| /* |
| * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Author: Tom Tucker <tom@opengridcomputing.com> |
| */ |
| |
| #include <linux/sunrpc/debug.h> |
| #include <linux/sunrpc/rpc_rdma.h> |
| #include <linux/spinlock.h> |
| #include <asm/unaligned.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| |
| #define RPCDBG_FACILITY RPCDBG_SVCXPRT |
| |
| /* |
| * Replace the pages in the rq_argpages array with the pages from the SGE in |
| * the RDMA_RECV completion. The SGL should contain full pages up until the |
| * last one. |
| */ |
| static void rdma_build_arg_xdr(struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *ctxt, |
| u32 byte_count) |
| { |
| struct page *page; |
| u32 bc; |
| int sge_no; |
| |
| /* Swap the page in the SGE with the page in argpages */ |
| page = ctxt->pages[0]; |
| put_page(rqstp->rq_pages[0]); |
| rqstp->rq_pages[0] = page; |
| |
| /* Set up the XDR head */ |
| rqstp->rq_arg.head[0].iov_base = page_address(page); |
| rqstp->rq_arg.head[0].iov_len = min(byte_count, ctxt->sge[0].length); |
| rqstp->rq_arg.len = byte_count; |
| rqstp->rq_arg.buflen = byte_count; |
| |
| /* Compute bytes past head in the SGL */ |
| bc = byte_count - rqstp->rq_arg.head[0].iov_len; |
| |
| /* If data remains, store it in the pagelist */ |
| rqstp->rq_arg.page_len = bc; |
| rqstp->rq_arg.page_base = 0; |
| rqstp->rq_arg.pages = &rqstp->rq_pages[1]; |
| sge_no = 1; |
| while (bc && sge_no < ctxt->count) { |
| page = ctxt->pages[sge_no]; |
| put_page(rqstp->rq_pages[sge_no]); |
| rqstp->rq_pages[sge_no] = page; |
| bc -= min(bc, ctxt->sge[sge_no].length); |
| rqstp->rq_arg.buflen += ctxt->sge[sge_no].length; |
| sge_no++; |
| } |
| rqstp->rq_respages = &rqstp->rq_pages[sge_no]; |
| |
| /* We should never run out of SGE because the limit is defined to |
| * support the max allowed RPC data length |
| */ |
| BUG_ON(bc && (sge_no == ctxt->count)); |
| BUG_ON((rqstp->rq_arg.head[0].iov_len + rqstp->rq_arg.page_len) |
| != byte_count); |
| BUG_ON(rqstp->rq_arg.len != byte_count); |
| |
| /* If not all pages were used from the SGL, free the remaining ones */ |
| bc = sge_no; |
| while (sge_no < ctxt->count) { |
| page = ctxt->pages[sge_no++]; |
| put_page(page); |
| } |
| ctxt->count = bc; |
| |
| /* Set up tail */ |
| rqstp->rq_arg.tail[0].iov_base = NULL; |
| rqstp->rq_arg.tail[0].iov_len = 0; |
| } |
| |
| /* Encode a read-chunk-list as an array of IB SGE |
| * |
| * Assumptions: |
| * - chunk[0]->position points to pages[0] at an offset of 0 |
| * - pages[] is not physically or virtually contiguous and consists of |
| * PAGE_SIZE elements. |
| * |
| * Output: |
| * - sge array pointing into pages[] array. |
| * - chunk_sge array specifying sge index and count for each |
| * chunk in the read list |
| * |
| */ |
| static int map_read_chunks(struct svcxprt_rdma *xprt, |
| struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *head, |
| struct rpcrdma_msg *rmsgp, |
| struct svc_rdma_req_map *rpl_map, |
| struct svc_rdma_req_map *chl_map, |
| int ch_count, |
| int byte_count) |
| { |
| int sge_no; |
| int sge_bytes; |
| int page_off; |
| int page_no; |
| int ch_bytes; |
| int ch_no; |
| struct rpcrdma_read_chunk *ch; |
| |
| sge_no = 0; |
| page_no = 0; |
| page_off = 0; |
| ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0]; |
| ch_no = 0; |
| ch_bytes = ch->rc_target.rs_length; |
| head->arg.head[0] = rqstp->rq_arg.head[0]; |
| head->arg.tail[0] = rqstp->rq_arg.tail[0]; |
| head->arg.pages = &head->pages[head->count]; |
| head->hdr_count = head->count; /* save count of hdr pages */ |
| head->arg.page_base = 0; |
| head->arg.page_len = ch_bytes; |
| head->arg.len = rqstp->rq_arg.len + ch_bytes; |
| head->arg.buflen = rqstp->rq_arg.buflen + ch_bytes; |
| head->count++; |
| chl_map->ch[0].start = 0; |
| while (byte_count) { |
| rpl_map->sge[sge_no].iov_base = |
| page_address(rqstp->rq_arg.pages[page_no]) + page_off; |
| sge_bytes = min_t(int, PAGE_SIZE-page_off, ch_bytes); |
| rpl_map->sge[sge_no].iov_len = sge_bytes; |
| /* |
| * Don't bump head->count here because the same page |
| * may be used by multiple SGE. |
| */ |
| head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no]; |
| rqstp->rq_respages = &rqstp->rq_arg.pages[page_no+1]; |
| |
| byte_count -= sge_bytes; |
| ch_bytes -= sge_bytes; |
| sge_no++; |
| /* |
| * If all bytes for this chunk have been mapped to an |
| * SGE, move to the next SGE |
| */ |
| if (ch_bytes == 0) { |
| chl_map->ch[ch_no].count = |
| sge_no - chl_map->ch[ch_no].start; |
| ch_no++; |
| ch++; |
| chl_map->ch[ch_no].start = sge_no; |
| ch_bytes = ch->rc_target.rs_length; |
| /* If bytes remaining account for next chunk */ |
| if (byte_count) { |
| head->arg.page_len += ch_bytes; |
| head->arg.len += ch_bytes; |
| head->arg.buflen += ch_bytes; |
| } |
| } |
| /* |
| * If this SGE consumed all of the page, move to the |
| * next page |
| */ |
| if ((sge_bytes + page_off) == PAGE_SIZE) { |
| page_no++; |
| page_off = 0; |
| /* |
| * If there are still bytes left to map, bump |
| * the page count |
| */ |
| if (byte_count) |
| head->count++; |
| } else |
| page_off += sge_bytes; |
| } |
| BUG_ON(byte_count != 0); |
| return sge_no; |
| } |
| |
| /* Map a read-chunk-list to an XDR and fast register the page-list. |
| * |
| * Assumptions: |
| * - chunk[0] position points to pages[0] at an offset of 0 |
| * - pages[] will be made physically contiguous by creating a one-off memory |
| * region using the fastreg verb. |
| * - byte_count is # of bytes in read-chunk-list |
| * - ch_count is # of chunks in read-chunk-list |
| * |
| * Output: |
| * - sge array pointing into pages[] array. |
| * - chunk_sge array specifying sge index and count for each |
| * chunk in the read list |
| */ |
| static int fast_reg_read_chunks(struct svcxprt_rdma *xprt, |
| struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *head, |
| struct rpcrdma_msg *rmsgp, |
| struct svc_rdma_req_map *rpl_map, |
| struct svc_rdma_req_map *chl_map, |
| int ch_count, |
| int byte_count) |
| { |
| int page_no; |
| int ch_no; |
| u32 offset; |
| struct rpcrdma_read_chunk *ch; |
| struct svc_rdma_fastreg_mr *frmr; |
| int ret = 0; |
| |
| frmr = svc_rdma_get_frmr(xprt); |
| if (IS_ERR(frmr)) |
| return -ENOMEM; |
| |
| head->frmr = frmr; |
| head->arg.head[0] = rqstp->rq_arg.head[0]; |
| head->arg.tail[0] = rqstp->rq_arg.tail[0]; |
| head->arg.pages = &head->pages[head->count]; |
| head->hdr_count = head->count; /* save count of hdr pages */ |
| head->arg.page_base = 0; |
| head->arg.page_len = byte_count; |
| head->arg.len = rqstp->rq_arg.len + byte_count; |
| head->arg.buflen = rqstp->rq_arg.buflen + byte_count; |
| |
| /* Fast register the page list */ |
| frmr->kva = page_address(rqstp->rq_arg.pages[0]); |
| frmr->direction = DMA_FROM_DEVICE; |
| frmr->access_flags = (IB_ACCESS_LOCAL_WRITE|IB_ACCESS_REMOTE_WRITE); |
| frmr->map_len = byte_count; |
| frmr->page_list_len = PAGE_ALIGN(byte_count) >> PAGE_SHIFT; |
| for (page_no = 0; page_no < frmr->page_list_len; page_no++) { |
| frmr->page_list->page_list[page_no] = |
| ib_dma_map_single(xprt->sc_cm_id->device, |
| page_address(rqstp->rq_arg.pages[page_no]), |
| PAGE_SIZE, DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(xprt->sc_cm_id->device, |
| frmr->page_list->page_list[page_no])) |
| goto fatal_err; |
| atomic_inc(&xprt->sc_dma_used); |
| head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no]; |
| } |
| head->count += page_no; |
| |
| /* rq_respages points one past arg pages */ |
| rqstp->rq_respages = &rqstp->rq_arg.pages[page_no]; |
| |
| /* Create the reply and chunk maps */ |
| offset = 0; |
| ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0]; |
| for (ch_no = 0; ch_no < ch_count; ch_no++) { |
| rpl_map->sge[ch_no].iov_base = frmr->kva + offset; |
| rpl_map->sge[ch_no].iov_len = ch->rc_target.rs_length; |
| chl_map->ch[ch_no].count = 1; |
| chl_map->ch[ch_no].start = ch_no; |
| offset += ch->rc_target.rs_length; |
| ch++; |
| } |
| |
| ret = svc_rdma_fastreg(xprt, frmr); |
| if (ret) |
| goto fatal_err; |
| |
| return ch_no; |
| |
| fatal_err: |
| printk("svcrdma: error fast registering xdr for xprt %p", xprt); |
| svc_rdma_put_frmr(xprt, frmr); |
| return -EIO; |
| } |
| |
| static int rdma_set_ctxt_sge(struct svcxprt_rdma *xprt, |
| struct svc_rdma_op_ctxt *ctxt, |
| struct svc_rdma_fastreg_mr *frmr, |
| struct kvec *vec, |
| u64 *sgl_offset, |
| int count) |
| { |
| int i; |
| |
| ctxt->count = count; |
| ctxt->direction = DMA_FROM_DEVICE; |
| for (i = 0; i < count; i++) { |
| ctxt->sge[i].length = 0; /* in case map fails */ |
| if (!frmr) { |
| ctxt->sge[i].addr = |
| ib_dma_map_single(xprt->sc_cm_id->device, |
| vec[i].iov_base, |
| vec[i].iov_len, |
| DMA_FROM_DEVICE); |
| if (ib_dma_mapping_error(xprt->sc_cm_id->device, |
| ctxt->sge[i].addr)) |
| return -EINVAL; |
| ctxt->sge[i].lkey = xprt->sc_dma_lkey; |
| atomic_inc(&xprt->sc_dma_used); |
| } else { |
| ctxt->sge[i].addr = (unsigned long)vec[i].iov_base; |
| ctxt->sge[i].lkey = frmr->mr->lkey; |
| } |
| ctxt->sge[i].length = vec[i].iov_len; |
| *sgl_offset = *sgl_offset + vec[i].iov_len; |
| } |
| return 0; |
| } |
| |
| static int rdma_read_max_sge(struct svcxprt_rdma *xprt, int sge_count) |
| { |
| if ((RDMA_TRANSPORT_IWARP == |
| rdma_node_get_transport(xprt->sc_cm_id-> |
| device->node_type)) |
| && sge_count > 1) |
| return 1; |
| else |
| return min_t(int, sge_count, xprt->sc_max_sge); |
| } |
| |
| /* |
| * Use RDMA_READ to read data from the advertised client buffer into the |
| * XDR stream starting at rq_arg.head[0].iov_base. |
| * Each chunk in the array |
| * contains the following fields: |
| * discrim - '1', This isn't used for data placement |
| * position - The xdr stream offset (the same for every chunk) |
| * handle - RMR for client memory region |
| * length - data transfer length |
| * offset - 64 bit tagged offset in remote memory region |
| * |
| * On our side, we need to read into a pagelist. The first page immediately |
| * follows the RPC header. |
| * |
| * This function returns: |
| * 0 - No error and no read-list found. |
| * |
| * 1 - Successful read-list processing. The data is not yet in |
| * the pagelist and therefore the RPC request must be deferred. The |
| * I/O completion will enqueue the transport again and |
| * svc_rdma_recvfrom will complete the request. |
| * |
| * <0 - Error processing/posting read-list. |
| * |
| * NOTE: The ctxt must not be touched after the last WR has been posted |
| * because the I/O completion processing may occur on another |
| * processor and free / modify the context. Ne touche pas! |
| */ |
| static int rdma_read_xdr(struct svcxprt_rdma *xprt, |
| struct rpcrdma_msg *rmsgp, |
| struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *hdr_ctxt) |
| { |
| struct ib_send_wr read_wr; |
| struct ib_send_wr inv_wr; |
| int err = 0; |
| int ch_no; |
| int ch_count; |
| int byte_count; |
| int sge_count; |
| u64 sgl_offset; |
| struct rpcrdma_read_chunk *ch; |
| struct svc_rdma_op_ctxt *ctxt = NULL; |
| struct svc_rdma_req_map *rpl_map; |
| struct svc_rdma_req_map *chl_map; |
| |
| /* If no read list is present, return 0 */ |
| ch = svc_rdma_get_read_chunk(rmsgp); |
| if (!ch) |
| return 0; |
| |
| /* Allocate temporary reply and chunk maps */ |
| rpl_map = svc_rdma_get_req_map(); |
| chl_map = svc_rdma_get_req_map(); |
| |
| svc_rdma_rcl_chunk_counts(ch, &ch_count, &byte_count); |
| if (ch_count > RPCSVC_MAXPAGES) |
| return -EINVAL; |
| |
| if (!xprt->sc_frmr_pg_list_len) |
| sge_count = map_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp, |
| rpl_map, chl_map, ch_count, |
| byte_count); |
| else |
| sge_count = fast_reg_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp, |
| rpl_map, chl_map, ch_count, |
| byte_count); |
| if (sge_count < 0) { |
| err = -EIO; |
| goto out; |
| } |
| |
| sgl_offset = 0; |
| ch_no = 0; |
| |
| for (ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0]; |
| ch->rc_discrim != 0; ch++, ch_no++) { |
| next_sge: |
| ctxt = svc_rdma_get_context(xprt); |
| ctxt->direction = DMA_FROM_DEVICE; |
| ctxt->frmr = hdr_ctxt->frmr; |
| ctxt->read_hdr = NULL; |
| clear_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags); |
| clear_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags); |
| |
| /* Prepare READ WR */ |
| memset(&read_wr, 0, sizeof read_wr); |
| read_wr.wr_id = (unsigned long)ctxt; |
| read_wr.opcode = IB_WR_RDMA_READ; |
| ctxt->wr_op = read_wr.opcode; |
| read_wr.send_flags = IB_SEND_SIGNALED; |
| read_wr.wr.rdma.rkey = ch->rc_target.rs_handle; |
| read_wr.wr.rdma.remote_addr = |
| get_unaligned(&(ch->rc_target.rs_offset)) + |
| sgl_offset; |
| read_wr.sg_list = ctxt->sge; |
| read_wr.num_sge = |
| rdma_read_max_sge(xprt, chl_map->ch[ch_no].count); |
| err = rdma_set_ctxt_sge(xprt, ctxt, hdr_ctxt->frmr, |
| &rpl_map->sge[chl_map->ch[ch_no].start], |
| &sgl_offset, |
| read_wr.num_sge); |
| if (err) { |
| svc_rdma_unmap_dma(ctxt); |
| svc_rdma_put_context(ctxt, 0); |
| goto out; |
| } |
| if (((ch+1)->rc_discrim == 0) && |
| (read_wr.num_sge == chl_map->ch[ch_no].count)) { |
| /* |
| * Mark the last RDMA_READ with a bit to |
| * indicate all RPC data has been fetched from |
| * the client and the RPC needs to be enqueued. |
| */ |
| set_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags); |
| if (hdr_ctxt->frmr) { |
| set_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags); |
| /* |
| * Invalidate the local MR used to map the data |
| * sink. |
| */ |
| if (xprt->sc_dev_caps & |
| SVCRDMA_DEVCAP_READ_W_INV) { |
| read_wr.opcode = |
| IB_WR_RDMA_READ_WITH_INV; |
| ctxt->wr_op = read_wr.opcode; |
| read_wr.ex.invalidate_rkey = |
| ctxt->frmr->mr->lkey; |
| } else { |
| /* Prepare INVALIDATE WR */ |
| memset(&inv_wr, 0, sizeof inv_wr); |
| inv_wr.opcode = IB_WR_LOCAL_INV; |
| inv_wr.send_flags = IB_SEND_SIGNALED; |
| inv_wr.ex.invalidate_rkey = |
| hdr_ctxt->frmr->mr->lkey; |
| read_wr.next = &inv_wr; |
| } |
| } |
| ctxt->read_hdr = hdr_ctxt; |
| } |
| /* Post the read */ |
| err = svc_rdma_send(xprt, &read_wr); |
| if (err) { |
| printk(KERN_ERR "svcrdma: Error %d posting RDMA_READ\n", |
| err); |
| set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); |
| svc_rdma_put_context(ctxt, 0); |
| goto out; |
| } |
| atomic_inc(&rdma_stat_read); |
| |
| if (read_wr.num_sge < chl_map->ch[ch_no].count) { |
| chl_map->ch[ch_no].count -= read_wr.num_sge; |
| chl_map->ch[ch_no].start += read_wr.num_sge; |
| goto next_sge; |
| } |
| sgl_offset = 0; |
| err = 1; |
| } |
| |
| out: |
| svc_rdma_put_req_map(rpl_map); |
| svc_rdma_put_req_map(chl_map); |
| |
| /* Detach arg pages. svc_recv will replenish them */ |
| for (ch_no = 0; &rqstp->rq_pages[ch_no] < rqstp->rq_respages; ch_no++) |
| rqstp->rq_pages[ch_no] = NULL; |
| |
| /* |
| * Detach res pages. svc_release must see a resused count of |
| * zero or it will attempt to put them. |
| */ |
| while (rqstp->rq_resused) |
| rqstp->rq_respages[--rqstp->rq_resused] = NULL; |
| |
| return err; |
| } |
| |
| static int rdma_read_complete(struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *head) |
| { |
| int page_no; |
| int ret; |
| |
| BUG_ON(!head); |
| |
| /* Copy RPC pages */ |
| for (page_no = 0; page_no < head->count; page_no++) { |
| put_page(rqstp->rq_pages[page_no]); |
| rqstp->rq_pages[page_no] = head->pages[page_no]; |
| } |
| /* Point rq_arg.pages past header */ |
| rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count]; |
| rqstp->rq_arg.page_len = head->arg.page_len; |
| rqstp->rq_arg.page_base = head->arg.page_base; |
| |
| /* rq_respages starts after the last arg page */ |
| rqstp->rq_respages = &rqstp->rq_arg.pages[page_no]; |
| rqstp->rq_resused = 0; |
| |
| /* Rebuild rq_arg head and tail. */ |
| rqstp->rq_arg.head[0] = head->arg.head[0]; |
| rqstp->rq_arg.tail[0] = head->arg.tail[0]; |
| rqstp->rq_arg.len = head->arg.len; |
| rqstp->rq_arg.buflen = head->arg.buflen; |
| |
| /* Free the context */ |
| svc_rdma_put_context(head, 0); |
| |
| /* XXX: What should this be? */ |
| rqstp->rq_prot = IPPROTO_MAX; |
| svc_xprt_copy_addrs(rqstp, rqstp->rq_xprt); |
| |
| ret = rqstp->rq_arg.head[0].iov_len |
| + rqstp->rq_arg.page_len |
| + rqstp->rq_arg.tail[0].iov_len; |
| dprintk("svcrdma: deferred read ret=%d, rq_arg.len =%d, " |
| "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n", |
| ret, rqstp->rq_arg.len, rqstp->rq_arg.head[0].iov_base, |
| rqstp->rq_arg.head[0].iov_len); |
| |
| svc_xprt_received(rqstp->rq_xprt); |
| return ret; |
| } |
| |
| /* |
| * Set up the rqstp thread context to point to the RQ buffer. If |
| * necessary, pull additional data from the client with an RDMA_READ |
| * request. |
| */ |
| int svc_rdma_recvfrom(struct svc_rqst *rqstp) |
| { |
| struct svc_xprt *xprt = rqstp->rq_xprt; |
| struct svcxprt_rdma *rdma_xprt = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| struct svc_rdma_op_ctxt *ctxt = NULL; |
| struct rpcrdma_msg *rmsgp; |
| int ret = 0; |
| int len; |
| |
| dprintk("svcrdma: rqstp=%p\n", rqstp); |
| |
| spin_lock_bh(&rdma_xprt->sc_rq_dto_lock); |
| if (!list_empty(&rdma_xprt->sc_read_complete_q)) { |
| ctxt = list_entry(rdma_xprt->sc_read_complete_q.next, |
| struct svc_rdma_op_ctxt, |
| dto_q); |
| list_del_init(&ctxt->dto_q); |
| } |
| if (ctxt) { |
| spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock); |
| return rdma_read_complete(rqstp, ctxt); |
| } |
| |
| if (!list_empty(&rdma_xprt->sc_rq_dto_q)) { |
| ctxt = list_entry(rdma_xprt->sc_rq_dto_q.next, |
| struct svc_rdma_op_ctxt, |
| dto_q); |
| list_del_init(&ctxt->dto_q); |
| } else { |
| atomic_inc(&rdma_stat_rq_starve); |
| clear_bit(XPT_DATA, &xprt->xpt_flags); |
| ctxt = NULL; |
| } |
| spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock); |
| if (!ctxt) { |
| /* This is the EAGAIN path. The svc_recv routine will |
| * return -EAGAIN, the nfsd thread will go to call into |
| * svc_recv again and we shouldn't be on the active |
| * transport list |
| */ |
| if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) |
| goto close_out; |
| |
| BUG_ON(ret); |
| goto out; |
| } |
| dprintk("svcrdma: processing ctxt=%p on xprt=%p, rqstp=%p, status=%d\n", |
| ctxt, rdma_xprt, rqstp, ctxt->wc_status); |
| BUG_ON(ctxt->wc_status != IB_WC_SUCCESS); |
| atomic_inc(&rdma_stat_recv); |
| |
| /* Build up the XDR from the receive buffers. */ |
| rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len); |
| |
| /* Decode the RDMA header. */ |
| len = svc_rdma_xdr_decode_req(&rmsgp, rqstp); |
| rqstp->rq_xprt_hlen = len; |
| |
| /* If the request is invalid, reply with an error */ |
| if (len < 0) { |
| if (len == -ENOSYS) |
| svc_rdma_send_error(rdma_xprt, rmsgp, ERR_VERS); |
| goto close_out; |
| } |
| |
| /* Read read-list data. */ |
| ret = rdma_read_xdr(rdma_xprt, rmsgp, rqstp, ctxt); |
| if (ret > 0) { |
| /* read-list posted, defer until data received from client. */ |
| svc_xprt_received(xprt); |
| return 0; |
| } |
| if (ret < 0) { |
| /* Post of read-list failed, free context. */ |
| svc_rdma_put_context(ctxt, 1); |
| return 0; |
| } |
| |
| ret = rqstp->rq_arg.head[0].iov_len |
| + rqstp->rq_arg.page_len |
| + rqstp->rq_arg.tail[0].iov_len; |
| svc_rdma_put_context(ctxt, 0); |
| out: |
| dprintk("svcrdma: ret = %d, rq_arg.len =%d, " |
| "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n", |
| ret, rqstp->rq_arg.len, |
| rqstp->rq_arg.head[0].iov_base, |
| rqstp->rq_arg.head[0].iov_len); |
| rqstp->rq_prot = IPPROTO_MAX; |
| svc_xprt_copy_addrs(rqstp, xprt); |
| svc_xprt_received(xprt); |
| return ret; |
| |
| close_out: |
| if (ctxt) |
| svc_rdma_put_context(ctxt, 1); |
| dprintk("svcrdma: transport %p is closing\n", xprt); |
| /* |
| * Set the close bit and enqueue it. svc_recv will see the |
| * close bit and call svc_xprt_delete |
| */ |
| set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| svc_xprt_received(xprt); |
| return 0; |
| } |