp; |
| |
| #ifdef CONFIG_RPX8260 |
| #ifdef PHY_INTERRUPT |
| /* Route PHY interrupt to IRQ. The following code only works for |
| * IRQ1 - IRQ7. It does not work for Port C interrupts. |
| */ |
| *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK; |
| *((volatile u_char *) (RPX_CSR_ADDR + 13)) |= |
| ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4); |
| #endif |
| /* Initialize MDIO pins. */ |
| *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC; |
| *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= |
| BCSR4_MII_READ | BCSR4_MII_MDIO; |
| /* Enable external LXT971 PHY. */ |
| *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY; |
| udelay(1000); |
| *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII; |
| udelay(1000); |
| #endif /* ifdef CONFIG_RPX8260 */ |
| |
| fccp->fcc_fcce = 0xffff; /* Clear any pending events */ |
| |
| /* Leave FCC interrupts masked for now. Will be unmasked by |
| * fcc_restart(). |
| */ |
| fccp->fcc_fccm = 0; |
| |
| /* Install our interrupt handler. |
| */ |
| if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet", |
| dev) < 0) |
| printk("Can't get FCC IRQ %d\n", fip->fc_interrupt); |
| |
| #ifdef PHY_INTERRUPT |
| /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is |
| * on Port C. |
| */ |
| ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |= |
| (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1))); |
| |
| if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, |
| "mii", dev) < 0) |
| printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT); |
| #endif /* PHY_INTERRUPT */ |
| |
| /* Set GFMR to enable Ethernet operating mode. |
| */ |
| fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); |
| |
| /* Set sync/delimiters. |
| */ |
| fccp->fcc_fdsr = 0xd555; |
| |
| /* Set protocol specific processing mode for Ethernet. |
| * This has to be adjusted for Full Duplex operation after we can |
| * determine how to detect that. |
| */ |
| fccp->fcc_fpsmr = FCC_PSMR_ENCRC; |
| |
| #ifdef CONFIG_PQ2ADS |
| /* Enable the PHY. */ |
| *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN; |
| *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST; |
| #endif |
| #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS) |
| /* Enable the 2nd PHY. */ |
| *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2; |
| *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST; |
| #endif |
| |
| #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260) |
| /* start in full duplex mode, and negotiate speed |
| */ |
| fcc_restart (dev, 1); |
| #else |
| /* start in half duplex mode |
| */ |
| fcc_restart (dev, 0); |
| #endif |
| } |
| |
| #ifdef CONFIG_USE_MDIO |
| /* MII command/status interface. |
| * I'm not going to describe all of the details. You can find the |
| * protocol definition in many other places, including the data sheet |
| * of most PHY parts. |
| * I wonder what "they" were thinking (maybe weren't) when they leave |
| * the I2C in the CPM but I have to toggle these bits...... |
| */ |
| #ifdef CONFIG_RPX8260 |
| /* The EP8260 has the MDIO pins in a BCSR instead of on Port C |
| * like most other boards. |
| */ |
| #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4)) |
| #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ |
| #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO |
| #define OUT_MDIO(bit) \ |
| if (bit) \ |
| *MDIO_ADDR |= BCSR4_MII_MDIO; \ |
| else \ |
| *MDIO_ADDR &= ~BCSR4_MII_MDIO; |
| #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO) |
| #define OUT_MDC(bit) \ |
| if (bit) \ |
| *MDIO_ADDR |= BCSR4_MII_MDC; \ |
| else \ |
| *MDIO_ADDR &= ~BCSR4_MII_MDC; |
| #else /* ifdef CONFIG_RPX8260 */ |
| /* This is for the usual case where the MDIO pins are on Port C. |
| */ |
| #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport) |
| #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio |
| #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio |
| #define OUT_MDIO(bit) \ |
| if (bit) \ |
| MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \ |
| else \ |
| MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio; |
| #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio) |
| #define OUT_MDC(bit) \ |
| if (bit) \ |
| MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \ |
| else \ |
| MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck; |
| #endif /* ifdef CONFIG_RPX8260 */ |
| |
| static uint |
| mii_send_receive(fcc_info_t *fip, uint cmd) |
| { |
| uint retval; |
| int read_op, i, off; |
| const int us = 1; |
| |
| read_op = ((cmd & 0xf0000000) == 0x60000000); |
| |
| /* Write preamble |
| */ |
| OUT_MDIO(1); |
| MAKE_MDIO_OUTPUT; |
| OUT_MDIO(1); |
| for (i = 0; i < 32; i++) |
| { |
| udelay(us); |
| OUT_MDC(1); |
| udelay(us); |
| OUT_MDC(0); |
| } |
| |
| /* Write data |
| */ |
| for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off) |
| { |
| OUT_MDIO((cmd >> off) & 0x00000001); |
| udelay(us); |
| OUT_MDC(1); |
| udelay(us); |
| OUT_MDC(0); |
| } |
| |
| retval = cmd; |
| |
| if (read_op) |
| { |
| retval >>= 16; |
| |
| MAKE_MDIO_INPUT; |
| udelay(us); |
| OUT_MDC(1); |
| udelay(us); |
| OUT_MDC(0); |
| |
| for (i = 0; i < 16; i++) |
| { |
| udelay(us); |
| OUT_MDC(1); |
| udelay(us); |
| retval <<= 1; |
| if (IN_MDIO) |
| retval++; |
| OUT_MDC(0); |
| } |
| } |
| |
| MAKE_MDIO_INPUT; |
| udelay(us); |
| OUT_MDC(1); |
| udelay(us); |
| OUT_MDC(0); |
| |
| return retval; |
| } |
| #endif /* CONFIG_USE_MDIO */ |
| |
| static void |
| fcc_stop(struct net_device *dev) |
| { |
| struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv); |
| volatile fcc_t *fccp = fep->fccp; |
| fcc_info_t *fip = fep->fip; |
| volatile fcc_enet_t *ep = fep->ep; |
| volatile cpm_cpm2_t *cp = cpmp; |
| volatile cbd_t *bdp; |
| int i; |
| |
| if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0) |
| return; /* already down */ |
| |
| fccp->fcc_fccm = 0; |
| |
| /* issue the graceful stop tx command */ |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, |
| 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| |
| /* Disable transmit/receive */ |
| fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); |
| |
| /* issue the restart tx command */ |
| fccp->fcc_fcce = FCC_ENET_GRA; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, |
| 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| |
| /* free tx buffers */ |
| fep->skb_cur = fep->skb_dirty = 0; |
| for (i=0; i<=TX_RING_MOD_MASK; i++) { |
| if (fep->tx_skbuff[i] != NULL) { |
| dev_kfree_skb(fep->tx_skbuff[i]); |
| fep->tx_skbuff[i] = NULL; |
| } |
| } |
| fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| fep->tx_free = TX_RING_SIZE; |
| ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase; |
| |
| /* Initialize the tx buffer descriptors. */ |
| bdp = fep->tx_bd_base; |
| for (i=0; i<TX_RING_SIZE; i++) { |
| bdp->cbd_sc = 0; |
| bdp->cbd_datlen = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| /* Set the last buffer to wrap. */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| } |
| |
| static void |
| fcc_restart(struct net_device *dev, int duplex) |
| { |
| struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv); |
| volatile fcc_t *fccp = fep->fccp; |
| |
| /* stop any transmissions in progress */ |
| fcc_stop(dev); |
| |
| if (duplex) |
| fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB; |
| else |
| fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB); |
| |
| /* Enable interrupts for transmit error, complete frame |
| * received, and any transmit buffer we have also set the |
| * interrupt flag. |
| */ |
| fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); |
| |
| /* Enable transmit/receive */ |
| fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT; |
| } |
| |
| static int |
| fcc_enet_open(struct net_device *dev) |
| { |
| struct fcc_enet_private *fep = dev->priv; |
| |
| #ifdef CONFIG_USE_MDIO |
| fep->sequence_done = 0; |
| fep->link = 0; |
| |
| if (fep->phy) { |
| fcc_restart(dev, 0); /* always start in half-duplex */ |
| mii_do_cmd(dev, fep->phy->ack_int); |
| mii_do_cmd(dev, fep->phy->config); |
| mii_do_cmd(dev, phy_cmd_config); /* display configuration */ |
| while(!fep->sequence_done) |
| schedule(); |
| |
| mii_do_cmd(dev, fep->phy->startup); |
| netif_start_queue(dev); |
| return 0; /* Success */ |
| } |
| return -ENODEV; /* No PHY we understand */ |
| #else |
| fep->link = 1; |
| fcc_restart(dev, 0); /* always start in half-duplex */ |
| netif_start_queue(dev); |
| return 0; /* Always succeed */ |
| #endif /* CONFIG_USE_MDIO */ |
| } |
| |