| /* |
| * Copyright (c) International Business Machines Corp., 2006 |
| * Copyright (c) Nokia Corporation, 2006, 2007 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| * the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Author: Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * UBI input/output sub-system. |
| * |
| * This sub-system provides a uniform way to work with all kinds of the |
| * underlying MTD devices. It also implements handy functions for reading and |
| * writing UBI headers. |
| * |
| * We are trying to have a paranoid mindset and not to trust to what we read |
| * from the flash media in order to be more secure and robust. So this |
| * sub-system validates every single header it reads from the flash media. |
| * |
| * Some words about how the eraseblock headers are stored. |
| * |
| * The erase counter header is always stored at offset zero. By default, the |
| * VID header is stored after the EC header at the closest aligned offset |
| * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID |
| * header at the closest aligned offset. But this default layout may be |
| * changed. For example, for different reasons (e.g., optimization) UBI may be |
| * asked to put the VID header at further offset, and even at an unaligned |
| * offset. Of course, if the offset of the VID header is unaligned, UBI adds |
| * proper padding in front of it. Data offset may also be changed but it has to |
| * be aligned. |
| * |
| * About minimal I/O units. In general, UBI assumes flash device model where |
| * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, |
| * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the |
| * @ubi->mtd->writesize field. But as an exception, UBI admits of using another |
| * (smaller) minimal I/O unit size for EC and VID headers to make it possible |
| * to do different optimizations. |
| * |
| * This is extremely useful in case of NAND flashes which admit of several |
| * write operations to one NAND page. In this case UBI can fit EC and VID |
| * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal |
| * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still |
| * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI |
| * users. |
| * |
| * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so |
| * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID |
| * headers. |
| * |
| * Q: why not just to treat sub-page as a minimal I/O unit of this flash |
| * device, e.g., make @ubi->min_io_size = 512 in the example above? |
| * |
| * A: because when writing a sub-page, MTD still writes a full 2K page but the |
| * bytes which are not relevant to the sub-page are 0xFF. So, basically, |
| * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. |
| * Thus, we prefer to use sub-pages only for EC and VID headers. |
| * |
| * As it was noted above, the VID header may start at a non-aligned offset. |
| * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, |
| * the VID header may reside at offset 1984 which is the last 64 bytes of the |
| * last sub-page (EC header is always at offset zero). This causes some |
| * difficulties when reading and writing VID headers. |
| * |
| * Suppose we have a 64-byte buffer and we read a VID header at it. We change |
| * the data and want to write this VID header out. As we can only write in |
| * 512-byte chunks, we have to allocate one more buffer and copy our VID header |
| * to offset 448 of this buffer. |
| * |
| * The I/O sub-system does the following trick in order to avoid this extra |
| * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID |
| * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. |
| * When the VID header is being written out, it shifts the VID header pointer |
| * back and writes the whole sub-page. |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include "ubi.h" |
| |
| static int self_check_not_bad(const struct ubi_device *ubi, int pnum); |
| static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); |
| static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| const struct ubi_ec_hdr *ec_hdr); |
| static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); |
| static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| const struct ubi_vid_hdr *vid_hdr); |
| static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, |
| int offset, int len); |
| |
| /** |
| * ubi_io_read - read data from a physical eraseblock. |
| * @ubi: UBI device description object |
| * @buf: buffer where to store the read data |
| * @pnum: physical eraseblock number to read from |
| * @offset: offset within the physical eraseblock from where to read |
| * @len: how many bytes to read |
| * |
| * This function reads data from offset @offset of physical eraseblock @pnum |
| * and stores the read data in the @buf buffer. The following return codes are |
| * possible: |
| * |
| * o %0 if all the requested data were successfully read; |
| * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but |
| * correctable bit-flips were detected; this is harmless but may indicate |
| * that this eraseblock may become bad soon (but do not have to); |
| * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for |
| * example it can be an ECC error in case of NAND; this most probably means |
| * that the data is corrupted; |
| * o %-EIO if some I/O error occurred; |
| * o other negative error codes in case of other errors. |
| */ |
| int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, |
| int len) |
| { |
| int err, retries = 0; |
| size_t read; |
| loff_t addr; |
| |
| dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); |
| |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| ubi_assert(len > 0); |
| |
| err = self_check_not_bad(ubi, pnum); |
| if (err) |
| return err; |
| |
| /* |
| * Deliberately corrupt the buffer to improve robustness. Indeed, if we |
| * do not do this, the following may happen: |
| * 1. The buffer contains data from previous operation, e.g., read from |
| * another PEB previously. The data looks like expected, e.g., if we |
| * just do not read anything and return - the caller would not |
| * notice this. E.g., if we are reading a VID header, the buffer may |
| * contain a valid VID header from another PEB. |
| * 2. The driver is buggy and returns us success or -EBADMSG or |
| * -EUCLEAN, but it does not actually put any data to the buffer. |
| * |
| * This may confuse UBI or upper layers - they may think the buffer |
| * contains valid data while in fact it is just old data. This is |
| * especially possible because UBI (and UBIFS) relies on CRC, and |
| * treats data as correct even in case of ECC errors if the CRC is |
| * correct. |
| * |
| * Try to prevent this situation by changing the first byte of the |
| * buffer. |
| */ |
| *((uint8_t *)buf) ^= 0xFF; |
| |
| addr = (loff_t)pnum * ubi->peb_size + offset; |
| retry: |
| err = mtd_read(ubi->mtd, addr, len, &read, buf); |
| if (err) { |
| const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; |
| |
| if (mtd_is_bitflip(err)) { |
| /* |
| * -EUCLEAN is reported if there was a bit-flip which |
| * was corrected, so this is harmless. |
| * |
| * We do not report about it here unless debugging is |
| * enabled. A corresponding message will be printed |
| * later, when it is has been scrubbed. |
| */ |
| ubi_msg("fixable bit-flip detected at PEB %d", pnum); |
| ubi_assert(len == read); |
| return UBI_IO_BITFLIPS; |
| } |
| |
| if (retries++ < UBI_IO_RETRIES) { |
| ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", |
| err, errstr, len, pnum, offset, read); |
| yield(); |
| goto retry; |
| } |
| |
| ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", |
| err, errstr, len, pnum, offset, read); |
| dump_stack(); |
| |
| /* |
| * The driver should never return -EBADMSG if it failed to read |
| * all the requested data. But some buggy drivers might do |
| * this, so we change it to -EIO. |
| */ |
| if (read != len && mtd_is_eccerr(err)) { |
| ubi_assert(0); |
| err = -EIO; |
| } |
| } else { |
| ubi_assert(len == read); |
| |
| if (ubi_dbg_is_bitflip(ubi)) { |
| dbg_gen("bit-flip (emulated)"); |
| err = UBI_IO_BITFLIPS; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * ubi_io_write - write data to a physical eraseblock. |
| * @ubi: UBI device description object |
| * @buf: buffer with the data to write |
| * @pnum: physical eraseblock number to write to |
| * @offset: offset within the physical eraseblock where to write |
| * @len: how many bytes to write |
| * |
| * This function writes @len bytes of data from buffer @buf to offset @offset |
| * of physical eraseblock @pnum. If all the data were successfully written, |
| * zero is returned. If an error occurred, this function returns a negative |
| * error code. If %-EIO is returned, the physical eraseblock most probably went |
| * bad. |
| * |
| * Note, in case of an error, it is possible that something was still written |
| * to the flash media, but may be some garbage. |
| */ |
| int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, |
| int len) |
| { |
| int err; |
| size_t written; |
| loff_t addr; |
| |
| dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); |
| |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| ubi_assert(offset % ubi->hdrs_min_io_size == 0); |
| ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); |
| |
| if (ubi->ro_mode) { |
| ubi_err("read-only mode"); |
| return -EROFS; |
| } |
| |
| err = self_check_not_bad(ubi, pnum); |
| if (err) |
| return err; |
| |
| /* The area we are writing to has to contain all 0xFF bytes */ |
| err = ubi_self_check_all_ff(ubi, pnum, offset, len); |
| if (err) |
| return err; |
| |
| if (offset >= ubi->leb_start) { |
| /* |
| * We write to the data area of the physical eraseblock. Make |
| * sure it has valid EC and VID headers. |
| */ |
| err = self_check_peb_ec_hdr(ubi, pnum); |
| if (err) |
| return err; |
| err = self_check_peb_vid_hdr(ubi, pnum); |
| if (err) |
| return err; |
| } |
| |
| if (ubi_dbg_is_write_failure(ubi)) { |
| ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", |
| len, pnum, offset); |
| dump_stack(); |
| return -EIO; |
| } |
| |
| addr = (loff_t)pnum * ubi->peb_size + offset; |
| err = mtd_write(ubi->mtd, addr, len, &written, buf); |
| if (err) { |
| ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", |
| err, len, pnum, offset, written); |
| dump_stack(); |
| ubi_dump_flash(ubi, pnum, offset, len); |
| } else |
| ubi_assert(written == len); |
| |
| if (!err) { |
| err = self_check_write(ubi, buf, pnum, offset, len); |
| if (err) |
| return err; |
| |
| /* |
| * Since we always write sequentially, the rest of the PEB has |
| * to contain only 0xFF bytes. |
| */ |
| offset += len; |
| len = ubi->peb_size - offset; |
| if (len) |
| err = ubi_self_check_all_ff(ubi, pnum, offset, len); |
| } |
| |
| return err; |
| } |
| |
| /** |
| * erase_callback - MTD erasure call-back. |
| * @ei: MTD erase information object. |
| * |
| * Note, even though MTD erase interface is asynchronous, all the current |
| * implementations are synchronous anyway. |
| */ |
| static void erase_callback(struct erase_info *ei) |
| { |
| wake_up_interruptible((wait_queue_head_t *)ei->priv); |
| } |
| |
| /** |
| * do_sync_erase - synchronously erase a physical eraseblock. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to erase |
| * |
| * This function synchronously erases physical eraseblock @pnum and returns |
| * zero in case of success and a negative error code in case of failure. If |
| * %-EIO is returned, the physical eraseblock most probably went bad. |
| */ |
| static int do_sync_erase(struct ubi_device *ubi, int pnum) |
| { |
| int err, retries = 0; |
| struct erase_info ei; |
| wait_queue_head_t wq; |
| |
| dbg_io("erase PEB %d", pnum); |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| if (ubi->ro_mode) { |
| ubi_err("read-only mode"); |
| return -EROFS; |
| } |
| |
| retry: |
| init_waitqueue_head(&wq); |
| memset(&ei, 0, sizeof(struct erase_info)); |
| |
| ei.mtd = ubi->mtd; |
| ei.addr = (loff_t)pnum * ubi->peb_size; |
| ei.len = ubi->peb_size; |
| ei.callback = erase_callback; |
| ei.priv = (unsigned long)&wq; |
| |
| err = mtd_erase(ubi->mtd, &ei); |
| if (err) { |
| if (retries++ < UBI_IO_RETRIES) { |
| ubi_warn("error %d while erasing PEB %d, retry", |
| err, pnum); |
| yield(); |
| goto retry; |
| } |
| ubi_err("cannot erase PEB %d, error %d", pnum, err); |
| dump_stack(); |
| return err; |
| } |
| |
| err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || |
| ei.state == MTD_ERASE_FAILED); |
| if (err) { |
| ubi_err("interrupted PEB %d erasure", pnum); |
| return -EINTR; |
| } |
| |
| if (ei.state == MTD_ERASE_FAILED) { |
| if (retries++ < UBI_IO_RETRIES) { |
| ubi_warn("error while erasing PEB %d, retry", pnum); |
| yield(); |
| goto retry; |
| } |
| ubi_err("cannot erase PEB %d", pnum); |
| dump_stack(); |
| return -EIO; |
| } |
| |
| err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); |
| if (err) |
| return err; |
| |
| if (ubi_dbg_is_erase_failure(ubi)) { |
| ubi_err("cannot erase PEB %d (emulated)", pnum); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Patterns to write to a physical eraseblock when torturing it */ |
| static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; |
| |
| /** |
| * torture_peb - test a supposedly bad physical eraseblock. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to test |
| * |
| * This function returns %-EIO if the physical eraseblock did not pass the |
| * test, a positive number of erase operations done if the test was |
| * successfully passed, and other negative error codes in case of other errors. |
| */ |
| static int torture_peb(struct ubi_device *ubi, int pnum) |
| { |
| int err, i, patt_count; |
| |
| ubi_msg("run torture test for PEB %d", pnum); |
| patt_count = ARRAY_SIZE(patterns); |
| ubi_assert(patt_count > 0); |
| |
| mutex_lock(&ubi->buf_mutex); |
| for (i = 0; i < patt_count; i++) { |
| err = do_sync_erase(ubi, pnum); |
| if (err) |
| goto out; |
| |
| /* Make sure the PEB contains only 0xFF bytes */ |
| err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| if (err) |
| goto out; |
| |
| err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); |
| if (err == 0) { |
| ubi_err("erased PEB %d, but a non-0xFF byte found", |
| pnum); |
| err = -EIO; |
| goto out; |
| } |
| |
| /* Write a pattern and check it */ |
| memset(ubi->peb_buf, patterns[i], ubi->peb_size); |
| err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| if (err) |
| goto out; |
| |
| memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); |
| err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| if (err) |
| goto out; |
| |
| err = ubi_check_pattern(ubi->peb_buf, patterns[i], |
| ubi->peb_size); |
| if (err == 0) { |
| ubi_err("pattern %x checking failed for PEB %d", |
| patterns[i], pnum); |
| err = -EIO; |
| goto out; |
| } |
| } |
| |
| err = patt_count; |
| ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); |
| |
| out: |
| mutex_unlock(&ubi->buf_mutex); |
| if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { |
| /* |
| * If a bit-flip or data integrity error was detected, the test |
| * has not passed because it happened on a freshly erased |
| * physical eraseblock which means something is wrong with it. |
| */ |
| ubi_err("read problems on freshly erased PEB %d, must be bad", |
| pnum); |
| err = -EIO; |
| } |
| return err; |
| } |
| |
| /** |
| * nor_erase_prepare - prepare a NOR flash PEB for erasure. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number to prepare |
| * |
| * NOR flash, or at least some of them, have peculiar embedded PEB erasure |
| * algorithm: the PEB is first filled with zeroes, then it is erased. And |
| * filling with zeroes starts from the end of the PEB. This was observed with |
| * Spansion S29GL512N NOR flash. |
| * |
| * This means that in case of a power cut we may end up with intact data at the |
| * beginning of the PEB, and all zeroes at the end of PEB. In other words, the |
| * EC and VID headers are OK, but a large chunk of data at the end of PEB is |
| * zeroed. This makes UBI mistakenly treat this PEB as used and associate it |
| * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). |
| * |
| * This function is called before erasing NOR PEBs and it zeroes out EC and VID |
| * magic numbers in order to invalidate them and prevent the failures. Returns |
| * zero in case of success and a negative error code in case of failure. |
| */ |
| static int nor_erase_prepare(struct ubi_device *ubi, int pnum) |
| { |
| int err, err1; |
| size_t written; |
| loff_t addr; |
| uint32_t data = 0; |
| /* |
| * Note, we cannot generally define VID header buffers on stack, |
| * because of the way we deal with these buffers (see the header |
| * comment in this file). But we know this is a NOR-specific piece of |
| * code, so we can do this. But yes, this is error-prone and we should |
| * (pre-)allocate VID header buffer instead. |
| */ |
| struct ubi_vid_hdr vid_hdr; |
| |
| /* |
| * It is important to first invalidate the EC header, and then the VID |
| * header. Otherwise a power cut may lead to valid EC header and |
| * invalid VID header, in which case UBI will treat this PEB as |
| * corrupted and will try to preserve it, and print scary warnings. |
| */ |
| addr = (loff_t)pnum * ubi->peb_size; |
| err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
| if (!err) { |
| addr += ubi->vid_hdr_aloffset; |
| err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
| if (!err) |
| return 0; |
| } |
| |
| /* |
| * We failed to write to the media. This was observed with Spansion |
| * S29GL512N NOR flash. Most probably the previously eraseblock erasure |
| * was interrupted at a very inappropriate moment, so it became |
| * unwritable. In this case we probably anyway have garbage in this |
| * PEB. |
| */ |
| err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); |
| if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
| err1 == UBI_IO_FF) { |
| struct ubi_ec_hdr ec_hdr; |
| |
| err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); |
| if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
| err1 == UBI_IO_FF) |
| /* |
| * Both VID and EC headers are corrupted, so we can |
| * safely erase this PEB and not afraid that it will be |
| * treated as a valid PEB in case of an unclean reboot. |
| */ |
| return 0; |
| } |
| |
| /* |
| * The PEB contains a valid VID header, but we cannot invalidate it. |
| * Supposedly the flash media or the driver is screwed up, so return an |
| * error. |
| */ |
| ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", |
| pnum, err, err1); |
| ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); |
| return -EIO; |
| } |
| |
| /** |
| * ubi_io_sync_erase - synchronously erase a physical eraseblock. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number to erase |
| * @torture: if this physical eraseblock has to be tortured |
| * |
| * This function synchronously erases physical eraseblock @pnum. If @torture |
| * flag is not zero, the physical eraseblock is checked by means of writing |
| * different patterns to it and reading them back. If the torturing is enabled, |
| * the physical eraseblock is erased more than once. |
| * |
| * This function returns the number of erasures made in case of success, %-EIO |
| * if the erasure failed or the torturing test failed, and other negative error |
| * codes in case of other errors. Note, %-EIO means that the physical |
| * eraseblock is bad. |
| */ |
| int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) |
| { |
| int err, ret = 0; |
| |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| err = self_check_not_bad(ubi, pnum); |
| if (err != 0) |
| return err; |
| |
| if (ubi->ro_mode) { |
| ubi_err("read-only mode"); |
| return -EROFS; |
| } |
| |
| if (ubi->nor_flash) { |
| err = nor_erase_prepare(ubi, pnum); |
| if (err) |
| return err; |
| } |
| |
| if (torture) { |
| ret = torture_peb(ubi, pnum); |
| if (ret < 0) |
| return ret; |
| } |
| |
| err = do_sync_erase(ubi, pnum); |
| if (err) |
| return err; |
| |
| return ret + 1; |
| } |
| |
| /** |
| * ubi_io_is_bad - check if a physical eraseblock is bad. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to check |
| * |
| * This function returns a positive number if the physical eraseblock is bad, |
| * zero if not, and a negative error code if an error occurred. |
| */ |
| int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) |
| { |
| struct mtd_info *mtd = ubi->mtd; |
| |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| if (ubi->bad_allowed) { |
| int ret; |
| |
| ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); |
| if (ret < 0) |
| ubi_err("error %d while checking if PEB %d is bad", |
| ret, pnum); |
| else if (ret) |
| dbg_io("PEB %d is bad", pnum); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubi_io_mark_bad - mark a physical eraseblock as bad. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to mark |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) |
| { |
| int err; |
| struct mtd_info *mtd = ubi->mtd; |
| |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| if (ubi->ro_mode) { |
| ubi_err("read-only mode"); |
| return -EROFS; |
| } |
| |
| if (!ubi->bad_allowed) |
| return 0; |
| |
| err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); |
| if (err) |
| ubi_err("cannot mark PEB %d bad, error %d", pnum, err); |
| return err; |
| } |
| |
| /** |
| * validate_ec_hdr - validate an erase counter header. |
| * @ubi: UBI device description object |
| * @ec_hdr: the erase counter header to check |
| * |
| * This function returns zero if the erase counter header is OK, and %1 if |
| * not. |
| */ |
| static int validate_ec_hdr(const struct ubi_device *ubi, |
| const struct ubi_ec_hdr *ec_hdr) |
| { |
| long long ec; |
| int vid_hdr_offset, leb_start; |
| |
| ec = be64_to_cpu(ec_hdr->ec); |
| vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); |
| leb_start = be32_to_cpu(ec_hdr->data_offset); |
| |
| if (ec_hdr->version != UBI_VERSION) { |
| ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", |
| UBI_VERSION, (int)ec_hdr->version); |
| goto bad; |
| } |
| |
| if (vid_hdr_offset != ubi->vid_hdr_offset) { |
| ubi_err("bad VID header offset %d, expected %d", |
| vid_hdr_offset, ubi->vid_hdr_offset); |
| goto bad; |
| } |
| |
| if (leb_start != ubi->leb_start) { |
| ubi_err("bad data offset %d, expected %d", |
| leb_start, ubi->leb_start); |
| goto bad; |
| } |
| |
| if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { |
| ubi_err("bad erase counter %lld", ec); |
| goto bad; |
| } |
| |
| return 0; |
| |
| bad: |
| ubi_err("bad EC header"); |
| ubi_dump_ec_hdr(ec_hdr); |
| dump_stack(); |
| return 1; |
| } |
| |
| /** |
| * ubi_io_read_ec_hdr - read and check an erase counter header. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock to read from |
| * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter |
| * header |
| * @verbose: be verbose if the header is corrupted or was not found |
| * |
| * This function reads erase counter header from physical eraseblock @pnum and |
| * stores it in @ec_hdr. This function also checks CRC checksum of the read |
| * erase counter header. The following codes may be returned: |
| * |
| * o %0 if the CRC checksum is correct and the header was successfully read; |
| * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected |
| * and corrected by the flash driver; this is harmless but may indicate that |
| * this eraseblock may become bad soon (but may be not); |
| * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); |
| * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was |
| * a data integrity error (uncorrectable ECC error in case of NAND); |
| * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) |
| * o a negative error code in case of failure. |
| */ |
| int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, |
| struct ubi_ec_hdr *ec_hdr, int verbose) |
| { |
| int err, read_err; |
| uint32_t crc, magic, hdr_crc; |
| |
| dbg_io("read EC header from PEB %d", pnum); |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| if (read_err) { |
| if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
| return read_err; |
| |
| /* |
| * We read all the data, but either a correctable bit-flip |
| * occurred, or MTD reported a data integrity error |
| * (uncorrectable ECC error in case of NAND). The former is |
| * harmless, the later may mean that the read data is |
| * corrupted. But we have a CRC check-sum and we will detect |
| * this. If the EC header is still OK, we just report this as |
| * there was a bit-flip, to force scrubbing. |
| */ |
| } |
| |
| magic = be32_to_cpu(ec_hdr->magic); |
| if (magic != UBI_EC_HDR_MAGIC) { |
| if (mtd_is_eccerr(read_err)) |
| return UBI_IO_BAD_HDR_EBADMSG; |
| |
| /* |
| * The magic field is wrong. Let's check if we have read all |
| * 0xFF. If yes, this physical eraseblock is assumed to be |
| * empty. |
| */ |
| if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { |
| /* The physical eraseblock is supposedly empty */ |
| if (verbose) |
| ubi_warn("no EC header found at PEB %d, only 0xFF bytes", |
| pnum); |
| dbg_bld("no EC header found at PEB %d, only 0xFF bytes", |
| pnum); |
| if (!read_err) |
| return UBI_IO_FF; |
| else |
| return UBI_IO_FF_BITFLIPS; |
| } |
| |
| /* |
| * This is not a valid erase counter header, and these are not |
| * 0xFF bytes. Report that the header is corrupted. |
| */ |
| if (verbose) { |
| ubi_warn("bad magic number at PEB %d: %08x instead of %08x", |
| pnum, magic, UBI_EC_HDR_MAGIC); |
| ubi_dump_ec_hdr(ec_hdr); |
| } |
| dbg_bld("bad magic number at PEB %d: %08x instead of %08x", |
| pnum, magic, UBI_EC_HDR_MAGIC); |
| return UBI_IO_BAD_HDR; |
| } |
| |
| crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| |
| if (hdr_crc != crc) { |
| if (verbose) { |
| ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", |
| pnum, crc, hdr_crc); |
| ubi_dump_ec_hdr(ec_hdr); |
| } |
| dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", |
| pnum, crc, hdr_crc); |
| |
| if (!read_err) |
| return UBI_IO_BAD_HDR; |
| else |
| return UBI_IO_BAD_HDR_EBADMSG; |
| } |
| |
| /* And of course validate what has just been read from the media */ |
| err = validate_ec_hdr(ubi, ec_hdr); |
| if (err) { |
| ubi_err("validation failed for PEB %d", pnum); |
| return -EINVAL; |
| } |
| |
| /* |
| * If there was %-EBADMSG, but the header CRC is still OK, report about |
| * a bit-flip to force scrubbing on this PEB. |
| */ |
| return read_err ? UBI_IO_BITFLIPS : 0; |
| } |
| |
| /** |
| * ubi_io_write_ec_hdr - write an erase counter header. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock to write to |
| * @ec_hdr: the erase counter header to write |
| * |
| * This function writes erase counter header described by @ec_hdr to physical |
| * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so |
| * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec |
| * field. |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. If %-EIO is returned, the physical eraseblock most probably |
| * went bad. |
| */ |
| int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, |
| struct ubi_ec_hdr *ec_hdr) |
| { |
| int err; |
| uint32_t crc; |
| |
| dbg_io("write EC header to PEB %d", pnum); |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); |
| ec_hdr->version = UBI_VERSION; |
| ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); |
| ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); |
| ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); |
| crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| ec_hdr->hdr_crc = cpu_to_be32(crc); |
| |
| err = self_check_ec_hdr(ubi, pnum, ec_hdr); |
| if (err) |
| return err; |
| |
| err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); |
| return err; |
| } |
| |
| /** |
| * validate_vid_hdr - validate a volume identifier header. |
| * @ubi: UBI device description object |
| * @vid_hdr: the volume identifier header to check |
| * |
| * This function checks that data stored in the volume identifier header |
| * @vid_hdr. Returns zero if the VID header is OK and %1 if not. |
| */ |
| static int validate_vid_hdr(const struct ubi_device *ubi, |
| const struct ubi_vid_hdr *vid_hdr) |
| { |
| int vol_type = vid_hdr->vol_type; |
| int copy_flag = vid_hdr->copy_flag; |
| int vol_id = be32_to_cpu(vid_hdr->vol_id); |
| int lnum = be32_to_cpu(vid_hdr->lnum); |
| int compat = vid_hdr->compat; |
| int data_size = be32_to_cpu(vid_hdr->data_size); |
| int used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
| int data_pad = be32_to_cpu(vid_hdr->data_pad); |
| int data_crc = be32_to_cpu(vid_hdr->data_crc); |
| int usable_leb_size = ubi->leb_size - data_pad; |
| |
| if (copy_flag != 0 && copy_flag != 1) { |
| ubi_err("bad copy_flag"); |
| goto bad; |
| } |
| |
| if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || |
| data_pad < 0) { |
| ubi_err("negative values"); |
| goto bad; |
| } |
| |
| if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { |
| ubi_err("bad vol_id"); |
| goto bad; |
| } |
| |
| if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { |
| ubi_err("bad compat"); |
| goto bad; |
| } |
| |
| if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && |
| compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && |
| compat != UBI_COMPAT_REJECT) { |
| ubi_err("bad compat"); |
| goto bad; |
| } |
| |
| if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { |
| ubi_err("bad vol_type"); |
| goto bad; |
| } |
| |
| if (data_pad >= ubi->leb_size / 2) { |
| ubi_err("bad data_pad"); |
| goto bad; |
| } |
| |
| if (vol_type == UBI_VID_STATIC) { |
| /* |
| * Although from high-level point of view static volumes may |
| * contain zero bytes of data, but no VID headers can contain |
| * zero at these fields, because they empty volumes do not have |
| * mapped logical eraseblocks. |
| */ |
| if (used_ebs == 0) { |
| ubi_err("zero used_ebs"); |
| goto bad; |
| } |
| if (data_size == 0) { |
| ubi_err("zero data_size"); |
| goto bad; |
| } |
| if (lnum < used_ebs - 1) { |
| if (data_size != usable_leb_size) { |
| ubi_err("bad data_size"); |
| goto bad; |
| } |
| } else if (lnum == used_ebs - 1) { |
| if (data_size == 0) { |
| ubi_err("bad data_size at last LEB"); |
| goto bad; |
| } |
| } else { |
| ubi_err("too high lnum"); |
| goto bad; |
| } |
| } else { |
| if (copy_flag == 0) { |
| if (data_crc != 0) { |
| ubi_err("non-zero data CRC"); |
| goto bad; |
| } |
| if (data_size != 0) { |
| ubi_err("non-zero data_size"); |
| goto bad; |
| } |
| } else { |
| if (data_size == 0) { |
| ubi_err("zero data_size of copy"); |
| goto bad; |
| } |
| } |
| if (used_ebs != 0) { |
| ubi_err("bad used_ebs"); |
| goto bad; |
| } |
| } |
| |
| return 0; |
| |
| bad: |
| ubi_err("bad VID header"); |
| ubi_dump_vid_hdr(vid_hdr); |
| dump_stack(); |
| return 1; |
| } |
| |
| /** |
| * ubi_io_read_vid_hdr - read and check a volume identifier header. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number to read from |
| * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume |
| * identifier header |
| * @verbose: be verbose if the header is corrupted or wasn't found |
| * |
| * This function reads the volume identifier header from physical eraseblock |
| * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read |
| * volume identifier header. The error codes are the same as in |
| * 'ubi_io_read_ec_hdr()'. |
| * |
| * Note, the implementation of this function is also very similar to |
| * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. |
| */ |
| int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, |
| struct ubi_vid_hdr *vid_hdr, int verbose) |
| { |
| int err, read_err; |
| uint32_t crc, magic, hdr_crc; |
| void *p; |
| |
| dbg_io("read VID header from PEB %d", pnum); |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| ubi->vid_hdr_alsize); |
| if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
| return read_err; |
| |
| magic = be32_to_cpu(vid_hdr->magic); |
| if (magic != UBI_VID_HDR_MAGIC) { |
| if (mtd_is_eccerr(read_err)) |
| return UBI_IO_BAD_HDR_EBADMSG; |
| |
| if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { |
| if (verbose) |
| ubi_warn("no VID header found at PEB %d, only 0xFF bytes", |
| pnum); |
| dbg_bld("no VID header found at PEB %d, only 0xFF bytes", |
| pnum); |
| if (!read_err) |
| return UBI_IO_FF; |
| else |
| return UBI_IO_FF_BITFLIPS; |
| } |
| |
| if (verbose) { |
| ubi_warn("bad magic number at PEB %d: %08x instead of %08x", |
| pnum, magic, UBI_VID_HDR_MAGIC); |
| ubi_dump_vid_hdr(vid_hdr); |
| } |
| dbg_bld("bad magic number at PEB %d: %08x instead of %08x", |
| pnum, magic, UBI_VID_HDR_MAGIC); |
| return UBI_IO_BAD_HDR; |
| } |
| |
| crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| |
| if (hdr_crc != crc) { |
| if (verbose) { |
| ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", |
| pnum, crc, hdr_crc); |
| ubi_dump_vid_hdr(vid_hdr); |
| } |
| dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", |
| pnum, crc, hdr_crc); |
| if (!read_err) |
| return UBI_IO_BAD_HDR; |
| else |
| return UBI_IO_BAD_HDR_EBADMSG; |
| } |
| |
| err = validate_vid_hdr(ubi, vid_hdr); |
| if (err) { |
| ubi_err("validation failed for PEB %d", pnum); |
| return -EINVAL; |
| } |
| |
| return read_err ? UBI_IO_BITFLIPS : 0; |
| } |
| |
| /** |
| * ubi_io_write_vid_hdr - write a volume identifier header. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to write to |
| * @vid_hdr: the volume identifier header to write |
| * |
| * This function writes the volume identifier header described by @vid_hdr to |
| * physical eraseblock @pnum. This function automatically fills the |
| * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates |
| * header CRC checksum and stores it at vid_hdr->hdr_crc. |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. If %-EIO is returned, the physical eraseblock probably went |
| * bad. |
| */ |
| int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, |
| struct ubi_vid_hdr *vid_hdr) |
| { |
| int err; |
| uint32_t crc; |
| void *p; |
| |
| dbg_io("write VID header to PEB %d", pnum); |
| ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| |
| err = self_check_peb_ec_hdr(ubi, pnum); |
| if (err) |
| return err; |
| |
| vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); |
| vid_hdr->version = UBI_VERSION; |
| crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| vid_hdr->hdr_crc = cpu_to_be32(crc); |
| |
| err = self_check_vid_hdr(ubi, pnum, vid_hdr); |
| if (err) |
| return err; |
| |
| p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| ubi->vid_hdr_alsize); |
| return err; |
| } |
| |
| /** |
| * self_check_not_bad - ensure that a physical eraseblock is not bad. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number to check |
| * |
| * This function returns zero if the physical eraseblock is good, %-EINVAL if |
| * it is bad and a negative error code if an error occurred. |
| */ |
| static int self_check_not_bad(const struct ubi_device *ubi, int pnum) |
| { |
| int err; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| err = ubi_io_is_bad(ubi, pnum); |
| if (!err) |
| return err; |
| |
| ubi_err("self-check failed for PEB %d", pnum); |
| dump_stack(); |
| return err > 0 ? -EINVAL : err; |
| } |
| |
| /** |
| * self_check_ec_hdr - check if an erase counter header is all right. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number the erase counter header belongs to |
| * @ec_hdr: the erase counter header to check |
| * |
| * This function returns zero if the erase counter header contains valid |
| * values, and %-EINVAL if not. |
| */ |
| static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| const struct ubi_ec_hdr *ec_hdr) |
| { |
| int err; |
| uint32_t magic; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| magic = be32_to_cpu(ec_hdr->magic); |
| if (magic != UBI_EC_HDR_MAGIC) { |
| ubi_err("bad magic %#08x, must be %#08x", |
| magic, UBI_EC_HDR_MAGIC); |
| goto fail; |
| } |
| |
| err = validate_ec_hdr(ubi, ec_hdr); |
| if (err) { |
| ubi_err("self-check failed for PEB %d", pnum); |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| ubi_dump_ec_hdr(ec_hdr); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| /** |
| * self_check_peb_ec_hdr - check erase counter header. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to check |
| * |
| * This function returns zero if the erase counter header is all right and and |
| * a negative error code if not or if an error occurred. |
| */ |
| static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) |
| { |
| int err; |
| uint32_t crc, hdr_crc; |
| struct ubi_ec_hdr *ec_hdr; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| if (!ec_hdr) |
| return -ENOMEM; |
| |
| err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
| goto exit; |
| |
| crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| if (hdr_crc != crc) { |
| ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); |
| ubi_err("self-check failed for PEB %d", pnum); |
| ubi_dump_ec_hdr(ec_hdr); |
| dump_stack(); |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| err = self_check_ec_hdr(ubi, pnum, ec_hdr); |
| |
| exit: |
| kfree(ec_hdr); |
| return err; |
| } |
| |
| /** |
| * self_check_vid_hdr - check that a volume identifier header is all right. |
| * @ubi: UBI device description object |
| * @pnum: physical eraseblock number the volume identifier header belongs to |
| * @vid_hdr: the volume identifier header to check |
| * |
| * This function returns zero if the volume identifier header is all right, and |
| * %-EINVAL if not. |
| */ |
| static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| const struct ubi_vid_hdr *vid_hdr) |
| { |
| int err; |
| uint32_t magic; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| magic = be32_to_cpu(vid_hdr->magic); |
| if (magic != UBI_VID_HDR_MAGIC) { |
| ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", |
| magic, pnum, UBI_VID_HDR_MAGIC); |
| goto fail; |
| } |
| |
| err = validate_vid_hdr(ubi, vid_hdr); |
| if (err) { |
| ubi_err("self-check failed for PEB %d", pnum); |
| goto fail; |
| } |
| |
| return err; |
| |
| fail: |
| ubi_err("self-check failed for PEB %d", pnum); |
| ubi_dump_vid_hdr(vid_hdr); |
| dump_stack(); |
| return -EINVAL; |
| |
| } |
| |
| /** |
| * self_check_peb_vid_hdr - check volume identifier header. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to check |
| * |
| * This function returns zero if the volume identifier header is all right, |
| * and a negative error code if not or if an error occurred. |
| */ |
| static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) |
| { |
| int err; |
| uint32_t crc, hdr_crc; |
| struct ubi_vid_hdr *vid_hdr; |
| void *p; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| if (!vid_hdr) |
| return -ENOMEM; |
| |
| p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| ubi->vid_hdr_alsize); |
| if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
| goto exit; |
| |
| crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); |
| hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| if (hdr_crc != crc) { |
| ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", |
| pnum, crc, hdr_crc); |
| ubi_err("self-check failed for PEB %d", pnum); |
| ubi_dump_vid_hdr(vid_hdr); |
| dump_stack(); |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| err = self_check_vid_hdr(ubi, pnum, vid_hdr); |
| |
| exit: |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| /** |
| * self_check_write - make sure write succeeded. |
| * @ubi: UBI device description object |
| * @buf: buffer with data which were written |
| * @pnum: physical eraseblock number the data were written to |
| * @offset: offset within the physical eraseblock the data were written to |
| * @len: how many bytes were written |
| * |
| * This functions reads data which were recently written and compares it with |
| * the original data buffer - the data have to match. Returns zero if the data |
| * match and a negative error code if not or in case of failure. |
| */ |
| static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, |
| int offset, int len) |
| { |
| int err, i; |
| size_t read; |
| void *buf1; |
| loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
| if (!buf1) { |
| ubi_err("cannot allocate memory to check writes"); |
| return 0; |
| } |
| |
| err = mtd_read(ubi->mtd, addr, len, &read, buf1); |
| if (err && !mtd_is_bitflip(err)) |
| goto out_free; |
| |
| for (i = 0; i < len; i++) { |
| uint8_t c = ((uint8_t *)buf)[i]; |
| uint8_t c1 = ((uint8_t *)buf1)[i]; |
| int dump_len; |
| |
| if (c == c1) |
| continue; |
| |
| ubi_err("self-check failed for PEB %d:%d, len %d", |
| pnum, offset, len); |
| ubi_msg("data differ at position %d", i); |
| dump_len = max_t(int, 128, len - i); |
| ubi_msg("hex dump of the original buffer from %d to %d", |
| i, i + dump_len); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| buf + i, dump_len, 1); |
| ubi_msg("hex dump of the read buffer from %d to %d", |
| i, i + dump_len); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| buf1 + i, dump_len, 1); |
| dump_stack(); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| vfree(buf1); |
| return 0; |
| |
| out_free: |
| vfree(buf1); |
| return err; |
| } |
| |
| /** |
| * ubi_self_check_all_ff - check that a region of flash is empty. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to check |
| * @offset: the starting offset within the physical eraseblock to check |
| * @len: the length of the region to check |
| * |
| * This function returns zero if only 0xFF bytes are present at offset |
| * @offset of the physical eraseblock @pnum, and a negative error code if not |
| * or if an error occurred. |
| */ |
| int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) |
| { |
| size_t read; |
| int err; |
| void *buf; |
| loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
| |
| if (!ubi_dbg_chk_io(ubi)) |
| return 0; |
| |
| buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
| if (!buf) { |
| ubi_err("cannot allocate memory to check for 0xFFs"); |
| return 0; |
| } |
| |
| err = mtd_read(ubi->mtd, addr, len, &read, buf); |
| if (err && !mtd_is_bitflip(err)) { |
| ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", |
| err, len, pnum, offset, read); |
| goto error; |
| } |
| |
| err = ubi_check_pattern(buf, 0xFF, len); |
| if (err == 0) { |
| ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", |
| pnum, offset, len); |
| goto fail; |
| } |
| |
| vfree(buf); |
| return 0; |
| |
| fail: |
| ubi_err("self-check failed for PEB %d", pnum); |
| ubi_msg("hex dump of the %d-%d region", offset, offset + len); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); |
| err = -EINVAL; |
| error: |
| dump_stack(); |
| vfree(buf); |
| return err; |
| } |