| /* imm.c -- low level driver for the IOMEGA MatchMaker |
| * parallel port SCSI host adapter. |
| * |
| * (The IMM is the embedded controller in the ZIP Plus drive.) |
| * |
| * My unoffical company acronym list is 21 pages long: |
| * FLA: Four letter acronym with built in facility for |
| * future expansion to five letters. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/blkdev.h> |
| #include <linux/parport.h> |
| #include <linux/workqueue.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <asm/io.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| |
| /* The following #define is to avoid a clash with hosts.c */ |
| #define IMM_PROBE_SPP 0x0001 |
| #define IMM_PROBE_PS2 0x0002 |
| #define IMM_PROBE_ECR 0x0010 |
| #define IMM_PROBE_EPP17 0x0100 |
| #define IMM_PROBE_EPP19 0x0200 |
| |
| |
| typedef struct { |
| struct pardevice *dev; /* Parport device entry */ |
| int base; /* Actual port address */ |
| int base_hi; /* Hi Base address for ECP-ISA chipset */ |
| int mode; /* Transfer mode */ |
| struct scsi_cmnd *cur_cmd; /* Current queued command */ |
| struct delayed_work imm_tq; /* Polling interrupt stuff */ |
| unsigned long jstart; /* Jiffies at start */ |
| unsigned failed:1; /* Failure flag */ |
| unsigned dp:1; /* Data phase present */ |
| unsigned rd:1; /* Read data in data phase */ |
| unsigned wanted:1; /* Parport sharing busy flag */ |
| wait_queue_head_t *waiting; |
| struct Scsi_Host *host; |
| struct list_head list; |
| } imm_struct; |
| |
| static void imm_reset_pulse(unsigned int base); |
| static int device_check(imm_struct *dev); |
| |
| #include "imm.h" |
| |
| static inline imm_struct *imm_dev(struct Scsi_Host *host) |
| { |
| return *(imm_struct **)&host->hostdata; |
| } |
| |
| static DEFINE_SPINLOCK(arbitration_lock); |
| |
| static void got_it(imm_struct *dev) |
| { |
| dev->base = dev->dev->port->base; |
| if (dev->cur_cmd) |
| dev->cur_cmd->SCp.phase = 1; |
| else |
| wake_up(dev->waiting); |
| } |
| |
| static void imm_wakeup(void *ref) |
| { |
| imm_struct *dev = (imm_struct *) ref; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&arbitration_lock, flags); |
| if (dev->wanted) { |
| parport_claim(dev->dev); |
| got_it(dev); |
| dev->wanted = 0; |
| } |
| spin_unlock_irqrestore(&arbitration_lock, flags); |
| } |
| |
| static int imm_pb_claim(imm_struct *dev) |
| { |
| unsigned long flags; |
| int res = 1; |
| spin_lock_irqsave(&arbitration_lock, flags); |
| if (parport_claim(dev->dev) == 0) { |
| got_it(dev); |
| res = 0; |
| } |
| dev->wanted = res; |
| spin_unlock_irqrestore(&arbitration_lock, flags); |
| return res; |
| } |
| |
| static void imm_pb_dismiss(imm_struct *dev) |
| { |
| unsigned long flags; |
| int wanted; |
| spin_lock_irqsave(&arbitration_lock, flags); |
| wanted = dev->wanted; |
| dev->wanted = 0; |
| spin_unlock_irqrestore(&arbitration_lock, flags); |
| if (!wanted) |
| parport_release(dev->dev); |
| } |
| |
| static inline void imm_pb_release(imm_struct *dev) |
| { |
| parport_release(dev->dev); |
| } |
| |
| /* This is to give the imm driver a way to modify the timings (and other |
| * parameters) by writing to the /proc/scsi/imm/0 file. |
| * Very simple method really... (Too simple, no error checking :( ) |
| * Reason: Kernel hackers HATE having to unload and reload modules for |
| * testing... |
| * Also gives a method to use a script to obtain optimum timings (TODO) |
| */ |
| static inline int imm_proc_write(imm_struct *dev, char *buffer, int length) |
| { |
| unsigned long x; |
| |
| if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) { |
| x = simple_strtoul(buffer + 5, NULL, 0); |
| dev->mode = x; |
| return length; |
| } |
| printk("imm /proc: invalid variable\n"); |
| return (-EINVAL); |
| } |
| |
| static int imm_proc_info(struct Scsi_Host *host, char *buffer, char **start, |
| off_t offset, int length, int inout) |
| { |
| imm_struct *dev = imm_dev(host); |
| int len = 0; |
| |
| if (inout) |
| return imm_proc_write(dev, buffer, length); |
| |
| len += sprintf(buffer + len, "Version : %s\n", IMM_VERSION); |
| len += |
| sprintf(buffer + len, "Parport : %s\n", |
| dev->dev->port->name); |
| len += |
| sprintf(buffer + len, "Mode : %s\n", |
| IMM_MODE_STRING[dev->mode]); |
| |
| /* Request for beyond end of buffer */ |
| if (offset > len) |
| return 0; |
| |
| *start = buffer + offset; |
| len -= offset; |
| if (len > length) |
| len = length; |
| return len; |
| } |
| |
| #if IMM_DEBUG > 0 |
| #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\ |
| y, __func__, __LINE__); imm_fail_func(x,y); |
| static inline void |
| imm_fail_func(imm_struct *dev, int error_code) |
| #else |
| static inline void |
| imm_fail(imm_struct *dev, int error_code) |
| #endif |
| { |
| /* If we fail a device then we trash status / message bytes */ |
| if (dev->cur_cmd) { |
| dev->cur_cmd->result = error_code << 16; |
| dev->failed = 1; |
| } |
| } |
| |
| /* |
| * Wait for the high bit to be set. |
| * |
| * In principle, this could be tied to an interrupt, but the adapter |
| * doesn't appear to be designed to support interrupts. We spin on |
| * the 0x80 ready bit. |
| */ |
| static unsigned char imm_wait(imm_struct *dev) |
| { |
| int k; |
| unsigned short ppb = dev->base; |
| unsigned char r; |
| |
| w_ctr(ppb, 0x0c); |
| |
| k = IMM_SPIN_TMO; |
| do { |
| r = r_str(ppb); |
| k--; |
| udelay(1); |
| } |
| while (!(r & 0x80) && (k)); |
| |
| /* |
| * STR register (LPT base+1) to SCSI mapping: |
| * |
| * STR imm imm |
| * =================================== |
| * 0x80 S_REQ S_REQ |
| * 0x40 !S_BSY (????) |
| * 0x20 !S_CD !S_CD |
| * 0x10 !S_IO !S_IO |
| * 0x08 (????) !S_BSY |
| * |
| * imm imm meaning |
| * ================================== |
| * 0xf0 0xb8 Bit mask |
| * 0xc0 0x88 ZIP wants more data |
| * 0xd0 0x98 ZIP wants to send more data |
| * 0xe0 0xa8 ZIP is expecting SCSI command data |
| * 0xf0 0xb8 end of transfer, ZIP is sending status |
| */ |
| w_ctr(ppb, 0x04); |
| if (k) |
| return (r & 0xb8); |
| |
| /* Counter expired - Time out occurred */ |
| imm_fail(dev, DID_TIME_OUT); |
| printk("imm timeout in imm_wait\n"); |
| return 0; /* command timed out */ |
| } |
| |
| static int imm_negotiate(imm_struct * tmp) |
| { |
| /* |
| * The following is supposedly the IEEE 1284-1994 negotiate |
| * sequence. I have yet to obtain a copy of the above standard |
| * so this is a bit of a guess... |
| * |
| * A fair chunk of this is based on the Linux parport implementation |
| * of IEEE 1284. |
| * |
| * Return 0 if data available |
| * 1 if no data available |
| */ |
| |
| unsigned short base = tmp->base; |
| unsigned char a, mode; |
| |
| switch (tmp->mode) { |
| case IMM_NIBBLE: |
| mode = 0x00; |
| break; |
| case IMM_PS2: |
| mode = 0x01; |
| break; |
| default: |
| return 0; |
| } |
| |
| w_ctr(base, 0x04); |
| udelay(5); |
| w_dtr(base, mode); |
| udelay(100); |
| w_ctr(base, 0x06); |
| udelay(5); |
| a = (r_str(base) & 0x20) ? 0 : 1; |
| udelay(5); |
| w_ctr(base, 0x07); |
| udelay(5); |
| w_ctr(base, 0x06); |
| |
| if (a) { |
| printk |
| ("IMM: IEEE1284 negotiate indicates no data available.\n"); |
| imm_fail(tmp, DID_ERROR); |
| } |
| return a; |
| } |
| |
| /* |
| * Clear EPP timeout bit. |
| */ |
| static inline void epp_reset(unsigned short ppb) |
| { |
| int i; |
| |
| i = r_str(ppb); |
| w_str(ppb, i); |
| w_str(ppb, i & 0xfe); |
| } |
| |
| /* |
| * Wait for empty ECP fifo (if we are in ECP fifo mode only) |
| */ |
| static inline void ecp_sync(imm_struct *dev) |
| { |
| int i, ppb_hi = dev->base_hi; |
| |
| if (ppb_hi == 0) |
| return; |
| |
| if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */ |
| for (i = 0; i < 100; i++) { |
| if (r_ecr(ppb_hi) & 0x01) |
| return; |
| udelay(5); |
| } |
| printk("imm: ECP sync failed as data still present in FIFO.\n"); |
| } |
| } |
| |
| static int imm_byte_out(unsigned short base, const char *buffer, int len) |
| { |
| int i; |
| |
| w_ctr(base, 0x4); /* apparently a sane mode */ |
| for (i = len >> 1; i; i--) { |
| w_dtr(base, *buffer++); |
| w_ctr(base, 0x5); /* Drop STROBE low */ |
| w_dtr(base, *buffer++); |
| w_ctr(base, 0x0); /* STROBE high + INIT low */ |
| } |
| w_ctr(base, 0x4); /* apparently a sane mode */ |
| return 1; /* All went well - we hope! */ |
| } |
| |
| static int imm_nibble_in(unsigned short base, char *buffer, int len) |
| { |
| unsigned char l; |
| int i; |
| |
| /* |
| * The following is based on documented timing signals |
| */ |
| w_ctr(base, 0x4); |
| for (i = len; i; i--) { |
| w_ctr(base, 0x6); |
| l = (r_str(base) & 0xf0) >> 4; |
| w_ctr(base, 0x5); |
| *buffer++ = (r_str(base) & 0xf0) | l; |
| w_ctr(base, 0x4); |
| } |
| return 1; /* All went well - we hope! */ |
| } |
| |
| static int imm_byte_in(unsigned short base, char *buffer, int len) |
| { |
| int i; |
| |
| /* |
| * The following is based on documented timing signals |
| */ |
| w_ctr(base, 0x4); |
| for (i = len; i; i--) { |
| w_ctr(base, 0x26); |
| *buffer++ = r_dtr(base); |
| w_ctr(base, 0x25); |
| } |
| return 1; /* All went well - we hope! */ |
| } |
| |
| static int imm_out(imm_struct *dev, char *buffer, int len) |
| { |
| unsigned short ppb = dev->base; |
| int r = imm_wait(dev); |
| |
| /* |
| * Make sure that: |
| * a) the SCSI bus is BUSY (device still listening) |
| * b) the device is listening |
| */ |
| if ((r & 0x18) != 0x08) { |
| imm_fail(dev, DID_ERROR); |
| printk("IMM: returned SCSI status %2x\n", r); |
| return 0; |
| } |
| switch (dev->mode) { |
| case IMM_EPP_32: |
| case IMM_EPP_16: |
| case IMM_EPP_8: |
| epp_reset(ppb); |
| w_ctr(ppb, 0x4); |
| #ifdef CONFIG_SCSI_IZIP_EPP16 |
| if (!(((long) buffer | len) & 0x01)) |
| outsw(ppb + 4, buffer, len >> 1); |
| #else |
| if (!(((long) buffer | len) & 0x03)) |
| outsl(ppb + 4, buffer, len >> 2); |
| #endif |
| else |
| outsb(ppb + 4, buffer, len); |
| w_ctr(ppb, 0xc); |
| r = !(r_str(ppb) & 0x01); |
| w_ctr(ppb, 0xc); |
| ecp_sync(dev); |
| break; |
| |
| case IMM_NIBBLE: |
| case IMM_PS2: |
| /* 8 bit output, with a loop */ |
| r = imm_byte_out(ppb, buffer, len); |
| break; |
| |
| default: |
| printk("IMM: bug in imm_out()\n"); |
| r = 0; |
| } |
| return r; |
| } |
| |
| static int imm_in(imm_struct *dev, char *buffer, int len) |
| { |
| unsigned short ppb = dev->base; |
| int r = imm_wait(dev); |
| |
| /* |
| * Make sure that: |
| * a) the SCSI bus is BUSY (device still listening) |
| * b) the device is sending data |
| */ |
| if ((r & 0x18) != 0x18) { |
| imm_fail(dev, DID_ERROR); |
| return 0; |
| } |
| switch (dev->mode) { |
| case IMM_NIBBLE: |
| /* 4 bit input, with a loop */ |
| r = imm_nibble_in(ppb, buffer, len); |
| w_ctr(ppb, 0xc); |
| break; |
| |
| case IMM_PS2: |
| /* 8 bit input, with a loop */ |
| r = imm_byte_in(ppb, buffer, len); |
| w_ctr(ppb, 0xc); |
| break; |
| |
| case IMM_EPP_32: |
| case IMM_EPP_16: |
| case IMM_EPP_8: |
| epp_reset(ppb); |
| w_ctr(ppb, 0x24); |
| #ifdef CONFIG_SCSI_IZIP_EPP16 |
| if (!(((long) buffer | len) & 0x01)) |
| insw(ppb + 4, buffer, len >> 1); |
| #else |
| if (!(((long) buffer | len) & 0x03)) |
| insl(ppb + 4, buffer, len >> 2); |
| #endif |
| else |
| insb(ppb + 4, buffer, len); |
| w_ctr(ppb, 0x2c); |
| r = !(r_str(ppb) & 0x01); |
| w_ctr(ppb, 0x2c); |
| ecp_sync(dev); |
| break; |
| |
| default: |
| printk("IMM: bug in imm_ins()\n"); |
| r = 0; |
| break; |
| } |
| return r; |
| } |
| |
| static int imm_cpp(unsigned short ppb, unsigned char b) |
| { |
| /* |
| * Comments on udelay values refer to the |
| * Command Packet Protocol (CPP) timing diagram. |
| */ |
| |
| unsigned char s1, s2, s3; |
| w_ctr(ppb, 0x0c); |
| udelay(2); /* 1 usec - infinite */ |
| w_dtr(ppb, 0xaa); |
| udelay(10); /* 7 usec - infinite */ |
| w_dtr(ppb, 0x55); |
| udelay(10); /* 7 usec - infinite */ |
| w_dtr(ppb, 0x00); |
| udelay(10); /* 7 usec - infinite */ |
| w_dtr(ppb, 0xff); |
| udelay(10); /* 7 usec - infinite */ |
| s1 = r_str(ppb) & 0xb8; |
| w_dtr(ppb, 0x87); |
| udelay(10); /* 7 usec - infinite */ |
| s2 = r_str(ppb) & 0xb8; |
| w_dtr(ppb, 0x78); |
| udelay(10); /* 7 usec - infinite */ |
| s3 = r_str(ppb) & 0x38; |
| /* |
| * Values for b are: |
| * 0000 00aa Assign address aa to current device |
| * 0010 00aa Select device aa in EPP Winbond mode |
| * 0010 10aa Select device aa in EPP mode |
| * 0011 xxxx Deselect all devices |
| * 0110 00aa Test device aa |
| * 1101 00aa Select device aa in ECP mode |
| * 1110 00aa Select device aa in Compatible mode |
| */ |
| w_dtr(ppb, b); |
| udelay(2); /* 1 usec - infinite */ |
| w_ctr(ppb, 0x0c); |
| udelay(10); /* 7 usec - infinite */ |
| w_ctr(ppb, 0x0d); |
| udelay(2); /* 1 usec - infinite */ |
| w_ctr(ppb, 0x0c); |
| udelay(10); /* 7 usec - infinite */ |
| w_dtr(ppb, 0xff); |
| udelay(10); /* 7 usec - infinite */ |
| |
| /* |
| * The following table is electrical pin values. |
| * (BSY is inverted at the CTR register) |
| * |
| * BSY ACK POut SEL Fault |
| * S1 0 X 1 1 1 |
| * S2 1 X 0 1 1 |
| * S3 L X 1 1 S |
| * |
| * L => Last device in chain |
| * S => Selected |
| * |
| * Observered values for S1,S2,S3 are: |
| * Disconnect => f8/58/78 |
| * Connect => f8/58/70 |
| */ |
| if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30)) |
| return 1; /* Connected */ |
| if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38)) |
| return 0; /* Disconnected */ |
| |
| return -1; /* No device present */ |
| } |
| |
| static inline int imm_connect(imm_struct *dev, int flag) |
| { |
| unsigned short ppb = dev->base; |
| |
| imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ |
| imm_cpp(ppb, 0x30); /* Disconnect all devices */ |
| |
| if ((dev->mode == IMM_EPP_8) || |
| (dev->mode == IMM_EPP_16) || |
| (dev->mode == IMM_EPP_32)) |
| return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */ |
| return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ |
| } |
| |
| static void imm_disconnect(imm_struct *dev) |
| { |
| imm_cpp(dev->base, 0x30); /* Disconnect all devices */ |
| } |
| |
| static int imm_select(imm_struct *dev, int target) |
| { |
| int k; |
| unsigned short ppb = dev->base; |
| |
| /* |
| * Firstly we want to make sure there is nothing |
| * holding onto the SCSI bus. |
| */ |
| w_ctr(ppb, 0xc); |
| |
| k = IMM_SELECT_TMO; |
| do { |
| k--; |
| } while ((r_str(ppb) & 0x08) && (k)); |
| |
| if (!k) |
| return 0; |
| |
| /* |
| * Now assert the SCSI ID (HOST and TARGET) on the data bus |
| */ |
| w_ctr(ppb, 0x4); |
| w_dtr(ppb, 0x80 | (1 << target)); |
| udelay(1); |
| |
| /* |
| * Deassert SELIN first followed by STROBE |
| */ |
| w_ctr(ppb, 0xc); |
| w_ctr(ppb, 0xd); |
| |
| /* |
| * ACK should drop low while SELIN is deasserted. |
| * FAULT should drop low when the SCSI device latches the bus. |
| */ |
| k = IMM_SELECT_TMO; |
| do { |
| k--; |
| } |
| while (!(r_str(ppb) & 0x08) && (k)); |
| |
| /* |
| * Place the interface back into a sane state (status mode) |
| */ |
| w_ctr(ppb, 0xc); |
| return (k) ? 1 : 0; |
| } |
| |
| static int imm_init(imm_struct *dev) |
| { |
| if (imm_connect(dev, 0) != 1) |
| return -EIO; |
| imm_reset_pulse(dev->base); |
| mdelay(1); /* Delay to allow devices to settle */ |
| imm_disconnect(dev); |
| mdelay(1); /* Another delay to allow devices to settle */ |
| return device_check(dev); |
| } |
| |
| static inline int imm_send_command(struct scsi_cmnd *cmd) |
| { |
| imm_struct *dev = imm_dev(cmd->device->host); |
| int k; |
| |
| /* NOTE: IMM uses byte pairs */ |
| for (k = 0; k < cmd->cmd_len; k += 2) |
| if (!imm_out(dev, &cmd->cmnd[k], 2)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * The bulk flag enables some optimisations in the data transfer loops, |
| * it should be true for any command that transfers data in integral |
| * numbers of sectors. |
| * |
| * The driver appears to remain stable if we speed up the parallel port |
| * i/o in this function, but not elsewhere. |
| */ |
| static int imm_completion(struct scsi_cmnd *cmd) |
| { |
| /* Return codes: |
| * -1 Error |
| * 0 Told to schedule |
| * 1 Finished data transfer |
| */ |
| imm_struct *dev = imm_dev(cmd->device->host); |
| unsigned short ppb = dev->base; |
| unsigned long start_jiffies = jiffies; |
| |
| unsigned char r, v; |
| int fast, bulk, status; |
| |
| v = cmd->cmnd[0]; |
| bulk = ((v == READ_6) || |
| (v == READ_10) || (v == WRITE_6) || (v == WRITE_10)); |
| |
| /* |
| * We only get here if the drive is ready to comunicate, |
| * hence no need for a full imm_wait. |
| */ |
| w_ctr(ppb, 0x0c); |
| r = (r_str(ppb) & 0xb8); |
| |
| /* |
| * while (device is not ready to send status byte) |
| * loop; |
| */ |
| while (r != (unsigned char) 0xb8) { |
| /* |
| * If we have been running for more than a full timer tick |
| * then take a rest. |
| */ |
| if (time_after(jiffies, start_jiffies + 1)) |
| return 0; |
| |
| /* |
| * FAIL if: |
| * a) Drive status is screwy (!ready && !present) |
| * b) Drive is requesting/sending more data than expected |
| */ |
| if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) { |
| imm_fail(dev, DID_ERROR); |
| return -1; /* ERROR_RETURN */ |
| } |
| /* determine if we should use burst I/O */ |
| if (dev->rd == 0) { |
| fast = (bulk |
| && (cmd->SCp.this_residual >= |
| IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2; |
| status = imm_out(dev, cmd->SCp.ptr, fast); |
| } else { |
| fast = (bulk |
| && (cmd->SCp.this_residual >= |
| IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1; |
| status = imm_in(dev, cmd->SCp.ptr, fast); |
| } |
| |
| cmd->SCp.ptr += fast; |
| cmd->SCp.this_residual -= fast; |
| |
| if (!status) { |
| imm_fail(dev, DID_BUS_BUSY); |
| return -1; /* ERROR_RETURN */ |
| } |
| if (cmd->SCp.buffer && !cmd->SCp.this_residual) { |
| /* if scatter/gather, advance to the next segment */ |
| if (cmd->SCp.buffers_residual--) { |
| cmd->SCp.buffer++; |
| cmd->SCp.this_residual = |
| cmd->SCp.buffer->length; |
| cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); |
| |
| /* |
| * Make sure that we transfer even number of bytes |
| * otherwise it makes imm_byte_out() messy. |
| */ |
| if (cmd->SCp.this_residual & 0x01) |
| cmd->SCp.this_residual++; |
| } |
| } |
| /* Now check to see if the drive is ready to comunicate */ |
| w_ctr(ppb, 0x0c); |
| r = (r_str(ppb) & 0xb8); |
| |
| /* If not, drop back down to the scheduler and wait a timer tick */ |
| if (!(r & 0x80)) |
| return 0; |
| } |
| return 1; /* FINISH_RETURN */ |
| } |
| |
| /* |
| * Since the IMM itself doesn't generate interrupts, we use |
| * the scheduler's task queue to generate a stream of call-backs and |
| * complete the request when the drive is ready. |
| */ |
| static void imm_interrupt(struct work_struct *work) |
| { |
| imm_struct *dev = container_of(work, imm_struct, imm_tq.work); |
| struct scsi_cmnd *cmd = dev->cur_cmd; |
| struct Scsi_Host *host = cmd->device->host; |
| unsigned long flags; |
| |
| if (imm_engine(dev, cmd)) { |
| schedule_delayed_work(&dev->imm_tq, 1); |
| return; |
| } |
| /* Command must of completed hence it is safe to let go... */ |
| #if IMM_DEBUG > 0 |
| switch ((cmd->result >> 16) & 0xff) { |
| case DID_OK: |
| break; |
| case DID_NO_CONNECT: |
| printk("imm: no device at SCSI ID %i\n", cmd->device->id); |
| break; |
| case DID_BUS_BUSY: |
| printk("imm: BUS BUSY - EPP timeout detected\n"); |
| break; |
| case DID_TIME_OUT: |
| printk("imm: unknown timeout\n"); |
| break; |
| case DID_ABORT: |
| printk("imm: told to abort\n"); |
| break; |
| case DID_PARITY: |
| printk("imm: parity error (???)\n"); |
| break; |
| case DID_ERROR: |
| printk("imm: internal driver error\n"); |
| break; |
| case DID_RESET: |
| printk("imm: told to reset device\n"); |
| break; |
| case DID_BAD_INTR: |
| printk("imm: bad interrupt (???)\n"); |
| break; |
| default: |
| printk("imm: bad return code (%02x)\n", |
| (cmd->result >> 16) & 0xff); |
| } |
| #endif |
| |
| if (cmd->SCp.phase > 1) |
| imm_disconnect(dev); |
| |
| imm_pb_dismiss(dev); |
| |
| spin_lock_irqsave(host->host_lock, flags); |
| dev->cur_cmd = NULL; |
| cmd->scsi_done(cmd); |
| spin_unlock_irqrestore(host->host_lock, flags); |
| return; |
| } |
| |
| static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd) |
| { |
| unsigned short ppb = dev->base; |
| unsigned char l = 0, h = 0; |
| int retv, x; |
| |
| /* First check for any errors that may have occurred |
| * Here we check for internal errors |
| */ |
| if (dev->failed) |
| return 0; |
| |
| switch (cmd->SCp.phase) { |
| case 0: /* Phase 0 - Waiting for parport */ |
| if (time_after(jiffies, dev->jstart + HZ)) { |
| /* |
| * We waited more than a second |
| * for parport to call us |
| */ |
| imm_fail(dev, DID_BUS_BUSY); |
| return 0; |
| } |
| return 1; /* wait until imm_wakeup claims parport */ |
| /* Phase 1 - Connected */ |
| case 1: |
| imm_connect(dev, CONNECT_EPP_MAYBE); |
| cmd->SCp.phase++; |
| |
| /* Phase 2 - We are now talking to the scsi bus */ |
| case 2: |
| if (!imm_select(dev, scmd_id(cmd))) { |
| imm_fail(dev, DID_NO_CONNECT); |
| return 0; |
| } |
| cmd->SCp.phase++; |
| |
| /* Phase 3 - Ready to accept a command */ |
| case 3: |
| w_ctr(ppb, 0x0c); |
| if (!(r_str(ppb) & 0x80)) |
| return 1; |
| |
| if (!imm_send_command(cmd)) |
| return 0; |
| cmd->SCp.phase++; |
| |
| /* Phase 4 - Setup scatter/gather buffers */ |
| case 4: |
| if (scsi_bufflen(cmd)) { |
| cmd->SCp.buffer = scsi_sglist(cmd); |
| cmd->SCp.this_residual = cmd->SCp.buffer->length; |
| cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); |
| } else { |
| cmd->SCp.buffer = NULL; |
| cmd->SCp.this_residual = 0; |
| cmd->SCp.ptr = NULL; |
| } |
| cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; |
| cmd->SCp.phase++; |
| if (cmd->SCp.this_residual & 0x01) |
| cmd->SCp.this_residual++; |
| /* Phase 5 - Pre-Data transfer stage */ |
| case 5: |
| /* Spin lock for BUSY */ |
| w_ctr(ppb, 0x0c); |
| if (!(r_str(ppb) & 0x80)) |
| return 1; |
| |
| /* Require negotiation for read requests */ |
| x = (r_str(ppb) & 0xb8); |
| dev->rd = (x & 0x10) ? 1 : 0; |
| dev->dp = (x & 0x20) ? 0 : 1; |
| |
| if ((dev->dp) && (dev->rd)) |
| if (imm_negotiate(dev)) |
| return 0; |
| cmd->SCp.phase++; |
| |
| /* Phase 6 - Data transfer stage */ |
| case 6: |
| /* Spin lock for BUSY */ |
| w_ctr(ppb, 0x0c); |
| if (!(r_str(ppb) & 0x80)) |
| return 1; |
| |
| if (dev->dp) { |
| retv = imm_completion(cmd); |
| if (retv == -1) |
| return 0; |
| if (retv == 0) |
| return 1; |
| } |
| cmd->SCp.phase++; |
| |
| /* Phase 7 - Post data transfer stage */ |
| case 7: |
| if ((dev->dp) && (dev->rd)) { |
| if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { |
| w_ctr(ppb, 0x4); |
| w_ctr(ppb, 0xc); |
| w_ctr(ppb, 0xe); |
| w_ctr(ppb, 0x4); |
| } |
| } |
| cmd->SCp.phase++; |
| |
| /* Phase 8 - Read status/message */ |
| case 8: |
| /* Check for data overrun */ |
| if (imm_wait(dev) != (unsigned char) 0xb8) { |
| imm_fail(dev, DID_ERROR); |
| return 0; |
| } |
| if (imm_negotiate(dev)) |
| return 0; |
| if (imm_in(dev, &l, 1)) { /* read status byte */ |
| /* Check for optional message byte */ |
| if (imm_wait(dev) == (unsigned char) 0xb8) |
| imm_in(dev, &h, 1); |
| cmd->result = (DID_OK << 16) + (l & STATUS_MASK); |
| } |
| if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { |
| w_ctr(ppb, 0x4); |
| w_ctr(ppb, 0xc); |
| w_ctr(ppb, 0xe); |
| w_ctr(ppb, 0x4); |
| } |
| return 0; /* Finished */ |
| break; |
| |
| default: |
| printk("imm: Invalid scsi phase\n"); |
| } |
| return 0; |
| } |
| |
| static int imm_queuecommand(struct scsi_cmnd *cmd, |
| void (*done)(struct scsi_cmnd *)) |
| { |
| imm_struct *dev = imm_dev(cmd->device->host); |
| |
| if (dev->cur_cmd) { |
| printk("IMM: bug in imm_queuecommand\n"); |
| return 0; |
| } |
| dev->failed = 0; |
| dev->jstart = jiffies; |
| dev->cur_cmd = cmd; |
| cmd->scsi_done = done; |
| cmd->result = DID_ERROR << 16; /* default return code */ |
| cmd->SCp.phase = 0; /* bus free */ |
| |
| schedule_delayed_work(&dev->imm_tq, 0); |
| |
| imm_pb_claim(dev); |
| |
| return 0; |
| } |
| |
| /* |
| * Apparently the disk->capacity attribute is off by 1 sector |
| * for all disk drives. We add the one here, but it should really |
| * be done in sd.c. Even if it gets fixed there, this will still |
| * work. |
| */ |
| static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev, |
| sector_t capacity, int ip[]) |
| { |
| ip[0] = 0x40; |
| ip[1] = 0x20; |
| ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); |
| if (ip[2] > 1024) { |
| ip[0] = 0xff; |
| ip[1] = 0x3f; |
| ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); |
| } |
| return 0; |
| } |
| |
| static int imm_abort(struct scsi_cmnd *cmd) |
| { |
| imm_struct *dev = imm_dev(cmd->device->host); |
| /* |
| * There is no method for aborting commands since Iomega |
| * have tied the SCSI_MESSAGE line high in the interface |
| */ |
| |
| switch (cmd->SCp.phase) { |
| case 0: /* Do not have access to parport */ |
| case 1: /* Have not connected to interface */ |
| dev->cur_cmd = NULL; /* Forget the problem */ |
| return SUCCESS; |
| break; |
| default: /* SCSI command sent, can not abort */ |
| return FAILED; |
| break; |
| } |
| } |
| |
| static void imm_reset_pulse(unsigned int base) |
| { |
| w_ctr(base, 0x04); |
| w_dtr(base, 0x40); |
| udelay(1); |
| w_ctr(base, 0x0c); |
| w_ctr(base, 0x0d); |
| udelay(50); |
| w_ctr(base, 0x0c); |
| w_ctr(base, 0x04); |
| } |
| |
| static int imm_reset(struct scsi_cmnd *cmd) |
| { |
| imm_struct *dev = imm_dev(cmd->device->host); |
| |
| if (cmd->SCp.phase) |
| imm_disconnect(dev); |
| dev->cur_cmd = NULL; /* Forget the problem */ |
| |
| imm_connect(dev, CONNECT_NORMAL); |
| imm_reset_pulse(dev->base); |
| mdelay(1); /* device settle delay */ |
| imm_disconnect(dev); |
| mdelay(1); /* device settle delay */ |
| return SUCCESS; |
| } |
| |
| static int device_check(imm_struct *dev) |
| { |
| /* This routine looks for a device and then attempts to use EPP |
| to send a command. If all goes as planned then EPP is available. */ |
| |
| static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| int loop, old_mode, status, k, ppb = dev->base; |
| unsigned char l; |
| |
| old_mode = dev->mode; |
| for (loop = 0; loop < 8; loop++) { |
| /* Attempt to use EPP for Test Unit Ready */ |
| if ((ppb & 0x0007) == 0x0000) |
| dev->mode = IMM_EPP_32; |
| |
| second_pass: |
| imm_connect(dev, CONNECT_EPP_MAYBE); |
| /* Select SCSI device */ |
| if (!imm_select(dev, loop)) { |
| imm_disconnect(dev); |
| continue; |
| } |
| printk("imm: Found device at ID %i, Attempting to use %s\n", |
| loop, IMM_MODE_STRING[dev->mode]); |
| |
| /* Send SCSI command */ |
| status = 1; |
| w_ctr(ppb, 0x0c); |
| for (l = 0; (l < 3) && (status); l++) |
| status = imm_out(dev, &cmd[l << 1], 2); |
| |
| if (!status) { |
| imm_disconnect(dev); |
| imm_connect(dev, CONNECT_EPP_MAYBE); |
| imm_reset_pulse(dev->base); |
| udelay(1000); |
| imm_disconnect(dev); |
| udelay(1000); |
| if (dev->mode == IMM_EPP_32) { |
| dev->mode = old_mode; |
| goto second_pass; |
| } |
| printk("imm: Unable to establish communication\n"); |
| return -EIO; |
| } |
| w_ctr(ppb, 0x0c); |
| |
| k = 1000000; /* 1 Second */ |
| do { |
| l = r_str(ppb); |
| k--; |
| udelay(1); |
| } while (!(l & 0x80) && (k)); |
| |
| l &= 0xb8; |
| |
| if (l != 0xb8) { |
| imm_disconnect(dev); |
| imm_connect(dev, CONNECT_EPP_MAYBE); |
| imm_reset_pulse(dev->base); |
| udelay(1000); |
| imm_disconnect(dev); |
| udelay(1000); |
| if (dev->mode == IMM_EPP_32) { |
| dev->mode = old_mode; |
| goto second_pass; |
| } |
| printk |
| ("imm: Unable to establish communication\n"); |
| return -EIO; |
| } |
| imm_disconnect(dev); |
| printk |
| ("imm: Communication established at 0x%x with ID %i using %s\n", |
| ppb, loop, IMM_MODE_STRING[dev->mode]); |
| imm_connect(dev, CONNECT_EPP_MAYBE); |
| imm_reset_pulse(dev->base); |
| udelay(1000); |
| imm_disconnect(dev); |
| udelay(1000); |
| return 0; |
| } |
| printk("imm: No devices found\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * imm cannot deal with highmem, so this causes all IO pages for this host |
| * to reside in low memory (hence mapped) |
| */ |
| static int imm_adjust_queue(struct scsi_device *device) |
| { |
| blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH); |
| return 0; |
| } |
| |
| static struct scsi_host_template imm_template = { |
| .module = THIS_MODULE, |
| .proc_name = "imm", |
| .proc_info = imm_proc_info, |
| .name = "Iomega VPI2 (imm) interface", |
| .queuecommand = imm_queuecommand, |
| .eh_abort_handler = imm_abort, |
| .eh_bus_reset_handler = imm_reset, |
| .eh_host_reset_handler = imm_reset, |
| .bios_param = imm_biosparam, |
| .this_id = 7, |
| .sg_tablesize = SG_ALL, |
| .cmd_per_lun = 1, |
| .use_clustering = ENABLE_CLUSTERING, |
| .can_queue = 1, |
| .slave_alloc = imm_adjust_queue, |
| }; |
| |
| /*************************************************************************** |
| * Parallel port probing routines * |
| ***************************************************************************/ |
| |
| static LIST_HEAD(imm_hosts); |
| |
| static int __imm_attach(struct parport *pb) |
| { |
| struct Scsi_Host *host; |
| imm_struct *dev; |
| DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting); |
| DEFINE_WAIT(wait); |
| int ports; |
| int modes, ppb; |
| int err = -ENOMEM; |
| |
| init_waitqueue_head(&waiting); |
| |
| dev = kzalloc(sizeof(imm_struct), GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| |
| |
| dev->base = -1; |
| dev->mode = IMM_AUTODETECT; |
| INIT_LIST_HEAD(&dev->list); |
| |
| dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup, |
| NULL, 0, dev); |
| |
| if (!dev->dev) |
| goto out; |
| |
| |
| /* Claim the bus so it remembers what we do to the control |
| * registers. [ CTR and ECP ] |
| */ |
| err = -EBUSY; |
| dev->waiting = &waiting; |
| prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE); |
| if (imm_pb_claim(dev)) |
| schedule_timeout(3 * HZ); |
| if (dev->wanted) { |
| printk(KERN_ERR "imm%d: failed to claim parport because " |
| "a pardevice is owning the port for too long " |
| "time!\n", pb->number); |
| imm_pb_dismiss(dev); |
| dev->waiting = NULL; |
| finish_wait(&waiting, &wait); |
| goto out1; |
| } |
| dev->waiting = NULL; |
| finish_wait(&waiting, &wait); |
| ppb = dev->base = dev->dev->port->base; |
| dev->base_hi = dev->dev->port->base_hi; |
| w_ctr(ppb, 0x0c); |
| modes = dev->dev->port->modes; |
| |
| /* Mode detection works up the chain of speed |
| * This avoids a nasty if-then-else-if-... tree |
| */ |
| dev->mode = IMM_NIBBLE; |
| |
| if (modes & PARPORT_MODE_TRISTATE) |
| dev->mode = IMM_PS2; |
| |
| /* Done configuration */ |
| |
| err = imm_init(dev); |
| |
| imm_pb_release(dev); |
| |
| if (err) |
| goto out1; |
| |
| /* now the glue ... */ |
| if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2) |
| ports = 3; |
| else |
| ports = 8; |
| |
| INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt); |
| |
| err = -ENOMEM; |
| host = scsi_host_alloc(&imm_template, sizeof(imm_struct *)); |
| if (!host) |
| goto out1; |
| host->io_port = pb->base; |
| host->n_io_port = ports; |
| host->dma_channel = -1; |
| host->unique_id = pb->number; |
| *(imm_struct **)&host->hostdata = dev; |
| dev->host = host; |
| list_add_tail(&dev->list, &imm_hosts); |
| err = scsi_add_host(host, NULL); |
| if (err) |
| goto out2; |
| scsi_scan_host(host); |
| return 0; |
| |
| out2: |
| list_del_init(&dev->list); |
| scsi_host_put(host); |
| out1: |
| parport_unregister_device(dev->dev); |
| out: |
| kfree(dev); |
| return err; |
| } |
| |
| static void imm_attach(struct parport *pb) |
| { |
| __imm_attach(pb); |
| } |
| |
| static void imm_detach(struct parport *pb) |
| { |
| imm_struct *dev; |
| list_for_each_entry(dev, &imm_hosts, list) { |
| if (dev->dev->port == pb) { |
| list_del_init(&dev->list); |
| scsi_remove_host(dev->host); |
| scsi_host_put(dev->host); |
| parport_unregister_device(dev->dev); |
| kfree(dev); |
| break; |
| } |
| } |
| } |
| |
| static struct parport_driver imm_driver = { |
| .name = "imm", |
| .attach = imm_attach, |
| .detach = imm_detach, |
| }; |
| |
| static int __init imm_driver_init(void) |
| { |
| printk("imm: Version %s\n", IMM_VERSION); |
| return parport_register_driver(&imm_driver); |
| } |
| |
| static void __exit imm_driver_exit(void) |
| { |
| parport_unregister_driver(&imm_driver); |
| } |
| |
| module_init(imm_driver_init); |
| module_exit(imm_driver_exit); |
| |
| MODULE_LICENSE("GPL"); |