| #ifndef __LINUX_COMPILER_H |
| #define __LINUX_COMPILER_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef __CHECKER__ |
| # define __user __attribute__((noderef, address_space(1))) |
| # define __kernel __attribute__((address_space(0))) |
| # define __safe __attribute__((safe)) |
| # define __force __attribute__((force)) |
| # define __nocast __attribute__((nocast)) |
| # define __iomem __attribute__((noderef, address_space(2))) |
| # define __must_hold(x) __attribute__((context(x,1,1))) |
| # define __acquires(x) __attribute__((context(x,0,1))) |
| # define __releases(x) __attribute__((context(x,1,0))) |
| # define __acquire(x) __context__(x,1) |
| # define __release(x) __context__(x,-1) |
| # define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0) |
| # define __percpu __attribute__((noderef, address_space(3))) |
| # define __pmem __attribute__((noderef, address_space(5))) |
| #ifdef CONFIG_SPARSE_RCU_POINTER |
| # define __rcu __attribute__((noderef, address_space(4))) |
| #else |
| # define __rcu |
| #endif |
| extern void __chk_user_ptr(const volatile void __user *); |
| extern void __chk_io_ptr(const volatile void __iomem *); |
| #else |
| # define __user |
| # define __kernel |
| # define __safe |
| # define __force |
| # define __nocast |
| # define __iomem |
| # define __chk_user_ptr(x) (void)0 |
| # define __chk_io_ptr(x) (void)0 |
| # define __builtin_warning(x, y...) (1) |
| # define __must_hold(x) |
| # define __acquires(x) |
| # define __releases(x) |
| # define __acquire(x) (void)0 |
| # define __release(x) (void)0 |
| # define __cond_lock(x,c) (c) |
| # define __percpu |
| # define __rcu |
| # define __pmem |
| #endif |
| |
| /* Indirect macros required for expanded argument pasting, eg. __LINE__. */ |
| #define ___PASTE(a,b) a##b |
| #define __PASTE(a,b) ___PASTE(a,b) |
| |
| #ifdef __KERNEL__ |
| |
| #ifdef __GNUC__ |
| #include <linux/compiler-gcc.h> |
| #endif |
| |
| #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__) |
| #define notrace __attribute__((hotpatch(0,0))) |
| #else |
| #define notrace __attribute__((no_instrument_function)) |
| #endif |
| |
| /* Intel compiler defines __GNUC__. So we will overwrite implementations |
| * coming from above header files here |
| */ |
| #ifdef __INTEL_COMPILER |
| # include <linux/compiler-intel.h> |
| #endif |
| |
| /* Clang compiler defines __GNUC__. So we will overwrite implementations |
| * coming from above header files here |
| */ |
| #ifdef __clang__ |
| #include <linux/compiler-clang.h> |
| #endif |
| |
| /* |
| * Generic compiler-dependent macros required for kernel |
| * build go below this comment. Actual compiler/compiler version |
| * specific implementations come from the above header files |
| */ |
| |
| struct ftrace_branch_data { |
| const char *func; |
| const char *file; |
| unsigned line; |
| union { |
| struct { |
| unsigned long correct; |
| unsigned long incorrect; |
| }; |
| struct { |
| unsigned long miss; |
| unsigned long hit; |
| }; |
| unsigned long miss_hit[2]; |
| }; |
| }; |
| |
| /* |
| * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code |
| * to disable branch tracing on a per file basis. |
| */ |
| #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ |
| && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) |
| void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect); |
| |
| #define likely_notrace(x) __builtin_expect(!!(x), 1) |
| #define unlikely_notrace(x) __builtin_expect(!!(x), 0) |
| |
| #define __branch_check__(x, expect) ({ \ |
| int ______r; \ |
| static struct ftrace_branch_data \ |
| __attribute__((__aligned__(4))) \ |
| __attribute__((section("_ftrace_annotated_branch"))) \ |
| ______f = { \ |
| .func = __func__, \ |
| .file = __FILE__, \ |
| .line = __LINE__, \ |
| }; \ |
| ______r = likely_notrace(x); \ |
| ftrace_likely_update(&______f, ______r, expect); \ |
| ______r; \ |
| }) |
| |
| /* |
| * Using __builtin_constant_p(x) to ignore cases where the return |
| * value is always the same. This idea is taken from a similar patch |
| * written by Daniel Walker. |
| */ |
| # ifndef likely |
| # define likely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1)) |
| # endif |
| # ifndef unlikely |
| # define unlikely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0)) |
| # endif |
| |
| #ifdef CONFIG_PROFILE_ALL_BRANCHES |
| /* |
| * "Define 'is'", Bill Clinton |
| * "Define 'if'", Steven Rostedt |
| */ |
| #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) |
| #define __trace_if(cond) \ |
| if (__builtin_constant_p((cond)) ? !!(cond) : \ |
| ({ \ |
| int ______r; \ |
| static struct ftrace_branch_data \ |
| __attribute__((__aligned__(4))) \ |
| __attribute__((section("_ftrace_branch"))) \ |
| ______f = { \ |
| .func = __func__, \ |
| .file = __FILE__, \ |
| .line = __LINE__, \ |
| }; \ |
| ______r = !!(cond); \ |
| ______f.miss_hit[______r]++; \ |
| ______r; \ |
| })) |
| #endif /* CONFIG_PROFILE_ALL_BRANCHES */ |
| |
| #else |
| # define likely(x) __builtin_expect(!!(x), 1) |
| # define unlikely(x) __builtin_expect(!!(x), 0) |
| #endif |
| |
| /* Optimization barrier */ |
| #ifndef barrier |
| # define barrier() __memory_barrier() |
| #endif |
| |
| #ifndef barrier_data |
| # define barrier_data(ptr) barrier() |
| #endif |
| |
| /* Unreachable code */ |
| #ifndef unreachable |
| # define unreachable() do { } while (1) |
| #endif |
| |
| #ifndef RELOC_HIDE |
| # define RELOC_HIDE(ptr, off) \ |
| ({ unsigned long __ptr; \ |
| __ptr = (unsigned long) (ptr); \ |
| (typeof(ptr)) (__ptr + (off)); }) |
| #endif |
| |
| #ifndef OPTIMIZER_HIDE_VAR |
| #define OPTIMIZER_HIDE_VAR(var) barrier() |
| #endif |
| |
| /* Not-quite-unique ID. */ |
| #ifndef __UNIQUE_ID |
| # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) |
| #endif |
| |
| #include <uapi/linux/types.h> |
| |
| #define __READ_ONCE_SIZE \ |
| ({ \ |
| switch (size) { \ |
| case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ |
| case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ |
| case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ |
| case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ |
| default: \ |
| barrier(); \ |
| __builtin_memcpy((void *)res, (const void *)p, size); \ |
| barrier(); \ |
| } \ |
| }) |
| |
| static __always_inline |
| void __read_once_size(const volatile void *p, void *res, int size) |
| { |
| __READ_ONCE_SIZE; |
| } |
| |
| #ifdef CONFIG_KASAN |
| /* |
| * This function is not 'inline' because __no_sanitize_address confilcts |
| * with inlining. Attempt to inline it may cause a build failure. |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 |
| * '__maybe_unused' allows us to avoid defined-but-not-used warnings. |
| */ |
| static __no_sanitize_address __maybe_unused |
| void __read_once_size_nocheck(const volatile void *p, void *res, int size) |
| { |
| __READ_ONCE_SIZE; |
| } |
| #else |
| static __always_inline |
| void __read_once_size_nocheck(const volatile void *p, void *res, int size) |
| { |
| __READ_ONCE_SIZE; |
| } |
| #endif |
| |
| static __always_inline void __write_once_size(volatile void *p, void *res, int size) |
| { |
| switch (size) { |
| case 1: *(volatile __u8 *)p = *(__u8 *)res; break; |
| case 2: *(volatile __u16 *)p = *(__u16 *)res; break; |
| case 4: *(volatile __u32 *)p = *(__u32 *)res; break; |
| case 8: *(volatile __u64 *)p = *(__u64 *)res; break; |
| default: |
| barrier(); |
| __builtin_memcpy((void *)p, (const void *)res, size); |
| barrier(); |
| } |
| } |
| |
| /* |
| * Prevent the compiler from merging or refetching reads or writes. The |
| * compiler is also forbidden from reordering successive instances of |
| * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the |
| * compiler is aware of some particular ordering. One way to make the |
| * compiler aware of ordering is to put the two invocations of READ_ONCE, |
| * WRITE_ONCE or ACCESS_ONCE() in different C statements. |
| * |
| * In contrast to ACCESS_ONCE these two macros will also work on aggregate |
| * data types like structs or unions. If the size of the accessed data |
| * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) |
| * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a |
| * compile-time warning. |
| * |
| * Their two major use cases are: (1) Mediating communication between |
| * process-level code and irq/NMI handlers, all running on the same CPU, |
| * and (2) Ensuring that the compiler does not fold, spindle, or otherwise |
| * mutilate accesses that either do not require ordering or that interact |
| * with an explicit memory barrier or atomic instruction that provides the |
| * required ordering. |
| */ |
| |
| #define __READ_ONCE(x, check) \ |
| ({ \ |
| union { typeof(x) __val; char __c[1]; } __u; \ |
| if (check) \ |
| __read_once_size(&(x), __u.__c, sizeof(x)); \ |
| else \ |
| __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ |
| __u.__val; \ |
| }) |
| #define READ_ONCE(x) __READ_ONCE(x, 1) |
| |
| /* |
| * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need |
| * to hide memory access from KASAN. |
| */ |
| #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) |
| |
| #define WRITE_ONCE(x, val) \ |
| ({ \ |
| union { typeof(x) __val; char __c[1]; } __u = \ |
| { .__val = (__force typeof(x)) (val) }; \ |
| __write_once_size(&(x), __u.__c, sizeof(x)); \ |
| __u.__val; \ |
| }) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #ifdef __KERNEL__ |
| /* |
| * Allow us to mark functions as 'deprecated' and have gcc emit a nice |
| * warning for each use, in hopes of speeding the functions removal. |
| * Usage is: |
| * int __deprecated foo(void) |
| */ |
| #ifndef __deprecated |
| # define __deprecated /* unimplemented */ |
| #endif |
| |
| #ifdef MODULE |
| #define __deprecated_for_modules __deprecated |
| #else |
| #define __deprecated_for_modules |
| #endif |
| |
| #ifndef __must_check |
| #define __must_check |
| #endif |
| |
| #ifndef CONFIG_ENABLE_MUST_CHECK |
| #undef __must_check |
| #define __must_check |
| #endif |
| #ifndef CONFIG_ENABLE_WARN_DEPRECATED |
| #undef __deprecated |
| #undef __deprecated_for_modules |
| #define __deprecated |
| #define __deprecated_for_modules |
| #endif |
| |
| /* |
| * Allow us to avoid 'defined but not used' warnings on functions and data, |
| * as well as force them to be emitted to the assembly file. |
| * |
| * As of gcc 3.4, static functions that are not marked with attribute((used)) |
| * may be elided from the assembly file. As of gcc 3.4, static data not so |
| * marked will not be elided, but this may change in a future gcc version. |
| * |
| * NOTE: Because distributions shipped with a backported unit-at-a-time |
| * compiler in gcc 3.3, we must define __used to be __attribute__((used)) |
| * for gcc >=3.3 instead of 3.4. |
| * |
| * In prior versions of gcc, such functions and data would be emitted, but |
| * would be warned about except with attribute((unused)). |
| * |
| * Mark functions that are referenced only in inline assembly as __used so |
| * the code is emitted even though it appears to be unreferenced. |
| */ |
| #ifndef __used |
| # define __used /* unimplemented */ |
| #endif |
| |
| #ifndef __maybe_unused |
| # define __maybe_unused /* unimplemented */ |
| #endif |
| |
| #ifndef __always_unused |
| # define __always_unused /* unimplemented */ |
| #endif |
| |
| #ifndef noinline |
| #define noinline |
| #endif |
| |
| /* |
| * Rather then using noinline to prevent stack consumption, use |
| * noinline_for_stack instead. For documentation reasons. |
| */ |
| #define noinline_for_stack noinline |
| |
| #ifndef __always_inline |
| #define __always_inline inline |
| #endif |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * From the GCC manual: |
| * |
| * Many functions do not examine any values except their arguments, |
| * and have no effects except the return value. Basically this is |
| * just slightly more strict class than the `pure' attribute above, |
| * since function is not allowed to read global memory. |
| * |
| * Note that a function that has pointer arguments and examines the |
| * data pointed to must _not_ be declared `const'. Likewise, a |
| * function that calls a non-`const' function usually must not be |
| * `const'. It does not make sense for a `const' function to return |
| * `void'. |
| */ |
| #ifndef __attribute_const__ |
| # define __attribute_const__ /* unimplemented */ |
| #endif |
| |
| /* |
| * Tell gcc if a function is cold. The compiler will assume any path |
| * directly leading to the call is unlikely. |
| */ |
| |
| #ifndef __cold |
| #define __cold |
| #endif |
| |
| /* Simple shorthand for a section definition */ |
| #ifndef __section |
| # define __section(S) __attribute__ ((__section__(#S))) |
| #endif |
| |
| #ifndef __visible |
| #define __visible |
| #endif |
| |
| /* Are two types/vars the same type (ignoring qualifiers)? */ |
| #ifndef __same_type |
| # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) |
| #endif |
| |
| /* Is this type a native word size -- useful for atomic operations */ |
| #ifndef __native_word |
| # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) |
| #endif |
| |
| /* Compile time object size, -1 for unknown */ |
| #ifndef __compiletime_object_size |
| # define __compiletime_object_size(obj) -1 |
| #endif |
| #ifndef __compiletime_warning |
| # define __compiletime_warning(message) |
| #endif |
| #ifndef __compiletime_error |
| # define __compiletime_error(message) |
| /* |
| * Sparse complains of variable sized arrays due to the temporary variable in |
| * __compiletime_assert. Unfortunately we can't just expand it out to make |
| * sparse see a constant array size without breaking compiletime_assert on old |
| * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. |
| */ |
| # ifndef __CHECKER__ |
| # define __compiletime_error_fallback(condition) \ |
| do { ((void)sizeof(char[1 - 2 * condition])); } while (0) |
| # endif |
| #endif |
| #ifndef __compiletime_error_fallback |
| # define __compiletime_error_fallback(condition) do { } while (0) |
| #endif |
| |
| #define __compiletime_assert(condition, msg, prefix, suffix) \ |
| do { \ |
| bool __cond = !(condition); \ |
| extern void prefix ## suffix(void) __compiletime_error(msg); \ |
| if (__cond) \ |
| prefix ## suffix(); \ |
| __compiletime_error_fallback(__cond); \ |
| } while (0) |
| |
| #define _compiletime_assert(condition, msg, prefix, suffix) \ |
| __compiletime_assert(condition, msg, prefix, suffix) |
| |
| /** |
| * compiletime_assert - break build and emit msg if condition is false |
| * @condition: a compile-time constant condition to check |
| * @msg: a message to emit if condition is false |
| * |
| * In tradition of POSIX assert, this macro will break the build if the |
| * supplied condition is *false*, emitting the supplied error message if the |
| * compiler has support to do so. |
| */ |
| #define compiletime_assert(condition, msg) \ |
| _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) |
| |
| #define compiletime_assert_atomic_type(t) \ |
| compiletime_assert(__native_word(t), \ |
| "Need native word sized stores/loads for atomicity.") |
| |
| /* |
| * Prevent the compiler from merging or refetching accesses. The compiler |
| * is also forbidden from reordering successive instances of ACCESS_ONCE(), |
| * but only when the compiler is aware of some particular ordering. One way |
| * to make the compiler aware of ordering is to put the two invocations of |
| * ACCESS_ONCE() in different C statements. |
| * |
| * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE |
| * on a union member will work as long as the size of the member matches the |
| * size of the union and the size is smaller than word size. |
| * |
| * The major use cases of ACCESS_ONCE used to be (1) Mediating communication |
| * between process-level code and irq/NMI handlers, all running on the same CPU, |
| * and (2) Ensuring that the compiler does not fold, spindle, or otherwise |
| * mutilate accesses that either do not require ordering or that interact |
| * with an explicit memory barrier or atomic instruction that provides the |
| * required ordering. |
| * |
| * If possible use READ_ONCE()/WRITE_ONCE() instead. |
| */ |
| #define __ACCESS_ONCE(x) ({ \ |
| __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ |
| (volatile typeof(x) *)&(x); }) |
| #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) |
| |
| /** |
| * lockless_dereference() - safely load a pointer for later dereference |
| * @p: The pointer to load |
| * |
| * Similar to rcu_dereference(), but for situations where the pointed-to |
| * object's lifetime is managed by something other than RCU. That |
| * "something other" might be reference counting or simple immortality. |
| */ |
| #define lockless_dereference(p) \ |
| ({ \ |
| typeof(p) _________p1 = READ_ONCE(p); \ |
| smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ |
| (_________p1); \ |
| }) |
| |
| /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */ |
| #ifdef CONFIG_KPROBES |
| # define __kprobes __attribute__((__section__(".kprobes.text"))) |
| # define nokprobe_inline __always_inline |
| #else |
| # define __kprobes |
| # define nokprobe_inline inline |
| #endif |
| #endif /* __LINUX_COMPILER_H */ |