| /* |
| * Copyright (c) Microsoft Corporation. |
| * |
| * Author: |
| * Jake Oshins <jakeo@microsoft.com> |
| * |
| * This driver acts as a paravirtual front-end for PCI Express root buses. |
| * When a PCI Express function (either an entire device or an SR-IOV |
| * Virtual Function) is being passed through to the VM, this driver exposes |
| * a new bus to the guest VM. This is modeled as a root PCI bus because |
| * no bridges are being exposed to the VM. In fact, with a "Generation 2" |
| * VM within Hyper-V, there may seem to be no PCI bus at all in the VM |
| * until a device as been exposed using this driver. |
| * |
| * Each root PCI bus has its own PCI domain, which is called "Segment" in |
| * the PCI Firmware Specifications. Thus while each device passed through |
| * to the VM using this front-end will appear at "device 0", the domain will |
| * be unique. Typically, each bus will have one PCI function on it, though |
| * this driver does support more than one. |
| * |
| * In order to map the interrupts from the device through to the guest VM, |
| * this driver also implements an IRQ Domain, which handles interrupts (either |
| * MSI or MSI-X) associated with the functions on the bus. As interrupts are |
| * set up, torn down, or reaffined, this driver communicates with the |
| * underlying hypervisor to adjust the mappings in the I/O MMU so that each |
| * interrupt will be delivered to the correct virtual processor at the right |
| * vector. This driver does not support level-triggered (line-based) |
| * interrupts, and will report that the Interrupt Line register in the |
| * function's configuration space is zero. |
| * |
| * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V |
| * facilities. For instance, the configuration space of a function exposed |
| * by Hyper-V is mapped into a single page of memory space, and the |
| * read and write handlers for config space must be aware of this mechanism. |
| * Similarly, device setup and teardown involves messages sent to and from |
| * the PCI back-end driver in Hyper-V. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/semaphore.h> |
| #include <linux/irqdomain.h> |
| #include <asm/irqdomain.h> |
| #include <asm/apic.h> |
| #include <linux/msi.h> |
| #include <linux/hyperv.h> |
| #include <asm/mshyperv.h> |
| |
| /* |
| * Protocol versions. The low word is the minor version, the high word the |
| * major version. |
| */ |
| |
| #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (major))) |
| #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) |
| #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) |
| |
| enum { |
| PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), |
| PCI_PROTOCOL_VERSION_CURRENT = PCI_PROTOCOL_VERSION_1_1 |
| }; |
| |
| #define CPU_AFFINITY_ALL -1ULL |
| #define PCI_CONFIG_MMIO_LENGTH 0x2000 |
| #define CFG_PAGE_OFFSET 0x1000 |
| #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) |
| |
| #define MAX_SUPPORTED_MSI_MESSAGES 0x400 |
| |
| /* |
| * Message Types |
| */ |
| |
| enum pci_message_type { |
| /* |
| * Version 1.1 |
| */ |
| PCI_MESSAGE_BASE = 0x42490000, |
| PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, |
| PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, |
| PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, |
| PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, |
| PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, |
| PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, |
| PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, |
| PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, |
| PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, |
| PCI_EJECT = PCI_MESSAGE_BASE + 0xB, |
| PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, |
| PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, |
| PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, |
| PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, |
| PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, |
| PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, |
| PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, |
| PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, |
| PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, |
| PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, |
| PCI_MESSAGE_MAXIMUM |
| }; |
| |
| /* |
| * Structures defining the virtual PCI Express protocol. |
| */ |
| |
| union pci_version { |
| struct { |
| u16 minor_version; |
| u16 major_version; |
| } parts; |
| u32 version; |
| } __packed; |
| |
| /* |
| * Function numbers are 8-bits wide on Express, as interpreted through ARI, |
| * which is all this driver does. This representation is the one used in |
| * Windows, which is what is expected when sending this back and forth with |
| * the Hyper-V parent partition. |
| */ |
| union win_slot_encoding { |
| struct { |
| u32 dev:5; |
| u32 func:3; |
| u32 reserved:24; |
| } bits; |
| u32 slot; |
| } __packed; |
| |
| /* |
| * Pretty much as defined in the PCI Specifications. |
| */ |
| struct pci_function_description { |
| u16 v_id; /* vendor ID */ |
| u16 d_id; /* device ID */ |
| u8 rev; |
| u8 prog_intf; |
| u8 subclass; |
| u8 base_class; |
| u32 subsystem_id; |
| union win_slot_encoding win_slot; |
| u32 ser; /* serial number */ |
| } __packed; |
| |
| /** |
| * struct hv_msi_desc |
| * @vector: IDT entry |
| * @delivery_mode: As defined in Intel's Programmer's |
| * Reference Manual, Volume 3, Chapter 8. |
| * @vector_count: Number of contiguous entries in the |
| * Interrupt Descriptor Table that are |
| * occupied by this Message-Signaled |
| * Interrupt. For "MSI", as first defined |
| * in PCI 2.2, this can be between 1 and |
| * 32. For "MSI-X," as first defined in PCI |
| * 3.0, this must be 1, as each MSI-X table |
| * entry would have its own descriptor. |
| * @reserved: Empty space |
| * @cpu_mask: All the target virtual processors. |
| */ |
| struct hv_msi_desc { |
| u8 vector; |
| u8 delivery_mode; |
| u16 vector_count; |
| u32 reserved; |
| u64 cpu_mask; |
| } __packed; |
| |
| /** |
| * struct tran_int_desc |
| * @reserved: unused, padding |
| * @vector_count: same as in hv_msi_desc |
| * @data: This is the "data payload" value that is |
| * written by the device when it generates |
| * a message-signaled interrupt, either MSI |
| * or MSI-X. |
| * @address: This is the address to which the data |
| * payload is written on interrupt |
| * generation. |
| */ |
| struct tran_int_desc { |
| u16 reserved; |
| u16 vector_count; |
| u32 data; |
| u64 address; |
| } __packed; |
| |
| /* |
| * A generic message format for virtual PCI. |
| * Specific message formats are defined later in the file. |
| */ |
| |
| struct pci_message { |
| u32 type; |
| } __packed; |
| |
| struct pci_child_message { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| } __packed; |
| |
| struct pci_incoming_message { |
| struct vmpacket_descriptor hdr; |
| struct pci_message message_type; |
| } __packed; |
| |
| struct pci_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| } __packed; |
| |
| struct pci_packet { |
| void (*completion_func)(void *context, struct pci_response *resp, |
| int resp_packet_size); |
| void *compl_ctxt; |
| |
| struct pci_message message[0]; |
| }; |
| |
| /* |
| * Specific message types supporting the PCI protocol. |
| */ |
| |
| /* |
| * Version negotiation message. Sent from the guest to the host. |
| * The guest is free to try different versions until the host |
| * accepts the version. |
| * |
| * pci_version: The protocol version requested. |
| * is_last_attempt: If TRUE, this is the last version guest will request. |
| * reservedz: Reserved field, set to zero. |
| */ |
| |
| struct pci_version_request { |
| struct pci_message message_type; |
| enum pci_message_type protocol_version; |
| } __packed; |
| |
| /* |
| * Bus D0 Entry. This is sent from the guest to the host when the virtual |
| * bus (PCI Express port) is ready for action. |
| */ |
| |
| struct pci_bus_d0_entry { |
| struct pci_message message_type; |
| u32 reserved; |
| u64 mmio_base; |
| } __packed; |
| |
| struct pci_bus_relations { |
| struct pci_incoming_message incoming; |
| u32 device_count; |
| struct pci_function_description func[0]; |
| } __packed; |
| |
| struct pci_q_res_req_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| u32 probed_bar[6]; |
| } __packed; |
| |
| struct pci_set_power { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u32 power_state; /* In Windows terms */ |
| u32 reserved; |
| } __packed; |
| |
| struct pci_set_power_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| union win_slot_encoding wslot; |
| u32 resultant_state; /* In Windows terms */ |
| u32 reserved; |
| } __packed; |
| |
| struct pci_resources_assigned { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u8 memory_range[0x14][6]; /* not used here */ |
| u32 msi_descriptors; |
| u32 reserved[4]; |
| } __packed; |
| |
| struct pci_create_interrupt { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct hv_msi_desc int_desc; |
| } __packed; |
| |
| struct pci_create_int_response { |
| struct pci_response response; |
| u32 reserved; |
| struct tran_int_desc int_desc; |
| } __packed; |
| |
| struct pci_delete_interrupt { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct tran_int_desc int_desc; |
| } __packed; |
| |
| struct pci_dev_incoming { |
| struct pci_incoming_message incoming; |
| union win_slot_encoding wslot; |
| } __packed; |
| |
| struct pci_eject_response { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u32 status; |
| } __packed; |
| |
| static int pci_ring_size = (4 * PAGE_SIZE); |
| |
| /* |
| * Definitions or interrupt steering hypercall. |
| */ |
| #define HV_PARTITION_ID_SELF ((u64)-1) |
| #define HVCALL_RETARGET_INTERRUPT 0x7e |
| |
| struct retarget_msi_interrupt { |
| u64 partition_id; /* use "self" */ |
| u64 device_id; |
| u32 source; /* 1 for MSI(-X) */ |
| u32 reserved1; |
| u32 address; |
| u32 data; |
| u64 reserved2; |
| u32 vector; |
| u32 flags; |
| u64 vp_mask; |
| } __packed; |
| |
| /* |
| * Driver specific state. |
| */ |
| |
| enum hv_pcibus_state { |
| hv_pcibus_init = 0, |
| hv_pcibus_probed, |
| hv_pcibus_installed, |
| hv_pcibus_maximum |
| }; |
| |
| struct hv_pcibus_device { |
| struct pci_sysdata sysdata; |
| enum hv_pcibus_state state; |
| atomic_t remove_lock; |
| struct hv_device *hdev; |
| resource_size_t low_mmio_space; |
| resource_size_t high_mmio_space; |
| struct resource *mem_config; |
| struct resource *low_mmio_res; |
| struct resource *high_mmio_res; |
| struct completion *survey_event; |
| struct completion remove_event; |
| struct pci_bus *pci_bus; |
| spinlock_t config_lock; /* Avoid two threads writing index page */ |
| spinlock_t device_list_lock; /* Protect lists below */ |
| void __iomem *cfg_addr; |
| |
| struct semaphore enum_sem; |
| struct list_head resources_for_children; |
| |
| struct list_head children; |
| struct list_head dr_list; |
| |
| struct msi_domain_info msi_info; |
| struct msi_controller msi_chip; |
| struct irq_domain *irq_domain; |
| }; |
| |
| /* |
| * Tracks "Device Relations" messages from the host, which must be both |
| * processed in order and deferred so that they don't run in the context |
| * of the incoming packet callback. |
| */ |
| struct hv_dr_work { |
| struct work_struct wrk; |
| struct hv_pcibus_device *bus; |
| }; |
| |
| struct hv_dr_state { |
| struct list_head list_entry; |
| u32 device_count; |
| struct pci_function_description func[0]; |
| }; |
| |
| enum hv_pcichild_state { |
| hv_pcichild_init = 0, |
| hv_pcichild_requirements, |
| hv_pcichild_resourced, |
| hv_pcichild_ejecting, |
| hv_pcichild_maximum |
| }; |
| |
| enum hv_pcidev_ref_reason { |
| hv_pcidev_ref_invalid = 0, |
| hv_pcidev_ref_initial, |
| hv_pcidev_ref_by_slot, |
| hv_pcidev_ref_packet, |
| hv_pcidev_ref_pnp, |
| hv_pcidev_ref_childlist, |
| hv_pcidev_irqdata, |
| hv_pcidev_ref_max |
| }; |
| |
| struct hv_pci_dev { |
| /* List protected by pci_rescan_remove_lock */ |
| struct list_head list_entry; |
| atomic_t refs; |
| enum hv_pcichild_state state; |
| struct pci_function_description desc; |
| bool reported_missing; |
| struct hv_pcibus_device *hbus; |
| struct work_struct wrk; |
| |
| /* |
| * What would be observed if one wrote 0xFFFFFFFF to a BAR and then |
| * read it back, for each of the BAR offsets within config space. |
| */ |
| u32 probed_bar[6]; |
| }; |
| |
| struct hv_pci_compl { |
| struct completion host_event; |
| s32 completion_status; |
| }; |
| |
| /** |
| * hv_pci_generic_compl() - Invoked for a completion packet |
| * @context: Set up by the sender of the packet. |
| * @resp: The response packet |
| * @resp_packet_size: Size in bytes of the packet |
| * |
| * This function is used to trigger an event and report status |
| * for any message for which the completion packet contains a |
| * status and nothing else. |
| */ |
| static void hv_pci_generic_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct hv_pci_compl *comp_pkt = context; |
| |
| if (resp_packet_size >= offsetofend(struct pci_response, status)) |
| comp_pkt->completion_status = resp->status; |
| else |
| comp_pkt->completion_status = -1; |
| |
| complete(&comp_pkt->host_event); |
| } |
| |
| static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, |
| u32 wslot); |
| static void get_pcichild(struct hv_pci_dev *hv_pcidev, |
| enum hv_pcidev_ref_reason reason); |
| static void put_pcichild(struct hv_pci_dev *hv_pcidev, |
| enum hv_pcidev_ref_reason reason); |
| |
| static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); |
| static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); |
| |
| /** |
| * devfn_to_wslot() - Convert from Linux PCI slot to Windows |
| * @devfn: The Linux representation of PCI slot |
| * |
| * Windows uses a slightly different representation of PCI slot. |
| * |
| * Return: The Windows representation |
| */ |
| static u32 devfn_to_wslot(int devfn) |
| { |
| union win_slot_encoding wslot; |
| |
| wslot.slot = 0; |
| wslot.bits.dev = PCI_SLOT(devfn); |
| wslot.bits.func = PCI_FUNC(devfn); |
| |
| return wslot.slot; |
| } |
| |
| /** |
| * wslot_to_devfn() - Convert from Windows PCI slot to Linux |
| * @wslot: The Windows representation of PCI slot |
| * |
| * Windows uses a slightly different representation of PCI slot. |
| * |
| * Return: The Linux representation |
| */ |
| static int wslot_to_devfn(u32 wslot) |
| { |
| union win_slot_encoding slot_no; |
| |
| slot_no.slot = wslot; |
| return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); |
| } |
| |
| /* |
| * PCI Configuration Space for these root PCI buses is implemented as a pair |
| * of pages in memory-mapped I/O space. Writing to the first page chooses |
| * the PCI function being written or read. Once the first page has been |
| * written to, the following page maps in the entire configuration space of |
| * the function. |
| */ |
| |
| /** |
| * _hv_pcifront_read_config() - Internal PCI config read |
| * @hpdev: The PCI driver's representation of the device |
| * @where: Offset within config space |
| * @size: Size of the transfer |
| * @val: Pointer to the buffer receiving the data |
| */ |
| static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, |
| int size, u32 *val) |
| { |
| unsigned long flags; |
| void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; |
| |
| /* |
| * If the attempt is to read the IDs or the ROM BAR, simulate that. |
| */ |
| if (where + size <= PCI_COMMAND) { |
| memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); |
| } else if (where >= PCI_CLASS_REVISION && where + size <= |
| PCI_CACHE_LINE_SIZE) { |
| memcpy(val, ((u8 *)&hpdev->desc.rev) + where - |
| PCI_CLASS_REVISION, size); |
| } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= |
| PCI_ROM_ADDRESS) { |
| memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - |
| PCI_SUBSYSTEM_VENDOR_ID, size); |
| } else if (where >= PCI_ROM_ADDRESS && where + size <= |
| PCI_CAPABILITY_LIST) { |
| /* ROM BARs are unimplemented */ |
| *val = 0; |
| } else if (where >= PCI_INTERRUPT_LINE && where + size <= |
| PCI_INTERRUPT_PIN) { |
| /* |
| * Interrupt Line and Interrupt PIN are hard-wired to zero |
| * because this front-end only supports message-signaled |
| * interrupts. |
| */ |
| *val = 0; |
| } else if (where + size <= CFG_PAGE_SIZE) { |
| spin_lock_irqsave(&hpdev->hbus->config_lock, flags); |
| /* Choose the function to be read. (See comment above) */ |
| writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); |
| /* Make sure the function was chosen before we start reading. */ |
| mb(); |
| /* Read from that function's config space. */ |
| switch (size) { |
| case 1: |
| *val = readb(addr); |
| break; |
| case 2: |
| *val = readw(addr); |
| break; |
| default: |
| *val = readl(addr); |
| break; |
| } |
| /* |
| * Make sure the write was done before we release the spinlock |
| * allowing consecutive reads/writes. |
| */ |
| mb(); |
| spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); |
| } else { |
| dev_err(&hpdev->hbus->hdev->device, |
| "Attempt to read beyond a function's config space.\n"); |
| } |
| } |
| |
| /** |
| * _hv_pcifront_write_config() - Internal PCI config write |
| * @hpdev: The PCI driver's representation of the device |
| * @where: Offset within config space |
| * @size: Size of the transfer |
| * @val: The data being transferred |
| */ |
| static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, |
| int size, u32 val) |
| { |
| unsigned long flags; |
| void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; |
| |
| if (where >= PCI_SUBSYSTEM_VENDOR_ID && |
| where + size <= PCI_CAPABILITY_LIST) { |
| /* SSIDs and ROM BARs are read-only */ |
| } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { |
| spin_lock_irqsave(&hpdev->hbus->config_lock, flags); |
| /* Choose the function to be written. (See comment above) */ |
| writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); |
| /* Make sure the function was chosen before we start writing. */ |
| wmb(); |
| /* Write to that function's config space. */ |
| switch (size) { |
| case 1: |
| writeb(val, addr); |
| break; |
| case 2: |
| writew(val, addr); |
| break; |
| default: |
| writel(val, addr); |
| break; |
| } |
| /* |
| * Make sure the write was done before we release the spinlock |
| * allowing consecutive reads/writes. |
| */ |
| mb(); |
| spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); |
| } else { |
| dev_err(&hpdev->hbus->hdev->device, |
| "Attempt to write beyond a function's config space.\n"); |
| } |
| } |
| |
| /** |
| * hv_pcifront_read_config() - Read configuration space |
| * @bus: PCI Bus structure |
| * @devfn: Device/function |
| * @where: Offset from base |
| * @size: Byte/word/dword |
| * @val: Value to be read |
| * |
| * Return: PCIBIOS_SUCCESSFUL on success |
| * PCIBIOS_DEVICE_NOT_FOUND on failure |
| */ |
| static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(bus->sysdata, struct hv_pcibus_device, sysdata); |
| struct hv_pci_dev *hpdev; |
| |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); |
| if (!hpdev) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| _hv_pcifront_read_config(hpdev, where, size, val); |
| |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| /** |
| * hv_pcifront_write_config() - Write configuration space |
| * @bus: PCI Bus structure |
| * @devfn: Device/function |
| * @where: Offset from base |
| * @size: Byte/word/dword |
| * @val: Value to be written to device |
| * |
| * Return: PCIBIOS_SUCCESSFUL on success |
| * PCIBIOS_DEVICE_NOT_FOUND on failure |
| */ |
| static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 val) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(bus->sysdata, struct hv_pcibus_device, sysdata); |
| struct hv_pci_dev *hpdev; |
| |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); |
| if (!hpdev) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| _hv_pcifront_write_config(hpdev, where, size, val); |
| |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| /* PCIe operations */ |
| static struct pci_ops hv_pcifront_ops = { |
| .read = hv_pcifront_read_config, |
| .write = hv_pcifront_write_config, |
| }; |
| |
| /* Interrupt management hooks */ |
| static void hv_int_desc_free(struct hv_pci_dev *hpdev, |
| struct tran_int_desc *int_desc) |
| { |
| struct pci_delete_interrupt *int_pkt; |
| struct { |
| struct pci_packet pkt; |
| u8 buffer[sizeof(struct pci_delete_interrupt)]; |
| } ctxt; |
| |
| memset(&ctxt, 0, sizeof(ctxt)); |
| int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; |
| int_pkt->message_type.type = |
| PCI_DELETE_INTERRUPT_MESSAGE; |
| int_pkt->wslot.slot = hpdev->desc.win_slot.slot; |
| int_pkt->int_desc = *int_desc; |
| vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), |
| (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); |
| kfree(int_desc); |
| } |
| |
| /** |
| * hv_msi_free() - Free the MSI. |
| * @domain: The interrupt domain pointer |
| * @info: Extra MSI-related context |
| * @irq: Identifies the IRQ. |
| * |
| * The Hyper-V parent partition and hypervisor are tracking the |
| * messages that are in use, keeping the interrupt redirection |
| * table up to date. This callback sends a message that frees |
| * the IRT entry and related tracking nonsense. |
| */ |
| static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, |
| unsigned int irq) |
| { |
| struct hv_pcibus_device *hbus; |
| struct hv_pci_dev *hpdev; |
| struct pci_dev *pdev; |
| struct tran_int_desc *int_desc; |
| struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); |
| struct msi_desc *msi = irq_data_get_msi_desc(irq_data); |
| |
| pdev = msi_desc_to_pci_dev(msi); |
| hbus = info->data; |
| int_desc = irq_data_get_irq_chip_data(irq_data); |
| if (!int_desc) |
| return; |
| |
| irq_data->chip_data = NULL; |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); |
| if (!hpdev) { |
| kfree(int_desc); |
| return; |
| } |
| |
| hv_int_desc_free(hpdev, int_desc); |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| } |
| |
| static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, |
| bool force) |
| { |
| struct irq_data *parent = data->parent_data; |
| |
| return parent->chip->irq_set_affinity(parent, dest, force); |
| } |
| |
| void hv_irq_mask(struct irq_data *data) |
| { |
| pci_msi_mask_irq(data); |
| } |
| |
| /** |
| * hv_irq_unmask() - "Unmask" the IRQ by setting its current |
| * affinity. |
| * @data: Describes the IRQ |
| * |
| * Build new a destination for the MSI and make a hypercall to |
| * update the Interrupt Redirection Table. "Device Logical ID" |
| * is built out of this PCI bus's instance GUID and the function |
| * number of the device. |
| */ |
| void hv_irq_unmask(struct irq_data *data) |
| { |
| struct msi_desc *msi_desc = irq_data_get_msi_desc(data); |
| struct irq_cfg *cfg = irqd_cfg(data); |
| struct retarget_msi_interrupt params; |
| struct hv_pcibus_device *hbus; |
| struct cpumask *dest; |
| struct pci_bus *pbus; |
| struct pci_dev *pdev; |
| int cpu; |
| |
| dest = irq_data_get_affinity_mask(data); |
| pdev = msi_desc_to_pci_dev(msi_desc); |
| pbus = pdev->bus; |
| hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.partition_id = HV_PARTITION_ID_SELF; |
| params.source = 1; /* MSI(-X) */ |
| params.address = msi_desc->msg.address_lo; |
| params.data = msi_desc->msg.data; |
| params.device_id = (hbus->hdev->dev_instance.b[5] << 24) | |
| (hbus->hdev->dev_instance.b[4] << 16) | |
| (hbus->hdev->dev_instance.b[7] << 8) | |
| (hbus->hdev->dev_instance.b[6] & 0xf8) | |
| PCI_FUNC(pdev->devfn); |
| params.vector = cfg->vector; |
| |
| for_each_cpu_and(cpu, dest, cpu_online_mask) |
| params.vp_mask |= (1ULL << vmbus_cpu_number_to_vp_number(cpu)); |
| |
| hv_do_hypercall(HVCALL_RETARGET_INTERRUPT, ¶ms, NULL); |
| |
| pci_msi_unmask_irq(data); |
| } |
| |
| struct compose_comp_ctxt { |
| struct hv_pci_compl comp_pkt; |
| struct tran_int_desc int_desc; |
| }; |
| |
| static void hv_pci_compose_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct compose_comp_ctxt *comp_pkt = context; |
| struct pci_create_int_response *int_resp = |
| (struct pci_create_int_response *)resp; |
| |
| comp_pkt->comp_pkt.completion_status = resp->status; |
| comp_pkt->int_desc = int_resp->int_desc; |
| complete(&comp_pkt->comp_pkt.host_event); |
| } |
| |
| /** |
| * hv_compose_msi_msg() - Supplies a valid MSI address/data |
| * @data: Everything about this MSI |
| * @msg: Buffer that is filled in by this function |
| * |
| * This function unpacks the IRQ looking for target CPU set, IDT |
| * vector and mode and sends a message to the parent partition |
| * asking for a mapping for that tuple in this partition. The |
| * response supplies a data value and address to which that data |
| * should be written to trigger that interrupt. |
| */ |
| static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct irq_cfg *cfg = irqd_cfg(data); |
| struct hv_pcibus_device *hbus; |
| struct hv_pci_dev *hpdev; |
| struct pci_bus *pbus; |
| struct pci_dev *pdev; |
| struct pci_create_interrupt *int_pkt; |
| struct compose_comp_ctxt comp; |
| struct tran_int_desc *int_desc; |
| struct cpumask *affinity; |
| struct { |
| struct pci_packet pkt; |
| u8 buffer[sizeof(struct pci_create_interrupt)]; |
| } ctxt; |
| int cpu; |
| int ret; |
| |
| pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); |
| pbus = pdev->bus; |
| hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); |
| if (!hpdev) |
| goto return_null_message; |
| |
| /* Free any previous message that might have already been composed. */ |
| if (data->chip_data) { |
| int_desc = data->chip_data; |
| data->chip_data = NULL; |
| hv_int_desc_free(hpdev, int_desc); |
| } |
| |
| int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); |
| if (!int_desc) |
| goto drop_reference; |
| |
| memset(&ctxt, 0, sizeof(ctxt)); |
| init_completion(&comp.comp_pkt.host_event); |
| ctxt.pkt.completion_func = hv_pci_compose_compl; |
| ctxt.pkt.compl_ctxt = ∁ |
| int_pkt = (struct pci_create_interrupt *)&ctxt.pkt.message; |
| int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; |
| int_pkt->wslot.slot = hpdev->desc.win_slot.slot; |
| int_pkt->int_desc.vector = cfg->vector; |
| int_pkt->int_desc.vector_count = 1; |
| int_pkt->int_desc.delivery_mode = |
| (apic->irq_delivery_mode == dest_LowestPrio) ? 1 : 0; |
| |
| /* |
| * This bit doesn't have to work on machines with more than 64 |
| * processors because Hyper-V only supports 64 in a guest. |
| */ |
| affinity = irq_data_get_affinity_mask(data); |
| if (cpumask_weight(affinity) >= 32) { |
| int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; |
| } else { |
| for_each_cpu_and(cpu, affinity, cpu_online_mask) { |
| int_pkt->int_desc.cpu_mask |= |
| (1ULL << vmbus_cpu_number_to_vp_number(cpu)); |
| } |
| } |
| |
| ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, |
| sizeof(*int_pkt), (unsigned long)&ctxt.pkt, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| goto free_int_desc; |
| |
| wait_for_completion(&comp.comp_pkt.host_event); |
| |
| if (comp.comp_pkt.completion_status < 0) { |
| dev_err(&hbus->hdev->device, |
| "Request for interrupt failed: 0x%x", |
| comp.comp_pkt.completion_status); |
| goto free_int_desc; |
| } |
| |
| /* |
| * Record the assignment so that this can be unwound later. Using |
| * irq_set_chip_data() here would be appropriate, but the lock it takes |
| * is already held. |
| */ |
| *int_desc = comp.int_desc; |
| data->chip_data = int_desc; |
| |
| /* Pass up the result. */ |
| msg->address_hi = comp.int_desc.address >> 32; |
| msg->address_lo = comp.int_desc.address & 0xffffffff; |
| msg->data = comp.int_desc.data; |
| |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| return; |
| |
| free_int_desc: |
| kfree(int_desc); |
| drop_reference: |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| return_null_message: |
| msg->address_hi = 0; |
| msg->address_lo = 0; |
| msg->data = 0; |
| } |
| |
| /* HW Interrupt Chip Descriptor */ |
| static struct irq_chip hv_msi_irq_chip = { |
| .name = "Hyper-V PCIe MSI", |
| .irq_compose_msi_msg = hv_compose_msi_msg, |
| .irq_set_affinity = hv_set_affinity, |
| .irq_ack = irq_chip_ack_parent, |
| .irq_mask = hv_irq_mask, |
| .irq_unmask = hv_irq_unmask, |
| }; |
| |
| static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, |
| msi_alloc_info_t *arg) |
| { |
| return arg->msi_hwirq; |
| } |
| |
| static struct msi_domain_ops hv_msi_ops = { |
| .get_hwirq = hv_msi_domain_ops_get_hwirq, |
| .msi_prepare = pci_msi_prepare, |
| .set_desc = pci_msi_set_desc, |
| .msi_free = hv_msi_free, |
| }; |
| |
| /** |
| * hv_pcie_init_irq_domain() - Initialize IRQ domain |
| * @hbus: The root PCI bus |
| * |
| * This function creates an IRQ domain which will be used for |
| * interrupts from devices that have been passed through. These |
| * devices only support MSI and MSI-X, not line-based interrupts |
| * or simulations of line-based interrupts through PCIe's |
| * fabric-layer messages. Because interrupts are remapped, we |
| * can support multi-message MSI here. |
| * |
| * Return: '0' on success and error value on failure |
| */ |
| static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) |
| { |
| hbus->msi_info.chip = &hv_msi_irq_chip; |
| hbus->msi_info.ops = &hv_msi_ops; |
| hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | |
| MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | |
| MSI_FLAG_PCI_MSIX); |
| hbus->msi_info.handler = handle_edge_irq; |
| hbus->msi_info.handler_name = "edge"; |
| hbus->msi_info.data = hbus; |
| hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, |
| &hbus->msi_info, |
| x86_vector_domain); |
| if (!hbus->irq_domain) { |
| dev_err(&hbus->hdev->device, |
| "Failed to build an MSI IRQ domain\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * get_bar_size() - Get the address space consumed by a BAR |
| * @bar_val: Value that a BAR returned after -1 was written |
| * to it. |
| * |
| * This function returns the size of the BAR, rounded up to 1 |
| * page. It has to be rounded up because the hypervisor's page |
| * table entry that maps the BAR into the VM can't specify an |
| * offset within a page. The invariant is that the hypervisor |
| * must place any BARs of smaller than page length at the |
| * beginning of a page. |
| * |
| * Return: Size in bytes of the consumed MMIO space. |
| */ |
| static u64 get_bar_size(u64 bar_val) |
| { |
| return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), |
| PAGE_SIZE); |
| } |
| |
| /** |
| * survey_child_resources() - Total all MMIO requirements |
| * @hbus: Root PCI bus, as understood by this driver |
| */ |
| static void survey_child_resources(struct hv_pcibus_device *hbus) |
| { |
| struct list_head *iter; |
| struct hv_pci_dev *hpdev; |
| resource_size_t bar_size = 0; |
| unsigned long flags; |
| struct completion *event; |
| u64 bar_val; |
| int i; |
| |
| /* If nobody is waiting on the answer, don't compute it. */ |
| event = xchg(&hbus->survey_event, NULL); |
| if (!event) |
| return; |
| |
| /* If the answer has already been computed, go with it. */ |
| if (hbus->low_mmio_space || hbus->high_mmio_space) { |
| complete(event); |
| return; |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| |
| /* |
| * Due to an interesting quirk of the PCI spec, all memory regions |
| * for a child device are a power of 2 in size and aligned in memory, |
| * so it's sufficient to just add them up without tracking alignment. |
| */ |
| list_for_each(iter, &hbus->children) { |
| hpdev = container_of(iter, struct hv_pci_dev, list_entry); |
| for (i = 0; i < 6; i++) { |
| if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) |
| dev_err(&hbus->hdev->device, |
| "There's an I/O BAR in this list!\n"); |
| |
| if (hpdev->probed_bar[i] != 0) { |
| /* |
| * A probed BAR has all the upper bits set that |
| * can be changed. |
| */ |
| |
| bar_val = hpdev->probed_bar[i]; |
| if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) |
| bar_val |= |
| ((u64)hpdev->probed_bar[++i] << 32); |
| else |
| bar_val |= 0xffffffff00000000ULL; |
| |
| bar_size = get_bar_size(bar_val); |
| |
| if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) |
| hbus->high_mmio_space += bar_size; |
| else |
| hbus->low_mmio_space += bar_size; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| complete(event); |
| } |
| |
| /** |
| * prepopulate_bars() - Fill in BARs with defaults |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * The core PCI driver code seems much, much happier if the BARs |
| * for a device have values upon first scan. So fill them in. |
| * The algorithm below works down from large sizes to small, |
| * attempting to pack the assignments optimally. The assumption, |
| * enforced in other parts of the code, is that the beginning of |
| * the memory-mapped I/O space will be aligned on the largest |
| * BAR size. |
| */ |
| static void prepopulate_bars(struct hv_pcibus_device *hbus) |
| { |
| resource_size_t high_size = 0; |
| resource_size_t low_size = 0; |
| resource_size_t high_base = 0; |
| resource_size_t low_base = 0; |
| resource_size_t bar_size; |
| struct hv_pci_dev *hpdev; |
| struct list_head *iter; |
| unsigned long flags; |
| u64 bar_val; |
| u32 command; |
| bool high; |
| int i; |
| |
| if (hbus->low_mmio_space) { |
| low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); |
| low_base = hbus->low_mmio_res->start; |
| } |
| |
| if (hbus->high_mmio_space) { |
| high_size = 1ULL << |
| (63 - __builtin_clzll(hbus->high_mmio_space)); |
| high_base = hbus->high_mmio_res->start; |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| |
| /* Pick addresses for the BARs. */ |
| do { |
| list_for_each(iter, &hbus->children) { |
| hpdev = container_of(iter, struct hv_pci_dev, |
| list_entry); |
| for (i = 0; i < 6; i++) { |
| bar_val = hpdev->probed_bar[i]; |
| if (bar_val == 0) |
| continue; |
| high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; |
| if (high) { |
| bar_val |= |
| ((u64)hpdev->probed_bar[i + 1] |
| << 32); |
| } else { |
| bar_val |= 0xffffffffULL << 32; |
| } |
| bar_size = get_bar_size(bar_val); |
| if (high) { |
| if (high_size != bar_size) { |
| i++; |
| continue; |
| } |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, |
| (u32)(high_base & 0xffffff00)); |
| i++; |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, (u32)(high_base >> 32)); |
| high_base += bar_size; |
| } else { |
| if (low_size != bar_size) |
| continue; |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, |
| (u32)(low_base & 0xffffff00)); |
| low_base += bar_size; |
| } |
| } |
| if (high_size <= 1 && low_size <= 1) { |
| /* Set the memory enable bit. */ |
| _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, |
| &command); |
| command |= PCI_COMMAND_MEMORY; |
| _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, |
| command); |
| break; |
| } |
| } |
| |
| high_size >>= 1; |
| low_size >>= 1; |
| } while (high_size || low_size); |
| |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| } |
| |
| /** |
| * create_root_hv_pci_bus() - Expose a new root PCI bus |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) |
| { |
| /* Register the device */ |
| hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, |
| 0, /* bus number is always zero */ |
| &hv_pcifront_ops, |
| &hbus->sysdata, |
| &hbus->resources_for_children); |
| if (!hbus->pci_bus) |
| return -ENODEV; |
| |
| hbus->pci_bus->msi = &hbus->msi_chip; |
| hbus->pci_bus->msi->dev = &hbus->hdev->device; |
| |
| pci_scan_child_bus(hbus->pci_bus); |
| pci_bus_assign_resources(hbus->pci_bus); |
| pci_bus_add_devices(hbus->pci_bus); |
| hbus->state = hv_pcibus_installed; |
| return 0; |
| } |
| |
| struct q_res_req_compl { |
| struct completion host_event; |
| struct hv_pci_dev *hpdev; |
| }; |
| |
| /** |
| * q_resource_requirements() - Query Resource Requirements |
| * @context: The completion context. |
| * @resp: The response that came from the host. |
| * @resp_packet_size: The size in bytes of resp. |
| * |
| * This function is invoked on completion of a Query Resource |
| * Requirements packet. |
| */ |
| static void q_resource_requirements(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct q_res_req_compl *completion = context; |
| struct pci_q_res_req_response *q_res_req = |
| (struct pci_q_res_req_response *)resp; |
| int i; |
| |
| if (resp->status < 0) { |
| dev_err(&completion->hpdev->hbus->hdev->device, |
| "query resource requirements failed: %x\n", |
| resp->status); |
| } else { |
| for (i = 0; i < 6; i++) { |
| completion->hpdev->probed_bar[i] = |
| q_res_req->probed_bar[i]; |
| } |
| } |
| |
| complete(&completion->host_event); |
| } |
| |
| static void get_pcichild(struct hv_pci_dev *hpdev, |
| enum hv_pcidev_ref_reason reason) |
| { |
| atomic_inc(&hpdev->refs); |
| } |
| |
| static void put_pcichild(struct hv_pci_dev *hpdev, |
| enum hv_pcidev_ref_reason reason) |
| { |
| if (atomic_dec_and_test(&hpdev->refs)) |
| kfree(hpdev); |
| } |
| |
| /** |
| * new_pcichild_device() - Create a new child device |
| * @hbus: The internal struct tracking this root PCI bus. |
| * @desc: The information supplied so far from the host |
| * about the device. |
| * |
| * This function creates the tracking structure for a new child |
| * device and kicks off the process of figuring out what it is. |
| * |
| * Return: Pointer to the new tracking struct |
| */ |
| static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, |
| struct pci_function_description *desc) |
| { |
| struct hv_pci_dev *hpdev; |
| struct pci_child_message *res_req; |
| struct q_res_req_compl comp_pkt; |
| union { |
| struct pci_packet init_packet; |
| u8 buffer[0x100]; |
| } pkt; |
| unsigned long flags; |
| int ret; |
| |
| hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC); |
| if (!hpdev) |
| return NULL; |
| |
| hpdev->hbus = hbus; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| init_completion(&comp_pkt.host_event); |
| comp_pkt.hpdev = hpdev; |
| pkt.init_packet.compl_ctxt = &comp_pkt; |
| pkt.init_packet.completion_func = q_resource_requirements; |
| res_req = (struct pci_child_message *)&pkt.init_packet.message; |
| res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; |
| res_req->wslot.slot = desc->win_slot.slot; |
| |
| ret = vmbus_sendpacket(hbus->hdev->channel, res_req, |
| sizeof(struct pci_child_message), |
| (unsigned long)&pkt.init_packet, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| goto error; |
| |
| wait_for_completion(&comp_pkt.host_event); |
| |
| hpdev->desc = *desc; |
| get_pcichild(hpdev, hv_pcidev_ref_initial); |
| get_pcichild(hpdev, hv_pcidev_ref_childlist); |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_add_tail(&hpdev->list_entry, &hbus->children); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| return hpdev; |
| |
| error: |
| kfree(hpdev); |
| return NULL; |
| } |
| |
| /** |
| * get_pcichild_wslot() - Find device from slot |
| * @hbus: Root PCI bus, as understood by this driver |
| * @wslot: Location on the bus |
| * |
| * This function looks up a PCI device and returns the internal |
| * representation of it. It acquires a reference on it, so that |
| * the device won't be deleted while somebody is using it. The |
| * caller is responsible for calling put_pcichild() to release |
| * this reference. |
| * |
| * Return: Internal representation of a PCI device |
| */ |
| static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, |
| u32 wslot) |
| { |
| unsigned long flags; |
| struct hv_pci_dev *iter, *hpdev = NULL; |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each_entry(iter, &hbus->children, list_entry) { |
| if (iter->desc.win_slot.slot == wslot) { |
| hpdev = iter; |
| get_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| return hpdev; |
| } |
| |
| /** |
| * pci_devices_present_work() - Handle new list of child devices |
| * @work: Work struct embedded in struct hv_dr_work |
| * |
| * "Bus Relations" is the Windows term for "children of this |
| * bus." The terminology is preserved here for people trying to |
| * debug the interaction between Hyper-V and Linux. This |
| * function is called when the parent partition reports a list |
| * of functions that should be observed under this PCI Express |
| * port (bus). |
| * |
| * This function updates the list, and must tolerate being |
| * called multiple times with the same information. The typical |
| * number of child devices is one, with very atypical cases |
| * involving three or four, so the algorithms used here can be |
| * simple and inefficient. |
| * |
| * It must also treat the omission of a previously observed device as |
| * notification that the device no longer exists. |
| * |
| * Note that this function is a work item, and it may not be |
| * invoked in the order that it was queued. Back to back |
| * updates of the list of present devices may involve queuing |
| * multiple work items, and this one may run before ones that |
| * were sent later. As such, this function only does something |
| * if is the last one in the queue. |
| */ |
| static void pci_devices_present_work(struct work_struct *work) |
| { |
| u32 child_no; |
| bool found; |
| struct list_head *iter; |
| struct pci_function_description *new_desc; |
| struct hv_pci_dev *hpdev; |
| struct hv_pcibus_device *hbus; |
| struct list_head removed; |
| struct hv_dr_work *dr_wrk; |
| struct hv_dr_state *dr = NULL; |
| unsigned long flags; |
| |
| dr_wrk = container_of(work, struct hv_dr_work, wrk); |
| hbus = dr_wrk->bus; |
| kfree(dr_wrk); |
| |
| INIT_LIST_HEAD(&removed); |
| |
| if (down_interruptible(&hbus->enum_sem)) { |
| put_hvpcibus(hbus); |
| return; |
| } |
| |
| /* Pull this off the queue and process it if it was the last one. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| while (!list_empty(&hbus->dr_list)) { |
| dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, |
| list_entry); |
| list_del(&dr->list_entry); |
| |
| /* Throw this away if the list still has stuff in it. */ |
| if (!list_empty(&hbus->dr_list)) { |
| kfree(dr); |
| continue; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (!dr) { |
| up(&hbus->enum_sem); |
| put_hvpcibus(hbus); |
| return; |
| } |
| |
| /* First, mark all existing children as reported missing. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each(iter, &hbus->children) { |
| hpdev = container_of(iter, struct hv_pci_dev, |
| list_entry); |
| hpdev->reported_missing = true; |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| /* Next, add back any reported devices. */ |
| for (child_no = 0; child_no < dr->device_count; child_no++) { |
| found = false; |
| new_desc = &dr->func[child_no]; |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each(iter, &hbus->children) { |
| hpdev = container_of(iter, struct hv_pci_dev, |
| list_entry); |
| if ((hpdev->desc.win_slot.slot == |
| new_desc->win_slot.slot) && |
| (hpdev->desc.v_id == new_desc->v_id) && |
| (hpdev->desc.d_id == new_desc->d_id) && |
| (hpdev->desc.ser == new_desc->ser)) { |
| hpdev->reported_missing = false; |
| found = true; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (!found) { |
| hpdev = new_pcichild_device(hbus, new_desc); |
| if (!hpdev) |
| dev_err(&hbus->hdev->device, |
| "couldn't record a child device.\n"); |
| } |
| } |
| |
| /* Move missing children to a list on the stack. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| do { |
| found = false; |
| list_for_each(iter, &hbus->children) { |
| hpdev = container_of(iter, struct hv_pci_dev, |
| list_entry); |
| if (hpdev->reported_missing) { |
| found = true; |
| put_pcichild(hpdev, hv_pcidev_ref_childlist); |
| list_move_tail(&hpdev->list_entry, &removed); |
| break; |
| } |
| } |
| } while (found); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| /* Delete everything that should no longer exist. */ |
| while (!list_empty(&removed)) { |
| hpdev = list_first_entry(&removed, struct hv_pci_dev, |
| list_entry); |
| list_del(&hpdev->list_entry); |
| put_pcichild(hpdev, hv_pcidev_ref_initial); |
| } |
| |
| /* Tell the core to rescan bus because there may have been changes. */ |
| if (hbus->state == hv_pcibus_installed) { |
| pci_lock_rescan_remove(); |
| pci_scan_child_bus(hbus->pci_bus); |
| pci_unlock_rescan_remove(); |
| } else { |
| survey_child_resources(hbus); |
| } |
| |
| up(&hbus->enum_sem); |
| put_hvpcibus(hbus); |
| kfree(dr); |
| } |
| |
| /** |
| * hv_pci_devices_present() - Handles list of new children |
| * @hbus: Root PCI bus, as understood by this driver |
| * @relations: Packet from host listing children |
| * |
| * This function is invoked whenever a new list of devices for |
| * this bus appears. |
| */ |
| static void hv_pci_devices_present(struct hv_pcibus_device *hbus, |
| struct pci_bus_relations *relations) |
| { |
| struct hv_dr_state *dr; |
| struct hv_dr_work *dr_wrk; |
| unsigned long flags; |
| |
| dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); |
| if (!dr_wrk) |
| return; |
| |
| dr = kzalloc(offsetof(struct hv_dr_state, func) + |
| (sizeof(struct pci_function_description) * |
| (relations->device_count)), GFP_NOWAIT); |
| if (!dr) { |
| kfree(dr_wrk); |
| return; |
| } |
| |
| INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); |
| dr_wrk->bus = hbus; |
| dr->device_count = relations->device_count; |
| if (dr->device_count != 0) { |
| memcpy(dr->func, relations->func, |
| sizeof(struct pci_function_description) * |
| dr->device_count); |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_add_tail(&dr->list_entry, &hbus->dr_list); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| get_hvpcibus(hbus); |
| schedule_work(&dr_wrk->wrk); |
| } |
| |
| /** |
| * hv_eject_device_work() - Asynchronously handles ejection |
| * @work: Work struct embedded in internal device struct |
| * |
| * This function handles ejecting a device. Windows will |
| * attempt to gracefully eject a device, waiting 60 seconds to |
| * hear back from the guest OS that this completed successfully. |
| * If this timer expires, the device will be forcibly removed. |
| */ |
| static void hv_eject_device_work(struct work_struct *work) |
| { |
| struct pci_eject_response *ejct_pkt; |
| struct hv_pci_dev *hpdev; |
| struct pci_dev *pdev; |
| unsigned long flags; |
| int wslot; |
| struct { |
| struct pci_packet pkt; |
| u8 buffer[sizeof(struct pci_eject_response)]; |
| } ctxt; |
| |
| hpdev = container_of(work, struct hv_pci_dev, wrk); |
| |
| if (hpdev->state != hv_pcichild_ejecting) { |
| put_pcichild(hpdev, hv_pcidev_ref_pnp); |
| return; |
| } |
| |
| /* |
| * Ejection can come before or after the PCI bus has been set up, so |
| * attempt to find it and tear down the bus state, if it exists. This |
| * must be done without constructs like pci_domain_nr(hbus->pci_bus) |
| * because hbus->pci_bus may not exist yet. |
| */ |
| wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); |
| pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, |
| wslot); |
| if (pdev) { |
| pci_stop_and_remove_bus_device(pdev); |
| pci_dev_put(pdev); |
| } |
| |
| memset(&ctxt, 0, sizeof(ctxt)); |
| ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; |
| ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; |
| ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; |
| vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, |
| sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, |
| VM_PKT_DATA_INBAND, 0); |
| |
| spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); |
| list_del(&hpdev->list_entry); |
| spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); |
| |
| put_pcichild(hpdev, hv_pcidev_ref_childlist); |
| put_pcichild(hpdev, hv_pcidev_ref_pnp); |
| put_hvpcibus(hpdev->hbus); |
| } |
| |
| /** |
| * hv_pci_eject_device() - Handles device ejection |
| * @hpdev: Internal device tracking struct |
| * |
| * This function is invoked when an ejection packet arrives. It |
| * just schedules work so that we don't re-enter the packet |
| * delivery code handling the ejection. |
| */ |
| static void hv_pci_eject_device(struct hv_pci_dev *hpdev) |
| { |
| hpdev->state = hv_pcichild_ejecting; |
| get_pcichild(hpdev, hv_pcidev_ref_pnp); |
| INIT_WORK(&hpdev->wrk, hv_eject_device_work); |
| get_hvpcibus(hpdev->hbus); |
| schedule_work(&hpdev->wrk); |
| } |
| |
| /** |
| * hv_pci_onchannelcallback() - Handles incoming packets |
| * @context: Internal bus tracking struct |
| * |
| * This function is invoked whenever the host sends a packet to |
| * this channel (which is private to this root PCI bus). |
| */ |
| static void hv_pci_onchannelcallback(void *context) |
| { |
| const int packet_size = 0x100; |
| int ret; |
| struct hv_pcibus_device *hbus = context; |
| u32 bytes_recvd; |
| u64 req_id; |
| struct vmpacket_descriptor *desc; |
| unsigned char *buffer; |
| int bufferlen = packet_size; |
| struct pci_packet *comp_packet; |
| struct pci_response *response; |
| struct pci_incoming_message *new_message; |
| struct pci_bus_relations *bus_rel; |
| struct pci_dev_incoming *dev_message; |
| struct hv_pci_dev *hpdev; |
| |
| buffer = kmalloc(bufferlen, GFP_ATOMIC); |
| if (!buffer) |
| return; |
| |
| while (1) { |
| ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, |
| bufferlen, &bytes_recvd, &req_id); |
| |
| if (ret == -ENOBUFS) { |
| kfree(buffer); |
| /* Handle large packet */ |
| bufferlen = bytes_recvd; |
| buffer = kmalloc(bytes_recvd, GFP_ATOMIC); |
| if (!buffer) |
| return; |
| continue; |
| } |
| |
| /* Zero length indicates there are no more packets. */ |
| if (ret || !bytes_recvd) |
| break; |
| |
| /* |
| * All incoming packets must be at least as large as a |
| * response. |
| */ |
| if (bytes_recvd <= sizeof(struct pci_response)) |
| continue; |
| desc = (struct vmpacket_descriptor *)buffer; |
| |
| switch (desc->type) { |
| case VM_PKT_COMP: |
| |
| /* |
| * The host is trusted, and thus it's safe to interpret |
| * this transaction ID as a pointer. |
| */ |
| comp_packet = (struct pci_packet *)req_id; |
| response = (struct pci_response *)buffer; |
| comp_packet->completion_func(comp_packet->compl_ctxt, |
| response, |
| bytes_recvd); |
| break; |
| |
| case VM_PKT_DATA_INBAND: |
| |
| new_message = (struct pci_incoming_message *)buffer; |
| switch (new_message->message_type.type) { |
| case PCI_BUS_RELATIONS: |
| |
| bus_rel = (struct pci_bus_relations *)buffer; |
| if (bytes_recvd < |
| offsetof(struct pci_bus_relations, func) + |
| (sizeof(struct pci_function_description) * |
| (bus_rel->device_count))) { |
| dev_err(&hbus->hdev->device, |
| "bus relations too small\n"); |
| break; |
| } |
| |
| hv_pci_devices_present(hbus, bus_rel); |
| break; |
| |
| case PCI_EJECT: |
| |
| dev_message = (struct pci_dev_incoming *)buffer; |
| hpdev = get_pcichild_wslot(hbus, |
| dev_message->wslot.slot); |
| if (hpdev) { |
| hv_pci_eject_device(hpdev); |
| put_pcichild(hpdev, |
| hv_pcidev_ref_by_slot); |
| } |
| break; |
| |
| default: |
| dev_warn(&hbus->hdev->device, |
| "Unimplemented protocol message %x\n", |
| new_message->message_type.type); |
| break; |
| } |
| break; |
| |
| default: |
| dev_err(&hbus->hdev->device, |
| "unhandled packet type %d, tid %llx len %d\n", |
| desc->type, req_id, bytes_recvd); |
| break; |
| } |
| } |
| |
| kfree(buffer); |
| } |
| |
| /** |
| * hv_pci_protocol_negotiation() - Set up protocol |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * This driver is intended to support running on Windows 10 |
| * (server) and later versions. It will not run on earlier |
| * versions, as they assume that many of the operations which |
| * Linux needs accomplished with a spinlock held were done via |
| * asynchronous messaging via VMBus. Windows 10 increases the |
| * surface area of PCI emulation so that these actions can take |
| * place by suspending a virtual processor for their duration. |
| * |
| * This function negotiates the channel protocol version, |
| * failing if the host doesn't support the necessary protocol |
| * level. |
| */ |
| static int hv_pci_protocol_negotiation(struct hv_device *hdev) |
| { |
| struct pci_version_request *version_req; |
| struct hv_pci_compl comp_pkt; |
| struct pci_packet *pkt; |
| int ret; |
| |
| /* |
| * Initiate the handshake with the host and negotiate |
| * a version that the host can support. We start with the |
| * highest version number and go down if the host cannot |
| * support it. |
| */ |
| pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| version_req = (struct pci_version_request *)&pkt->message; |
| version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; |
| version_req->protocol_version = PCI_PROTOCOL_VERSION_CURRENT; |
| |
| ret = vmbus_sendpacket(hdev->channel, version_req, |
| sizeof(struct pci_version_request), |
| (unsigned long)pkt, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| goto exit; |
| |
| wait_for_completion(&comp_pkt.host_event); |
| |
| if (comp_pkt.completion_status < 0) { |
| dev_err(&hdev->device, |
| "PCI Pass-through VSP failed version request %x\n", |
| comp_pkt.completion_status); |
| ret = -EPROTO; |
| goto exit; |
| } |
| |
| ret = 0; |
| |
| exit: |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_pci_free_bridge_windows() - Release memory regions for the |
| * bus |
| * @hbus: Root PCI bus, as understood by this driver |
| */ |
| static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) |
| { |
| /* |
| * Set the resources back to the way they looked when they |
| * were allocated by setting IORESOURCE_BUSY again. |
| */ |
| |
| if (hbus->low_mmio_space && hbus->low_mmio_res) { |
| hbus->low_mmio_res->flags |= IORESOURCE_BUSY; |
| vmbus_free_mmio(hbus->low_mmio_res->start, |
| resource_size(hbus->low_mmio_res)); |
| } |
| |
| if (hbus->high_mmio_space && hbus->high_mmio_res) { |
| hbus->high_mmio_res->flags |= IORESOURCE_BUSY; |
| vmbus_free_mmio(hbus->high_mmio_res->start, |
| resource_size(hbus->high_mmio_res)); |
| } |
| } |
| |
| /** |
| * hv_pci_allocate_bridge_windows() - Allocate memory regions |
| * for the bus |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * This function calls vmbus_allocate_mmio(), which is itself a |
| * bit of a compromise. Ideally, we might change the pnp layer |
| * in the kernel such that it comprehends either PCI devices |
| * which are "grandchildren of ACPI," with some intermediate bus |
| * node (in this case, VMBus) or change it such that it |
| * understands VMBus. The pnp layer, however, has been declared |
| * deprecated, and not subject to change. |
| * |
| * The workaround, implemented here, is to ask VMBus to allocate |
| * MMIO space for this bus. VMBus itself knows which ranges are |
| * appropriate by looking at its own ACPI objects. Then, after |
| * these ranges are claimed, they're modified to look like they |
| * would have looked if the ACPI and pnp code had allocated |
| * bridge windows. These descriptors have to exist in this form |
| * in order to satisfy the code which will get invoked when the |
| * endpoint PCI function driver calls request_mem_region() or |
| * request_mem_region_exclusive(). |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) |
| { |
| resource_size_t align; |
| int ret; |
| |
| if (hbus->low_mmio_space) { |
| align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); |
| ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, |
| (u64)(u32)0xffffffff, |
| hbus->low_mmio_space, |
| align, false); |
| if (ret) { |
| dev_err(&hbus->hdev->device, |
| "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", |
| hbus->low_mmio_space); |
| return ret; |
| } |
| |
| /* Modify this resource to become a bridge window. */ |
| hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; |
| hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; |
| pci_add_resource(&hbus->resources_for_children, |
| hbus->low_mmio_res); |
| } |
| |
| if (hbus->high_mmio_space) { |
| align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); |
| ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, |
| 0x100000000, -1, |
| hbus->high_mmio_space, align, |
| false); |
| if (ret) { |
| dev_err(&hbus->hdev->device, |
| "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", |
| hbus->high_mmio_space); |
| goto release_low_mmio; |
| } |
| |
| /* Modify this resource to become a bridge window. */ |
| hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; |
| hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; |
| pci_add_resource(&hbus->resources_for_children, |
| hbus->high_mmio_res); |
| } |
| |
| return 0; |
| |
| release_low_mmio: |
| if (hbus->low_mmio_res) { |
| vmbus_free_mmio(hbus->low_mmio_res->start, |
| resource_size(hbus->low_mmio_res)); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * hv_allocate_config_window() - Find MMIO space for PCI Config |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * This function claims memory-mapped I/O space for accessing |
| * configuration space for the functions on this bus. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_allocate_config_window(struct hv_pcibus_device *hbus) |
| { |
| int ret; |
| |
| /* |
| * Set up a region of MMIO space to use for accessing configuration |
| * space. |
| */ |
| ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, |
| PCI_CONFIG_MMIO_LENGTH, 0x1000, false); |
| if (ret) |
| return ret; |
| |
| /* |
| * vmbus_allocate_mmio() gets used for allocating both device endpoint |
| * resource claims (those which cannot be overlapped) and the ranges |
| * which are valid for the children of this bus, which are intended |
| * to be overlapped by those children. Set the flag on this claim |
| * meaning that this region can't be overlapped. |
| */ |
| |
| hbus->mem_config->flags |= IORESOURCE_BUSY; |
| |
| return 0; |
| } |
| |
| static void hv_free_config_window(struct hv_pcibus_device *hbus) |
| { |
| vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); |
| } |
| |
| /** |
| * hv_pci_enter_d0() - Bring the "bus" into the D0 power state |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_enter_d0(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_bus_d0_entry *d0_entry; |
| struct hv_pci_compl comp_pkt; |
| struct pci_packet *pkt; |
| int ret; |
| |
| /* |
| * Tell the host that the bus is ready to use, and moved into the |
| * powered-on state. This includes telling the host which region |
| * of memory-mapped I/O space has been chosen for configuration space |
| * access. |
| */ |
| pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| d0_entry = (struct pci_bus_d0_entry *)&pkt->message; |
| d0_entry->message_type.type = PCI_BUS_D0ENTRY; |
| d0_entry->mmio_base = hbus->mem_config->start; |
| |
| ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), |
| (unsigned long)pkt, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| goto exit; |
| |
| wait_for_completion(&comp_pkt.host_event); |
| |
| if (comp_pkt.completion_status < 0) { |
| dev_err(&hdev->device, |
| "PCI Pass-through VSP failed D0 Entry with status %x\n", |
| comp_pkt.completion_status); |
| ret = -EPROTO; |
| goto exit; |
| } |
| |
| ret = 0; |
| |
| exit: |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_pci_query_relations() - Ask host to send list of child |
| * devices |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_query_relations(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_message message; |
| struct completion comp; |
| int ret; |
| |
| /* Ask the host to send along the list of child devices */ |
| init_completion(&comp); |
| if (cmpxchg(&hbus->survey_event, NULL, &comp)) |
| return -ENOTEMPTY; |
| |
| memset(&message, 0, sizeof(message)); |
| message.type = PCI_QUERY_BUS_RELATIONS; |
| |
| ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), |
| 0, VM_PKT_DATA_INBAND, 0); |
| if (ret) |
| return ret; |
| |
| wait_for_completion(&comp); |
| return 0; |
| } |
| |
| /** |
| * hv_send_resources_allocated() - Report local resource choices |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * The host OS is expecting to be sent a request as a message |
| * which contains all the resources that the device will use. |
| * The response contains those same resources, "translated" |
| * which is to say, the values which should be used by the |
| * hardware, when it delivers an interrupt. (MMIO resources are |
| * used in local terms.) This is nice for Windows, and lines up |
| * with the FDO/PDO split, which doesn't exist in Linux. Linux |
| * is deeply expecting to scan an emulated PCI configuration |
| * space. So this message is sent here only to drive the state |
| * machine on the host forward. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_send_resources_allocated(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_resources_assigned *res_assigned; |
| struct hv_pci_compl comp_pkt; |
| struct hv_pci_dev *hpdev; |
| struct pci_packet *pkt; |
| u32 wslot; |
| int ret; |
| |
| pkt = kmalloc(sizeof(*pkt) + sizeof(*res_assigned), GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| ret = 0; |
| |
| for (wslot = 0; wslot < 256; wslot++) { |
| hpdev = get_pcichild_wslot(hbus, wslot); |
| if (!hpdev) |
| continue; |
| |
| memset(pkt, 0, sizeof(*pkt) + sizeof(*res_assigned)); |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| res_assigned = (struct pci_resources_assigned *)&pkt->message; |
| res_assigned->message_type.type = PCI_RESOURCES_ASSIGNED; |
| res_assigned->wslot.slot = hpdev->desc.win_slot.slot; |
| |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| |
| ret = vmbus_sendpacket( |
| hdev->channel, &pkt->message, |
| sizeof(*res_assigned), |
| (unsigned long)pkt, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| break; |
| |
| wait_for_completion(&comp_pkt.host_event); |
| |
| if (comp_pkt.completion_status < 0) { |
| ret = -EPROTO; |
| dev_err(&hdev->device, |
| "resource allocated returned 0x%x", |
| comp_pkt.completion_status); |
| break; |
| } |
| } |
| |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_send_resources_released() - Report local resources |
| * released |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_send_resources_released(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_child_message pkt; |
| struct hv_pci_dev *hpdev; |
| u32 wslot; |
| int ret; |
| |
| for (wslot = 0; wslot < 256; wslot++) { |
| hpdev = get_pcichild_wslot(hbus, wslot); |
| if (!hpdev) |
| continue; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.message_type.type = PCI_RESOURCES_RELEASED; |
| pkt.wslot.slot = hpdev->desc.win_slot.slot; |
| |
| put_pcichild(hpdev, hv_pcidev_ref_by_slot); |
| |
| ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, |
| VM_PKT_DATA_INBAND, 0); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void get_hvpcibus(struct hv_pcibus_device *hbus) |
| { |
| atomic_inc(&hbus->remove_lock); |
| } |
| |
| static void put_hvpcibus(struct hv_pcibus_device *hbus) |
| { |
| if (atomic_dec_and_test(&hbus->remove_lock)) |
| complete(&hbus->remove_event); |
| } |
| |
| /** |
| * hv_pci_probe() - New VMBus channel probe, for a root PCI bus |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * @dev_id: Identifies the device itself |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_probe(struct hv_device *hdev, |
| const struct hv_vmbus_device_id *dev_id) |
| { |
| struct hv_pcibus_device *hbus; |
| int ret; |
| |
| hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); |
| if (!hbus) |
| return -ENOMEM; |
| |
| /* |
| * The PCI bus "domain" is what is called "segment" in ACPI and |
| * other specs. Pull it from the instance ID, to get something |
| * unique. Bytes 8 and 9 are what is used in Windows guests, so |
| * do the same thing for consistency. Note that, since this code |
| * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee |
| * that (1) the only domain in use for something that looks like |
| * a physical PCI bus (which is actually emulated by the |
| * hypervisor) is domain 0 and (2) there will be no overlap |
| * between domains derived from these instance IDs in the same |
| * VM. |
| */ |
| hbus->sysdata.domain = hdev->dev_instance.b[9] | |
| hdev->dev_instance.b[8] << 8; |
| |
| hbus->hdev = hdev; |
| atomic_inc(&hbus->remove_lock); |
| INIT_LIST_HEAD(&hbus->children); |
| INIT_LIST_HEAD(&hbus->dr_list); |
| INIT_LIST_HEAD(&hbus->resources_for_children); |
| spin_lock_init(&hbus->config_lock); |
| spin_lock_init(&hbus->device_list_lock); |
| sema_init(&hbus->enum_sem, 1); |
| init_completion(&hbus->remove_event); |
| |
| ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, |
| hv_pci_onchannelcallback, hbus); |
| if (ret) |
| goto free_bus; |
| |
| hv_set_drvdata(hdev, hbus); |
| |
| ret = hv_pci_protocol_negotiation(hdev); |
| if (ret) |
| goto close; |
| |
| ret = hv_allocate_config_window(hbus); |
| if (ret) |
| goto close; |
| |
| hbus->cfg_addr = ioremap(hbus->mem_config->start, |
| PCI_CONFIG_MMIO_LENGTH); |
| if (!hbus->cfg_addr) { |
| dev_err(&hdev->device, |
| "Unable to map a virtual address for config space\n"); |
| ret = -ENOMEM; |
| goto free_config; |
| } |
| |
| hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); |
| if (!hbus->sysdata.fwnode) { |
| ret = -ENOMEM; |
| goto unmap; |
| } |
| |
| ret = hv_pcie_init_irq_domain(hbus); |
| if (ret) |
| goto free_fwnode; |
| |
| ret = hv_pci_query_relations(hdev); |
| if (ret) |
| goto free_irq_domain; |
| |
| ret = hv_pci_enter_d0(hdev); |
| if (ret) |
| goto free_irq_domain; |
| |
| ret = hv_pci_allocate_bridge_windows(hbus); |
| if (ret) |
| goto free_irq_domain; |
| |
| ret = hv_send_resources_allocated(hdev); |
| if (ret) |
| goto free_windows; |
| |
| prepopulate_bars(hbus); |
| |
| hbus->state = hv_pcibus_probed; |
| |
| ret = create_root_hv_pci_bus(hbus); |
| if (ret) |
| goto free_windows; |
| |
| return 0; |
| |
| free_windows: |
| hv_pci_free_bridge_windows(hbus); |
| free_irq_domain: |
| irq_domain_remove(hbus->irq_domain); |
| free_fwnode: |
| irq_domain_free_fwnode(hbus->sysdata.fwnode); |
| unmap: |
| iounmap(hbus->cfg_addr); |
| free_config: |
| hv_free_config_window(hbus); |
| close: |
| vmbus_close(hdev->channel); |
| free_bus: |
| kfree(hbus); |
| return ret; |
| } |
| |
| /** |
| * hv_pci_remove() - Remove routine for this VMBus channel |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_remove(struct hv_device *hdev) |
| { |
| int ret; |
| struct hv_pcibus_device *hbus; |
| union { |
| struct pci_packet teardown_packet; |
| u8 buffer[0x100]; |
| } pkt; |
| struct pci_bus_relations relations; |
| struct hv_pci_compl comp_pkt; |
| |
| hbus = hv_get_drvdata(hdev); |
| |
| memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); |
| init_completion(&comp_pkt.host_event); |
| pkt.teardown_packet.completion_func = hv_pci_generic_compl; |
| pkt.teardown_packet.compl_ctxt = &comp_pkt; |
| pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; |
| |
| ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, |
| sizeof(struct pci_message), |
| (unsigned long)&pkt.teardown_packet, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (!ret) |
| wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); |
| |
| if (hbus->state == hv_pcibus_installed) { |
| /* Remove the bus from PCI's point of view. */ |
| pci_lock_rescan_remove(); |
| pci_stop_root_bus(hbus->pci_bus); |
| pci_remove_root_bus(hbus->pci_bus); |
| pci_unlock_rescan_remove(); |
| } |
| |
| ret = hv_send_resources_released(hdev); |
| if (ret) |
| dev_err(&hdev->device, |
| "Couldn't send resources released packet(s)\n"); |
| |
| vmbus_close(hdev->channel); |
| |
| /* Delete any children which might still exist. */ |
| memset(&relations, 0, sizeof(relations)); |
| hv_pci_devices_present(hbus, &relations); |
| |
| iounmap(hbus->cfg_addr); |
| hv_free_config_window(hbus); |
| pci_free_resource_list(&hbus->resources_for_children); |
| hv_pci_free_bridge_windows(hbus); |
| irq_domain_remove(hbus->irq_domain); |
| irq_domain_free_fwnode(hbus->sysdata.fwnode); |
| put_hvpcibus(hbus); |
| wait_for_completion(&hbus->remove_event); |
| kfree(hbus); |
| return 0; |
| } |
| |
| static const struct hv_vmbus_device_id hv_pci_id_table[] = { |
| /* PCI Pass-through Class ID */ |
| /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ |
| { HV_PCIE_GUID, }, |
| { }, |
| }; |
| |
| MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); |
| |
| static struct hv_driver hv_pci_drv = { |
| .name = "hv_pci", |
| .id_table = hv_pci_id_table, |
| .probe = hv_pci_probe, |
| .remove = hv_pci_remove, |
| }; |
| |
| static void __exit exit_hv_pci_drv(void) |
| { |
| vmbus_driver_unregister(&hv_pci_drv); |
| } |
| |
| static int __init init_hv_pci_drv(void) |
| { |
| return vmbus_driver_register(&hv_pci_drv); |
| } |
| |
| module_init(init_hv_pci_drv); |
| module_exit(exit_hv_pci_drv); |
| |
| MODULE_DESCRIPTION("Hyper-V PCI"); |
| MODULE_LICENSE("GPL v2"); |