blob: 0174ea107a072d3debe33d1037324dad5ee28b3f [file] [log] [blame]
/*
* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "[drm-dp] %s: " fmt, __func__
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include "dp_parser.h"
static void dp_parser_unmap_io_resources(struct dp_parser *parser)
{
int i = 0;
struct dp_io *io = &parser->io;
for (i = 0; i < io->len; i++)
msm_dss_iounmap(&io->data[i].io);
}
static int dp_parser_reg(struct dp_parser *parser)
{
int rc = 0, i = 0;
u32 reg_count;
struct platform_device *pdev = parser->pdev;
struct dp_io *io = &parser->io;
struct device *dev = &pdev->dev;
reg_count = of_property_count_strings(dev->of_node, "reg-names");
if (reg_count <= 0) {
pr_err("no reg defined\n");
return -EINVAL;
}
io->len = reg_count;
io->data = devm_kzalloc(dev, sizeof(struct dp_io_data) * reg_count,
GFP_KERNEL);
if (!io->data)
return -ENOMEM;
for (i = 0; i < reg_count; i++) {
of_property_read_string_index(dev->of_node,
"reg-names", i, &io->data[i].name);
rc = msm_dss_ioremap_byname(pdev, &io->data[i].io,
io->data[i].name);
if (rc) {
pr_err("unable to remap %s resources\n",
io->data[i].name);
goto err;
}
}
return 0;
err:
dp_parser_unmap_io_resources(parser);
return rc;
}
static const char *dp_get_phy_aux_config_property(u32 cfg_type)
{
switch (cfg_type) {
case PHY_AUX_CFG0:
return "qcom,aux-cfg0-settings";
case PHY_AUX_CFG1:
return "qcom,aux-cfg1-settings";
case PHY_AUX_CFG2:
return "qcom,aux-cfg2-settings";
case PHY_AUX_CFG3:
return "qcom,aux-cfg3-settings";
case PHY_AUX_CFG4:
return "qcom,aux-cfg4-settings";
case PHY_AUX_CFG5:
return "qcom,aux-cfg5-settings";
case PHY_AUX_CFG6:
return "qcom,aux-cfg6-settings";
case PHY_AUX_CFG7:
return "qcom,aux-cfg7-settings";
case PHY_AUX_CFG8:
return "qcom,aux-cfg8-settings";
case PHY_AUX_CFG9:
return "qcom,aux-cfg9-settings";
default:
return "unknown";
}
}
static void dp_parser_phy_aux_cfg_reset(struct dp_parser *parser)
{
int i = 0;
for (i = 0; i < PHY_AUX_CFG_MAX; i++)
parser->aux_cfg[i] = (const struct dp_aux_cfg){ 0 };
}
static int dp_parser_aux(struct dp_parser *parser)
{
struct device_node *of_node = parser->pdev->dev.of_node;
int len = 0, i = 0, j = 0, config_count = 0;
const char *data;
int const minimum_config_count = 1;
for (i = 0; i < PHY_AUX_CFG_MAX; i++) {
const char *property = dp_get_phy_aux_config_property(i);
data = of_get_property(of_node, property, &len);
if (!data) {
pr_err("Unable to read %s\n", property);
goto error;
}
config_count = len - 1;
if ((config_count < minimum_config_count) ||
(config_count > DP_AUX_CFG_MAX_VALUE_CNT)) {
pr_err("Invalid config count (%d) configs for %s\n",
config_count, property);
goto error;
}
parser->aux_cfg[i].offset = data[0];
parser->aux_cfg[i].cfg_cnt = config_count;
pr_debug("%s offset=0x%x, cfg_cnt=%d\n",
property,
parser->aux_cfg[i].offset,
parser->aux_cfg[i].cfg_cnt);
for (j = 1; j < len; j++) {
parser->aux_cfg[i].lut[j - 1] = data[j];
pr_debug("%s lut[%d]=0x%x\n",
property,
i,
parser->aux_cfg[i].lut[j - 1]);
}
}
return 0;
error:
dp_parser_phy_aux_cfg_reset(parser);
return -EINVAL;
}
static int dp_parser_misc(struct dp_parser *parser)
{
int rc = 0;
struct device_node *of_node = parser->pdev->dev.of_node;
rc = of_property_read_u32(of_node,
"qcom,max-pclk-frequency-khz", &parser->max_pclk_khz);
if (rc)
parser->max_pclk_khz = DP_MAX_PIXEL_CLK_KHZ;
return 0;
}
static int dp_parser_msm_hdcp_dev(struct dp_parser *parser)
{
struct device_node *node;
struct platform_device *pdev;
node = of_find_compatible_node(NULL, NULL, "qcom,msm-hdcp");
if (!node) {
// This is a non-fatal error, module initialization can proceed
pr_warn("couldn't find msm-hdcp node\n");
return 0;
}
pdev = of_find_device_by_node(node);
if (!pdev) {
// This is a non-fatal error, module initialization can proceed
pr_warn("couldn't find msm-hdcp pdev\n");
return 0;
}
parser->msm_hdcp_dev = &pdev->dev;
return 0;
}
static int dp_parser_pinctrl(struct dp_parser *parser)
{
int rc = 0;
struct dp_pinctrl *pinctrl = &parser->pinctrl;
pinctrl->pin = devm_pinctrl_get(&parser->pdev->dev);
if (IS_ERR_OR_NULL(pinctrl->pin)) {
rc = PTR_ERR(pinctrl->pin);
pr_err("failed to get pinctrl, rc=%d\n", rc);
goto error;
}
pinctrl->state_active = pinctrl_lookup_state(pinctrl->pin,
"mdss_dp_active");
if (IS_ERR_OR_NULL(pinctrl->state_active)) {
rc = PTR_ERR(pinctrl->state_active);
pr_err("failed to get pinctrl active state, rc=%d\n", rc);
goto error;
}
pinctrl->state_suspend = pinctrl_lookup_state(pinctrl->pin,
"mdss_dp_sleep");
if (IS_ERR_OR_NULL(pinctrl->state_suspend)) {
rc = PTR_ERR(pinctrl->state_suspend);
pr_err("failed to get pinctrl suspend state, rc=%d\n", rc);
goto error;
}
error:
return rc;
}
static int dp_parser_gpio(struct dp_parser *parser)
{
int i = 0;
struct device *dev = &parser->pdev->dev;
struct device_node *of_node = dev->of_node;
struct dss_module_power *mp = &parser->mp[DP_CORE_PM];
static const char * const dp_gpios[] = {
"qcom,aux-en-gpio",
"qcom,aux-sel-gpio",
"qcom,usbplug-cc-gpio",
};
mp->gpio_config = devm_kzalloc(dev,
sizeof(struct dss_gpio) * ARRAY_SIZE(dp_gpios), GFP_KERNEL);
if (!mp->gpio_config)
return -ENOMEM;
mp->num_gpio = ARRAY_SIZE(dp_gpios);
for (i = 0; i < ARRAY_SIZE(dp_gpios); i++) {
mp->gpio_config[i].gpio = of_get_named_gpio(of_node,
dp_gpios[i], 0);
if (!gpio_is_valid(mp->gpio_config[i].gpio)) {
pr_err("%s gpio not specified\n", dp_gpios[i]);
return -EINVAL;
}
strlcpy(mp->gpio_config[i].gpio_name, dp_gpios[i],
sizeof(mp->gpio_config[i].gpio_name));
mp->gpio_config[i].value = 0;
}
return 0;
}
static const char *dp_parser_supply_node_name(enum dp_pm_type module)
{
switch (module) {
case DP_CORE_PM: return "qcom,core-supply-entries";
case DP_CTRL_PM: return "qcom,ctrl-supply-entries";
case DP_PHY_PM: return "qcom,phy-supply-entries";
default: return "???";
}
}
static int dp_parser_get_vreg(struct dp_parser *parser,
enum dp_pm_type module)
{
int i = 0, rc = 0;
u32 tmp = 0;
const char *pm_supply_name = NULL;
struct device_node *supply_node = NULL;
struct device_node *of_node = parser->pdev->dev.of_node;
struct device_node *supply_root_node = NULL;
struct dss_module_power *mp = &parser->mp[module];
mp->num_vreg = 0;
pm_supply_name = dp_parser_supply_node_name(module);
supply_root_node = of_get_child_by_name(of_node, pm_supply_name);
if (!supply_root_node) {
pr_err("no supply entry present: %s\n", pm_supply_name);
goto novreg;
}
mp->num_vreg = of_get_available_child_count(supply_root_node);
if (mp->num_vreg == 0) {
pr_debug("no vreg\n");
goto novreg;
} else {
pr_debug("vreg found. count=%d\n", mp->num_vreg);
}
mp->vreg_config = devm_kzalloc(&parser->pdev->dev,
sizeof(struct dss_vreg) * mp->num_vreg, GFP_KERNEL);
if (!mp->vreg_config) {
rc = -ENOMEM;
goto error;
}
for_each_child_of_node(supply_root_node, supply_node) {
const char *st = NULL;
/* vreg-name */
rc = of_property_read_string(supply_node,
"qcom,supply-name", &st);
if (rc) {
pr_err("error reading name. rc=%d\n",
rc);
goto error;
}
snprintf(mp->vreg_config[i].vreg_name,
ARRAY_SIZE((mp->vreg_config[i].vreg_name)), "%s", st);
/* vreg-min-voltage */
rc = of_property_read_u32(supply_node,
"qcom,supply-min-voltage", &tmp);
if (rc) {
pr_err("error reading min volt. rc=%d\n",
rc);
goto error;
}
mp->vreg_config[i].min_voltage = tmp;
/* vreg-max-voltage */
rc = of_property_read_u32(supply_node,
"qcom,supply-max-voltage", &tmp);
if (rc) {
pr_err("error reading max volt. rc=%d\n",
rc);
goto error;
}
mp->vreg_config[i].max_voltage = tmp;
/* enable-load */
rc = of_property_read_u32(supply_node,
"qcom,supply-enable-load", &tmp);
if (rc) {
pr_err("error reading enable load. rc=%d\n",
rc);
goto error;
}
mp->vreg_config[i].enable_load = tmp;
/* disable-load */
rc = of_property_read_u32(supply_node,
"qcom,supply-disable-load", &tmp);
if (rc) {
pr_err("error reading disable load. rc=%d\n",
rc);
goto error;
}
mp->vreg_config[i].disable_load = tmp;
pr_debug("%s min=%d, max=%d, enable=%d, disable=%d\n",
mp->vreg_config[i].vreg_name,
mp->vreg_config[i].min_voltage,
mp->vreg_config[i].max_voltage,
mp->vreg_config[i].enable_load,
mp->vreg_config[i].disable_load
);
++i;
}
return rc;
error:
if (mp->vreg_config) {
devm_kfree(&parser->pdev->dev, mp->vreg_config);
mp->vreg_config = NULL;
}
novreg:
mp->num_vreg = 0;
return rc;
}
static void dp_parser_put_vreg_data(struct device *dev,
struct dss_module_power *mp)
{
if (!mp) {
DEV_ERR("invalid input\n");
return;
}
if (mp->vreg_config) {
devm_kfree(dev, mp->vreg_config);
mp->vreg_config = NULL;
}
mp->num_vreg = 0;
}
static int dp_parser_regulator(struct dp_parser *parser)
{
int i, rc = 0;
struct platform_device *pdev = parser->pdev;
/* Parse the regulator information */
for (i = DP_CORE_PM; i < DP_MAX_PM; i++) {
rc = dp_parser_get_vreg(parser, i);
if (rc) {
pr_err("get_dt_vreg_data failed for %s. rc=%d\n",
dp_parser_pm_name(i), rc);
i--;
for (; i >= DP_CORE_PM; i--)
dp_parser_put_vreg_data(&pdev->dev,
&parser->mp[i]);
break;
}
}
return rc;
}
static bool dp_parser_check_prefix(const char *clk_prefix, const char *clk_name)
{
return !!strnstr(clk_name, clk_prefix, strlen(clk_name));
}
static void dp_parser_put_clk_data(struct device *dev,
struct dss_module_power *mp)
{
if (!mp) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
if (mp->clk_config) {
devm_kfree(dev, mp->clk_config);
mp->clk_config = NULL;
}
mp->num_clk = 0;
}
static void dp_parser_put_gpio_data(struct device *dev,
struct dss_module_power *mp)
{
if (!mp) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
if (mp->gpio_config) {
devm_kfree(dev, mp->gpio_config);
mp->gpio_config = NULL;
}
mp->num_gpio = 0;
}
static int dp_parser_init_clk_data(struct dp_parser *parser)
{
int num_clk = 0, i = 0, rc = 0;
int core_clk_count = 0, ctrl_clk_count = 0;
const char *core_clk = "core";
const char *ctrl_clk = "ctrl";
const char *clk_name;
struct device *dev = &parser->pdev->dev;
struct dss_module_power *core_power = &parser->mp[DP_CORE_PM];
struct dss_module_power *ctrl_power = &parser->mp[DP_CTRL_PM];
num_clk = of_property_count_strings(dev->of_node, "clock-names");
if (num_clk <= 0) {
pr_err("no clocks are defined\n");
rc = -EINVAL;
goto exit;
}
for (i = 0; i < num_clk; i++) {
of_property_read_string_index(dev->of_node,
"clock-names", i, &clk_name);
if (dp_parser_check_prefix(core_clk, clk_name))
core_clk_count++;
if (dp_parser_check_prefix(ctrl_clk, clk_name))
ctrl_clk_count++;
}
/* Initialize the CORE power module */
if (core_clk_count <= 0) {
pr_err("no core clocks are defined\n");
rc = -EINVAL;
goto exit;
}
core_power->num_clk = core_clk_count;
core_power->clk_config = devm_kzalloc(dev,
sizeof(struct dss_clk) * core_power->num_clk,
GFP_KERNEL);
if (!core_power->clk_config) {
rc = -EINVAL;
goto exit;
}
/* Initialize the CTRL power module */
if (ctrl_clk_count <= 0) {
pr_err("no ctrl clocks are defined\n");
rc = -EINVAL;
goto ctrl_clock_error;
}
ctrl_power->num_clk = ctrl_clk_count;
ctrl_power->clk_config = devm_kzalloc(dev,
sizeof(struct dss_clk) * ctrl_power->num_clk,
GFP_KERNEL);
if (!ctrl_power->clk_config) {
ctrl_power->num_clk = 0;
rc = -EINVAL;
goto ctrl_clock_error;
}
return rc;
ctrl_clock_error:
dp_parser_put_clk_data(dev, core_power);
exit:
return rc;
}
static int dp_parser_clock(struct dp_parser *parser)
{
int rc = 0, i = 0;
int num_clk = 0;
int core_clk_index = 0, ctrl_clk_index = 0;
int core_clk_count = 0, ctrl_clk_count = 0;
const char *clk_name;
const char *core_clk = "core";
const char *ctrl_clk = "ctrl";
struct device *dev = &parser->pdev->dev;
struct dss_module_power *core_power = &parser->mp[DP_CORE_PM];
struct dss_module_power *ctrl_power = &parser->mp[DP_CTRL_PM];
core_power = &parser->mp[DP_CORE_PM];
ctrl_power = &parser->mp[DP_CTRL_PM];
rc = dp_parser_init_clk_data(parser);
if (rc) {
pr_err("failed to initialize power data\n");
rc = -EINVAL;
goto exit;
}
core_clk_count = core_power->num_clk;
ctrl_clk_count = ctrl_power->num_clk;
num_clk = core_clk_count + ctrl_clk_count;
for (i = 0; i < num_clk; i++) {
of_property_read_string_index(dev->of_node, "clock-names",
i, &clk_name);
if (dp_parser_check_prefix(core_clk, clk_name) &&
core_clk_index < core_clk_count) {
struct dss_clk *clk =
&core_power->clk_config[core_clk_index];
strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name));
clk->type = DSS_CLK_AHB;
core_clk_index++;
} else if (dp_parser_check_prefix(ctrl_clk, clk_name) &&
ctrl_clk_index < ctrl_clk_count) {
struct dss_clk *clk =
&ctrl_power->clk_config[ctrl_clk_index];
strlcpy(clk->clk_name, clk_name, sizeof(clk->clk_name));
ctrl_clk_index++;
if (!strcmp(clk_name, "ctrl_link_clk") ||
!strcmp(clk_name, "ctrl_pixel_clk"))
clk->type = DSS_CLK_PCLK;
else
clk->type = DSS_CLK_AHB;
}
}
pr_debug("clock parsing successful\n");
exit:
return rc;
}
static int dp_parser_parse(struct dp_parser *parser)
{
int rc = 0;
if (!parser) {
pr_err("invalid input\n");
rc = -EINVAL;
goto err;
}
rc = dp_parser_reg(parser);
if (rc)
goto err;
rc = dp_parser_aux(parser);
if (rc)
goto err;
rc = dp_parser_misc(parser);
if (rc)
goto err;
rc = dp_parser_clock(parser);
if (rc)
goto err;
rc = dp_parser_regulator(parser);
if (rc)
goto err;
rc = dp_parser_gpio(parser);
if (rc)
goto err;
rc = dp_parser_pinctrl(parser);
if (rc)
goto err;
rc = dp_parser_msm_hdcp_dev(parser);
err:
return rc;
}
static struct dp_io_data *dp_parser_get_io(struct dp_parser *dp_parser,
char *name)
{
int i = 0;
struct dp_io *io;
if (!dp_parser) {
pr_err("invalid input\n");
goto err;
}
io = &dp_parser->io;
for (i = 0; i < io->len; i++) {
struct dp_io_data *data = &io->data[i];
if (!strcmp(data->name, name))
return data;
}
err:
return NULL;
}
static void dp_parser_get_io_buf(struct dp_parser *dp_parser, char *name)
{
int i = 0;
struct dp_io *io;
if (!dp_parser) {
pr_err("invalid input\n");
return;
}
io = &dp_parser->io;
for (i = 0; i < io->len; i++) {
struct dp_io_data *data = &io->data[i];
if (!strcmp(data->name, name)) {
if (!data->buf)
data->buf = devm_kzalloc(&dp_parser->pdev->dev,
data->io.len, GFP_KERNEL);
}
}
}
static void dp_parser_clear_io_buf(struct dp_parser *dp_parser)
{
int i = 0;
struct dp_io *io;
if (!dp_parser) {
pr_err("invalid input\n");
return;
}
io = &dp_parser->io;
for (i = 0; i < io->len; i++) {
struct dp_io_data *data = &io->data[i];
if (data->buf)
devm_kfree(&dp_parser->pdev->dev, data->buf);
data->buf = NULL;
}
}
struct dp_parser *dp_parser_get(struct platform_device *pdev)
{
struct dp_parser *parser;
parser = devm_kzalloc(&pdev->dev, sizeof(*parser), GFP_KERNEL);
if (!parser)
return ERR_PTR(-ENOMEM);
parser->parse = dp_parser_parse;
parser->get_io = dp_parser_get_io;
parser->get_io_buf = dp_parser_get_io_buf;
parser->clear_io_buf = dp_parser_clear_io_buf;
parser->pdev = pdev;
return parser;
}
void dp_parser_put(struct dp_parser *parser)
{
int i = 0;
struct dss_module_power *power = NULL;
if (!parser) {
pr_err("invalid parser module\n");
return;
}
power = parser->mp;
for (i = 0; i < DP_MAX_PM; i++) {
dp_parser_put_clk_data(&parser->pdev->dev, &power[i]);
dp_parser_put_vreg_data(&parser->pdev->dev, &power[i]);
dp_parser_put_gpio_data(&parser->pdev->dev, &power[i]);
}
dp_parser_clear_io_buf(parser);
devm_kfree(&parser->pdev->dev, parser->io.data);
devm_kfree(&parser->pdev->dev, parser);
}