blob: f277ac0f36f58483c709201b4cf057a06a6e2e31 [file] [log] [blame]
/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "[dp-hdcp2p2] %s: " fmt, __func__
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/types.h>
#include <linux/kthread.h>
#include <linux/hdcp_qseecom.h>
#include <linux/msm_hdcp.h>
#include <drm/drm_dp_helper.h>
#include "sde_hdcp.h"
#define DP_INTR_STATUS2 (0x00000024)
#define DP_INTR_STATUS3 (0x00000028)
#define DP_DPCD_CP_IRQ (0x201)
#define dp_read(offset) readl_relaxed((offset))
#define dp_write(offset, data) writel_relaxed((data), (offset))
#define DP_HDCP_RXCAPS_LENGTH 3
enum dp_hdcp2p2_sink_status {
SINK_DISCONNECTED,
SINK_CONNECTED
};
enum dp_auth_status {
DP_HDCP_AUTH_STATUS_FAILURE,
DP_HDCP_AUTH_STATUS_SUCCESS
};
struct dp_hdcp2p2_ctrl {
atomic_t auth_state;
enum dp_hdcp2p2_sink_status sink_status; /* Is sink connected */
struct dp_hdcp2p2_interrupts *intr;
struct sde_hdcp_init_data init_data;
struct mutex mutex; /* mutex to protect access to ctrl */
struct mutex msg_lock; /* mutex to protect access to msg buffer */
struct mutex wakeup_mutex; /* mutex to protect access to wakeup call*/
struct sde_hdcp_ops *ops;
void *lib_ctx; /* Handle to HDCP 2.2 Trustzone library */
struct hdcp_txmtr_ops *lib; /* Ops for driver to call into TZ */
enum hdcp_wakeup_cmd wakeup_cmd;
enum dp_auth_status auth_status;
struct task_struct *thread;
struct kthread_worker worker;
struct kthread_work status;
struct kthread_work auth;
struct kthread_work send_msg;
struct kthread_work recv_msg;
struct kthread_work link;
char *msg_buf;
uint32_t send_msg_len; /* length of all parameters in msg */
uint32_t timeout;
uint32_t num_messages;
struct hdcp_msg_part msg_part[HDCP_MAX_MESSAGE_PARTS];
u8 sink_rx_status;
u8 rx_status;
char abort_mask;
bool cp_irq_done;
bool polling;
};
struct dp_hdcp2p2_int_set {
u32 interrupt;
char *name;
void (*func)(struct dp_hdcp2p2_ctrl *ctrl);
};
struct dp_hdcp2p2_interrupts {
u32 reg;
struct dp_hdcp2p2_int_set *int_set;
};
static inline bool dp_hdcp2p2_is_valid_state(struct dp_hdcp2p2_ctrl *ctrl)
{
if (ctrl->wakeup_cmd == HDCP_WKUP_CMD_AUTHENTICATE)
return true;
if (atomic_read(&ctrl->auth_state) != HDCP_STATE_INACTIVE)
return true;
return false;
}
static int dp_hdcp2p2_copy_buf(struct dp_hdcp2p2_ctrl *ctrl,
struct hdcp_wakeup_data *data)
{
int i = 0;
if (!data || !data->message_data)
return 0;
mutex_lock(&ctrl->msg_lock);
ctrl->timeout = data->timeout;
ctrl->num_messages = data->message_data->num_messages;
ctrl->send_msg_len = 0; /* Total len of all messages */
for (i = 0; i < ctrl->num_messages ; i++)
ctrl->send_msg_len += data->message_data->messages[i].length;
memcpy(ctrl->msg_part, data->message_data->messages,
sizeof(data->message_data->messages));
ctrl->rx_status = data->message_data->rx_status;
ctrl->abort_mask = data->abort_mask;
if (!data->send_msg_len) {
mutex_unlock(&ctrl->msg_lock);
return 0;
}
kzfree(ctrl->msg_buf);
ctrl->msg_buf = kzalloc(ctrl->send_msg_len, GFP_KERNEL);
if (!ctrl->msg_buf) {
mutex_unlock(&ctrl->msg_lock);
return -ENOMEM;
}
/* ignore first byte as it contains message id */
memcpy(ctrl->msg_buf, data->send_msg_buf + 1, ctrl->send_msg_len);
mutex_unlock(&ctrl->msg_lock);
return 0;
}
static int dp_hdcp2p2_wakeup(struct hdcp_wakeup_data *data)
{
struct dp_hdcp2p2_ctrl *ctrl;
u32 const default_timeout_us = 500;
if (!data) {
pr_err("invalid input\n");
return -EINVAL;
}
ctrl = data->context;
if (!ctrl) {
pr_err("invalid ctrl\n");
return -EINVAL;
}
mutex_lock(&ctrl->wakeup_mutex);
ctrl->wakeup_cmd = data->cmd;
if (data->timeout)
ctrl->timeout = (data->timeout) * 2;
else
ctrl->timeout = default_timeout_us;
if (!dp_hdcp2p2_is_valid_state(ctrl)) {
pr_err("invalid state\n");
goto exit;
}
if (dp_hdcp2p2_copy_buf(ctrl, data))
goto exit;
if (ctrl->wakeup_cmd == HDCP_WKUP_CMD_STATUS_SUCCESS)
ctrl->auth_status = DP_HDCP_AUTH_STATUS_SUCCESS;
else if (ctrl->wakeup_cmd == HDCP_WKUP_CMD_STATUS_FAILED)
ctrl->auth_status = DP_HDCP_AUTH_STATUS_FAILURE;
switch (ctrl->wakeup_cmd) {
case HDCP_WKUP_CMD_SEND_MESSAGE:
kthread_queue_work(&ctrl->worker, &ctrl->send_msg);
break;
case HDCP_WKUP_CMD_RECV_MESSAGE:
kthread_queue_work(&ctrl->worker, &ctrl->recv_msg);
break;
case HDCP_WKUP_CMD_STATUS_SUCCESS:
case HDCP_WKUP_CMD_STATUS_FAILED:
kthread_queue_work(&ctrl->worker, &ctrl->status);
break;
case HDCP_WKUP_CMD_LINK_POLL:
if (ctrl->cp_irq_done)
kthread_queue_work(&ctrl->worker, &ctrl->recv_msg);
else
ctrl->polling = true;
break;
case HDCP_WKUP_CMD_AUTHENTICATE:
kthread_queue_work(&ctrl->worker, &ctrl->auth);
break;
default:
pr_err("invalid wakeup command %d\n", ctrl->wakeup_cmd);
}
exit:
mutex_unlock(&ctrl->wakeup_mutex);
return 0;
}
static inline void dp_hdcp2p2_wakeup_lib(struct dp_hdcp2p2_ctrl *ctrl,
struct hdcp_lib_wakeup_data *data)
{
int rc = 0;
if (ctrl && ctrl->lib && ctrl->lib->wakeup &&
data && (data->cmd != HDCP_LIB_WKUP_CMD_INVALID)) {
rc = ctrl->lib->wakeup(data);
if (rc)
pr_err("error sending %s to lib\n",
hdcp_lib_cmd_to_str(data->cmd));
}
}
static void dp_hdcp2p2_reset(struct dp_hdcp2p2_ctrl *ctrl)
{
if (!ctrl) {
pr_err("invalid input\n");
return;
}
ctrl->sink_status = SINK_DISCONNECTED;
atomic_set(&ctrl->auth_state, HDCP_STATE_INACTIVE);
}
static void dp_hdcp2p2_set_interrupts(struct dp_hdcp2p2_ctrl *ctrl, bool enable)
{
void __iomem *base = ctrl->init_data.dp_ahb->base;
struct dp_hdcp2p2_interrupts *intr = ctrl->intr;
while (intr && intr->reg) {
struct dp_hdcp2p2_int_set *int_set = intr->int_set;
u32 interrupts = 0;
while (int_set && int_set->interrupt) {
interrupts |= int_set->interrupt;
int_set++;
}
if (enable)
dp_write(base + intr->reg,
dp_read(base + intr->reg) | interrupts);
else
dp_write(base + intr->reg,
dp_read(base + intr->reg) & ~interrupts);
intr++;
}
}
static void dp_hdcp2p2_off(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = (struct dp_hdcp2p2_ctrl *)input;
struct hdcp_wakeup_data cdata = {HDCP_WKUP_CMD_AUTHENTICATE};
if (!ctrl) {
pr_err("invalid input\n");
return;
}
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("hdcp is off\n");
return;
}
dp_hdcp2p2_set_interrupts(ctrl, false);
dp_hdcp2p2_reset(ctrl);
kthread_flush_worker(&ctrl->worker);
cdata.context = input;
dp_hdcp2p2_wakeup(&cdata);
}
static int dp_hdcp2p2_authenticate(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = input;
struct hdcp_wakeup_data cdata = {HDCP_WKUP_CMD_AUTHENTICATE};
int rc = 0;
kthread_flush_worker(&ctrl->worker);
dp_hdcp2p2_set_interrupts(ctrl, true);
ctrl->sink_status = SINK_CONNECTED;
atomic_set(&ctrl->auth_state, HDCP_STATE_AUTHENTICATING);
cdata.context = input;
dp_hdcp2p2_wakeup(&cdata);
return rc;
}
static int dp_hdcp2p2_reauthenticate(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = (struct dp_hdcp2p2_ctrl *)input;
if (!ctrl) {
pr_err("invalid input\n");
return -EINVAL;
}
dp_hdcp2p2_reset((struct dp_hdcp2p2_ctrl *)input);
return dp_hdcp2p2_authenticate(input);
}
static void dp_hdcp2p2_min_level_change(void *client_ctx,
int min_enc_level)
{
struct dp_hdcp2p2_ctrl *ctrl = (struct dp_hdcp2p2_ctrl *)client_ctx;
struct hdcp_lib_wakeup_data cdata = {
HDCP_LIB_WKUP_CMD_QUERY_STREAM_TYPE};
if (!ctrl) {
pr_err("invalid input\n");
return;
}
pr_debug("enc level changed %d\n", min_enc_level);
cdata.context = ctrl->lib_ctx;
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
}
static void dp_hdcp2p2_auth_failed(struct dp_hdcp2p2_ctrl *ctrl)
{
if (!ctrl) {
pr_err("invalid input\n");
return;
}
dp_hdcp2p2_set_interrupts(ctrl, false);
atomic_set(&ctrl->auth_state, HDCP_STATE_AUTH_FAIL);
/* notify DP about HDCP failure */
ctrl->init_data.notify_status(ctrl->init_data.cb_data,
HDCP_STATE_AUTH_FAIL);
}
static int dp_hdcp2p2_aux_read_message(struct dp_hdcp2p2_ctrl *ctrl,
u8 *buf, int size, int offset, u32 timeout)
{
int const max_size = 16;
int rc = 0, read_size = 0, bytes_read = 0;
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("hdcp is off\n");
return -EINVAL;
}
do {
read_size = min(size, max_size);
bytes_read = drm_dp_dpcd_read(ctrl->init_data.drm_aux,
offset, buf, read_size);
if (bytes_read != read_size) {
pr_err("fail: offset(0x%x), size(0x%x), rc(0x%x)\n",
offset, read_size, bytes_read);
break;
}
buf += read_size;
offset += read_size;
size -= read_size;
} while (size > 0);
return rc;
}
static int dp_hdcp2p2_aux_write_message(struct dp_hdcp2p2_ctrl *ctrl,
u8 *buf, int size, uint offset, uint timeout)
{
int const max_size = 16;
int rc = 0, write_size = 0, bytes_written = 0;
do {
write_size = min(size, max_size);
bytes_written = drm_dp_dpcd_write(ctrl->init_data.drm_aux,
offset, buf, write_size);
if (bytes_written != write_size) {
pr_err("fail: offset(0x%x), size(0x%x), rc(0x%x)\n",
offset, write_size, bytes_written);
rc = bytes_written;
break;
}
buf += write_size;
offset += write_size;
size -= write_size;
} while (size > 0);
return rc;
}
static bool dp_hdcp2p2_feature_supported(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = input;
struct hdcp_txmtr_ops *lib = NULL;
bool supported = false;
if (!ctrl) {
pr_err("invalid input\n");
goto end;
}
lib = ctrl->lib;
if (!lib) {
pr_err("invalid lib ops data\n");
goto end;
}
if (lib->feature_supported)
supported = lib->feature_supported(
ctrl->lib_ctx);
end:
return supported;
}
static void dp_hdcp2p2_send_msg_work(struct kthread_work *work)
{
int rc = 0;
struct dp_hdcp2p2_ctrl *ctrl = container_of(work,
struct dp_hdcp2p2_ctrl, send_msg);
struct hdcp_lib_wakeup_data cdata = {HDCP_LIB_WKUP_CMD_INVALID};
if (!ctrl) {
pr_err("invalid input\n");
rc = -EINVAL;
goto exit;
}
cdata.context = ctrl->lib_ctx;
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("hdcp is off\n");
goto exit;
}
mutex_lock(&ctrl->msg_lock);
rc = dp_hdcp2p2_aux_write_message(ctrl, ctrl->msg_buf,
ctrl->send_msg_len, ctrl->msg_part->offset,
ctrl->timeout);
if (rc) {
pr_err("Error sending msg to sink %d\n", rc);
mutex_unlock(&ctrl->msg_lock);
goto exit;
}
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_SEND_SUCCESS;
cdata.timeout = ctrl->timeout;
mutex_unlock(&ctrl->msg_lock);
exit:
if (rc == -ETIMEDOUT)
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_RECV_TIMEOUT;
else if (rc)
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_RECV_FAILED;
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
}
static int dp_hdcp2p2_get_msg_from_sink(struct dp_hdcp2p2_ctrl *ctrl)
{
int rc = 0;
char *recvd_msg_buf = NULL;
struct hdcp_lib_wakeup_data cdata = { HDCP_LIB_WKUP_CMD_INVALID };
cdata.context = ctrl->lib_ctx;
recvd_msg_buf = kzalloc(ctrl->send_msg_len, GFP_KERNEL);
if (!recvd_msg_buf) {
rc = -ENOMEM;
goto exit;
}
rc = dp_hdcp2p2_aux_read_message(ctrl, recvd_msg_buf,
ctrl->send_msg_len, ctrl->msg_part->offset,
ctrl->timeout);
if (rc) {
pr_err("error reading message %d\n", rc);
goto exit;
}
cdata.recvd_msg_buf = recvd_msg_buf;
cdata.recvd_msg_len = ctrl->send_msg_len;
cdata.timeout = ctrl->timeout;
exit:
if (rc == -ETIMEDOUT)
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_RECV_TIMEOUT;
else if (rc)
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_RECV_FAILED;
else
cdata.cmd = HDCP_LIB_WKUP_CMD_MSG_RECV_SUCCESS;
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
kfree(recvd_msg_buf);
return rc;
}
static void dp_hdcp2p2_recv_msg_work(struct kthread_work *work)
{
struct hdcp_lib_wakeup_data cdata = { HDCP_LIB_WKUP_CMD_INVALID };
struct dp_hdcp2p2_ctrl *ctrl = container_of(work,
struct dp_hdcp2p2_ctrl, recv_msg);
cdata.context = ctrl->lib_ctx;
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("hdcp is off\n");
return;
}
if (ctrl->rx_status) {
if (!ctrl->cp_irq_done) {
pr_debug("waiting for CP_IRQ\n");
ctrl->polling = true;
return;
}
if (ctrl->rx_status & ctrl->sink_rx_status) {
ctrl->cp_irq_done = false;
ctrl->sink_rx_status = 0;
ctrl->rx_status = 0;
}
}
dp_hdcp2p2_get_msg_from_sink(ctrl);
}
static void dp_hdcp2p2_auth_status_work(struct kthread_work *work)
{
struct dp_hdcp2p2_ctrl *ctrl = container_of(work,
struct dp_hdcp2p2_ctrl, status);
if (!ctrl) {
pr_err("invalid input\n");
return;
}
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("hdcp is off\n");
return;
}
if (ctrl->auth_status == DP_HDCP_AUTH_STATUS_SUCCESS) {
ctrl->init_data.notify_status(ctrl->init_data.cb_data,
HDCP_STATE_AUTHENTICATED);
atomic_set(&ctrl->auth_state, HDCP_STATE_AUTHENTICATED);
} else {
dp_hdcp2p2_auth_failed(ctrl);
}
}
static void dp_hdcp2p2_link_work(struct kthread_work *work)
{
int rc = 0;
struct dp_hdcp2p2_ctrl *ctrl = container_of(work,
struct dp_hdcp2p2_ctrl, link);
struct hdcp_lib_wakeup_data cdata = {HDCP_LIB_WKUP_CMD_INVALID};
if (!ctrl) {
pr_err("invalid input\n");
return;
}
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_AUTH_FAIL ||
atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("invalid hdcp state\n");
return;
}
cdata.context = ctrl->lib_ctx;
if (ctrl->sink_rx_status & ctrl->abort_mask) {
if (ctrl->sink_rx_status & BIT(3))
pr_err("reauth_req set by sink\n");
if (ctrl->sink_rx_status & BIT(4))
pr_err("link failure reported by sink\n");
ctrl->sink_rx_status = 0;
ctrl->rx_status = 0;
rc = -ENOLINK;
cdata.cmd = HDCP_LIB_WKUP_CMD_LINK_FAILED;
atomic_set(&ctrl->auth_state, HDCP_STATE_AUTH_FAIL);
goto exit;
}
if (ctrl->polling && (ctrl->sink_rx_status & ctrl->rx_status)) {
ctrl->sink_rx_status = 0;
ctrl->rx_status = 0;
dp_hdcp2p2_get_msg_from_sink(ctrl);
ctrl->polling = false;
} else {
ctrl->cp_irq_done = true;
}
exit:
if (rc)
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
}
static void dp_hdcp2p2_auth_work(struct kthread_work *work)
{
struct hdcp_lib_wakeup_data cdata = {HDCP_LIB_WKUP_CMD_INVALID};
struct dp_hdcp2p2_ctrl *ctrl = container_of(work,
struct dp_hdcp2p2_ctrl, auth);
cdata.context = ctrl->lib_ctx;
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_AUTHENTICATING)
cdata.cmd = HDCP_LIB_WKUP_CMD_START;
else
cdata.cmd = HDCP_LIB_WKUP_CMD_STOP;
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
}
static int dp_hdcp2p2_read_rx_status(struct dp_hdcp2p2_ctrl *ctrl,
u8 *rx_status)
{
u32 const cp_irq_dpcd_offset = 0x201;
u32 const rxstatus_dpcd_offset = 0x69493;
ssize_t const bytes_to_read = 1;
ssize_t bytes_read = 0;
u8 buf = 0;
int rc = 0;
bool cp_irq = 0;
*rx_status = 0;
bytes_read = drm_dp_dpcd_read(ctrl->init_data.drm_aux,
cp_irq_dpcd_offset, &buf, bytes_to_read);
if (bytes_read != bytes_to_read) {
pr_err("cp irq read failed\n");
rc = bytes_read;
goto error;
}
cp_irq = buf & BIT(2);
pr_debug("cp_irq=0x%x\n", cp_irq);
buf = 0;
if (cp_irq) {
bytes_read = drm_dp_dpcd_read(ctrl->init_data.drm_aux,
rxstatus_dpcd_offset, &buf, bytes_to_read);
if (bytes_read != bytes_to_read) {
pr_err("rxstatus read failed\n");
rc = bytes_read;
goto error;
}
*rx_status = buf;
pr_debug("rx_status=0x%x\n", *rx_status);
}
error:
return rc;
}
static void dp_hdcp2p2_clear_cp_irq(struct dp_hdcp2p2_ctrl *ctrl)
{
int rc = 0;
u8 buf = BIT(2);
u32 const default_timeout_us = 500;
rc = dp_hdcp2p2_aux_write_message(ctrl, &buf, 1,
DP_DPCD_CP_IRQ, default_timeout_us);
if (rc)
pr_err("error clearing irq_vector\n");
}
static int dp_hdcp2p2_cp_irq(void *input)
{
int rc = 0;
struct dp_hdcp2p2_ctrl *ctrl = input;
if (!ctrl) {
pr_err("invalid input\n");
return -EINVAL;
}
if (atomic_read(&ctrl->auth_state) == HDCP_STATE_AUTH_FAIL ||
atomic_read(&ctrl->auth_state) == HDCP_STATE_INACTIVE) {
pr_err("invalid hdcp state\n");
rc = -EINVAL;
goto error;
}
ctrl->sink_rx_status = 0;
rc = dp_hdcp2p2_read_rx_status(ctrl, &ctrl->sink_rx_status);
if (rc) {
pr_err("failed to read rx status\n");
goto error;
}
pr_debug("sink_rx_status=0x%x\n", ctrl->sink_rx_status);
if (!ctrl->sink_rx_status) {
pr_debug("not a hdcp 2.2 irq\n");
rc = -EINVAL;
goto error;
}
kthread_queue_work(&ctrl->worker, &ctrl->link);
dp_hdcp2p2_clear_cp_irq(ctrl);
return 0;
error:
return rc;
}
static int dp_hdcp2p2_isr(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = (struct dp_hdcp2p2_ctrl *)input;
int rc = 0;
struct dss_io_data *io;
struct dp_hdcp2p2_interrupts *intr;
u32 hdcp_int_val = 0;
if (!ctrl || !ctrl->init_data.dp_ahb) {
pr_err("invalid input\n");
rc = -EINVAL;
goto end;
}
io = ctrl->init_data.dp_ahb;
intr = ctrl->intr;
while (intr && intr->reg) {
struct dp_hdcp2p2_int_set *int_set = intr->int_set;
hdcp_int_val = dp_read(io->base + intr->reg);
while (int_set && int_set->interrupt) {
if (hdcp_int_val & (int_set->interrupt >> 2)) {
pr_debug("%s\n", int_set->name);
if (int_set->func)
int_set->func(ctrl);
dp_write(io->base + intr->reg, hdcp_int_val |
(int_set->interrupt >> 1));
}
int_set++;
}
intr++;
}
end:
return rc;
}
void sde_dp_hdcp2p2_deinit(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = (struct dp_hdcp2p2_ctrl *)input;
struct hdcp_lib_wakeup_data cdata = {HDCP_LIB_WKUP_CMD_INVALID};
if (!ctrl) {
pr_err("invalid input\n");
return;
}
cdata.cmd = HDCP_LIB_WKUP_CMD_STOP;
cdata.context = ctrl->lib_ctx;
dp_hdcp2p2_wakeup_lib(ctrl, &cdata);
kthread_stop(ctrl->thread);
mutex_destroy(&ctrl->mutex);
mutex_destroy(&ctrl->msg_lock);
mutex_destroy(&ctrl->wakeup_mutex);
kzfree(ctrl->msg_buf);
kfree(ctrl);
}
void *sde_dp_hdcp2p2_init(struct sde_hdcp_init_data *init_data)
{
int rc;
struct dp_hdcp2p2_ctrl *ctrl;
static struct hdcp_txmtr_ops txmtr_ops;
struct hdcp_register_data register_data;
static struct sde_hdcp_ops ops = {
.isr = dp_hdcp2p2_isr,
.reauthenticate = dp_hdcp2p2_reauthenticate,
.authenticate = dp_hdcp2p2_authenticate,
.feature_supported = dp_hdcp2p2_feature_supported,
.off = dp_hdcp2p2_off,
.cp_irq = dp_hdcp2p2_cp_irq,
};
static struct hdcp_client_ops client_ops = {
.wakeup = dp_hdcp2p2_wakeup,
};
static struct dp_hdcp2p2_int_set int_set1[] = {
{BIT(17), "authentication successful", NULL},
{BIT(20), "authentication failed", NULL},
{BIT(24), "encryption enabled", NULL},
{BIT(27), "encryption disabled", NULL},
{0},
};
static struct dp_hdcp2p2_int_set int_set2[] = {
{BIT(2), "key fifo underflow", NULL},
{0},
};
static struct dp_hdcp2p2_interrupts intr[] = {
{DP_INTR_STATUS2, int_set1},
{DP_INTR_STATUS3, int_set2},
{0}
};
if (!init_data || !init_data->cb_data ||
!init_data->notify_status || !init_data->drm_aux) {
pr_err("invalid input\n");
return ERR_PTR(-EINVAL);
}
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return ERR_PTR(-ENOMEM);
ctrl->init_data = *init_data;
ctrl->lib = &txmtr_ops;
ctrl->msg_buf = NULL;
ctrl->sink_status = SINK_DISCONNECTED;
ctrl->intr = intr;
atomic_set(&ctrl->auth_state, HDCP_STATE_INACTIVE);
ctrl->ops = &ops;
mutex_init(&ctrl->mutex);
mutex_init(&ctrl->msg_lock);
mutex_init(&ctrl->wakeup_mutex);
register_data.hdcp_ctx = &ctrl->lib_ctx;
register_data.client_ops = &client_ops;
register_data.txmtr_ops = &txmtr_ops;
register_data.device_type = HDCP_TXMTR_DP;
register_data.client_ctx = ctrl;
rc = hdcp_library_register(&register_data);
if (rc) {
pr_err("Unable to register with HDCP 2.2 library\n");
goto error;
}
msm_hdcp_register_cb(init_data->msm_hdcp_dev, ctrl,
dp_hdcp2p2_min_level_change);
kthread_init_worker(&ctrl->worker);
kthread_init_work(&ctrl->auth, dp_hdcp2p2_auth_work);
kthread_init_work(&ctrl->send_msg, dp_hdcp2p2_send_msg_work);
kthread_init_work(&ctrl->recv_msg, dp_hdcp2p2_recv_msg_work);
kthread_init_work(&ctrl->status, dp_hdcp2p2_auth_status_work);
kthread_init_work(&ctrl->link, dp_hdcp2p2_link_work);
ctrl->thread = kthread_run(kthread_worker_fn,
&ctrl->worker, "dp_hdcp2p2");
if (IS_ERR(ctrl->thread)) {
pr_err("unable to start DP hdcp2p2 thread\n");
rc = PTR_ERR(ctrl->thread);
ctrl->thread = NULL;
goto error;
}
return ctrl;
error:
kfree(ctrl);
return ERR_PTR(rc);
}
static bool dp_hdcp2p2_supported(struct dp_hdcp2p2_ctrl *ctrl)
{
u32 const rxcaps_dpcd_offset = 0x6921d;
ssize_t bytes_read = 0;
u8 buf[DP_HDCP_RXCAPS_LENGTH];
bytes_read = drm_dp_dpcd_read(ctrl->init_data.drm_aux,
rxcaps_dpcd_offset, &buf, DP_HDCP_RXCAPS_LENGTH);
if (bytes_read != DP_HDCP_RXCAPS_LENGTH) {
pr_err("RxCaps read failed\n");
goto error;
}
pr_debug("HDCP_CAPABLE=%lu\n", (buf[2] & BIT(1)) >> 1);
pr_debug("VERSION=%d\n", buf[0]);
if ((buf[2] & BIT(1)) && (buf[0] == 0x2))
return true;
error:
return false;
}
struct sde_hdcp_ops *sde_dp_hdcp2p2_start(void *input)
{
struct dp_hdcp2p2_ctrl *ctrl = input;
pr_debug("Checking sink capability\n");
if (dp_hdcp2p2_supported(ctrl))
return ctrl->ops;
else
return NULL;
}