| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_trans.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_error.h" |
| #include "xfs_rw.h" |
| #include "xfs_iomap.h" |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| |
| STATIC void xfs_count_page_state(struct page *, int *, int *, int *); |
| STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *, |
| struct writeback_control *wbc, void *, int, int); |
| |
| #if defined(XFS_RW_TRACE) |
| void |
| xfs_page_trace( |
| int tag, |
| struct inode *inode, |
| struct page *page, |
| int mask) |
| { |
| xfs_inode_t *ip; |
| bhv_desc_t *bdp; |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| loff_t isize = i_size_read(inode); |
| loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT; |
| int delalloc = -1, unmapped = -1, unwritten = -1; |
| |
| if (page_has_buffers(page)) |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| |
| bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops); |
| ip = XFS_BHVTOI(bdp); |
| if (!ip->i_rwtrace) |
| return; |
| |
| ktrace_enter(ip->i_rwtrace, |
| (void *)((unsigned long)tag), |
| (void *)ip, |
| (void *)inode, |
| (void *)page, |
| (void *)((unsigned long)mask), |
| (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), |
| (void *)((unsigned long)((isize >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(isize & 0xffffffff)), |
| (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(offset & 0xffffffff)), |
| (void *)((unsigned long)delalloc), |
| (void *)((unsigned long)unmapped), |
| (void *)((unsigned long)unwritten), |
| (void *)NULL, |
| (void *)NULL); |
| } |
| #else |
| #define xfs_page_trace(tag, inode, page, mask) |
| #endif |
| |
| /* |
| * Schedule IO completion handling on a xfsdatad if this was |
| * the final hold on this ioend. |
| */ |
| STATIC void |
| xfs_finish_ioend( |
| xfs_ioend_t *ioend) |
| { |
| if (atomic_dec_and_test(&ioend->io_remaining)) |
| queue_work(xfsdatad_workqueue, &ioend->io_work); |
| } |
| |
| STATIC void |
| xfs_destroy_ioend( |
| xfs_ioend_t *ioend) |
| { |
| vn_iowake(ioend->io_vnode); |
| mempool_free(ioend, xfs_ioend_pool); |
| } |
| |
| /* |
| * Issue transactions to convert a buffer range from unwritten |
| * to written extents. |
| */ |
| STATIC void |
| xfs_end_bio_unwritten( |
| void *data) |
| { |
| xfs_ioend_t *ioend = data; |
| vnode_t *vp = ioend->io_vnode; |
| xfs_off_t offset = ioend->io_offset; |
| size_t size = ioend->io_size; |
| struct buffer_head *bh, *next; |
| int error; |
| |
| if (ioend->io_uptodate) |
| VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error); |
| |
| /* ioend->io_buffer_head is only non-NULL for buffered I/O */ |
| for (bh = ioend->io_buffer_head; bh; bh = next) { |
| next = bh->b_private; |
| |
| bh->b_end_io = NULL; |
| clear_buffer_unwritten(bh); |
| end_buffer_async_write(bh, ioend->io_uptodate); |
| } |
| |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * Allocate and initialise an IO completion structure. |
| * We need to track unwritten extent write completion here initially. |
| * We'll need to extend this for updating the ondisk inode size later |
| * (vs. incore size). |
| */ |
| STATIC xfs_ioend_t * |
| xfs_alloc_ioend( |
| struct inode *inode) |
| { |
| xfs_ioend_t *ioend; |
| |
| ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); |
| |
| /* |
| * Set the count to 1 initially, which will prevent an I/O |
| * completion callback from happening before we have started |
| * all the I/O from calling the completion routine too early. |
| */ |
| atomic_set(&ioend->io_remaining, 1); |
| ioend->io_uptodate = 1; /* cleared if any I/O fails */ |
| ioend->io_vnode = LINVFS_GET_VP(inode); |
| ioend->io_buffer_head = NULL; |
| atomic_inc(&ioend->io_vnode->v_iocount); |
| ioend->io_offset = 0; |
| ioend->io_size = 0; |
| |
| INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend); |
| |
| return ioend; |
| } |
| |
| void |
| linvfs_unwritten_done( |
| struct buffer_head *bh, |
| int uptodate) |
| { |
| xfs_ioend_t *ioend = bh->b_private; |
| static spinlock_t unwritten_done_lock = SPIN_LOCK_UNLOCKED; |
| unsigned long flags; |
| |
| ASSERT(buffer_unwritten(bh)); |
| bh->b_end_io = NULL; |
| |
| if (!uptodate) |
| ioend->io_uptodate = 0; |
| |
| /* |
| * Deep magic here. We reuse b_private in the buffer_heads to build |
| * a chain for completing the I/O from user context after we've issued |
| * a transaction to convert the unwritten extent. |
| */ |
| spin_lock_irqsave(&unwritten_done_lock, flags); |
| bh->b_private = ioend->io_buffer_head; |
| ioend->io_buffer_head = bh; |
| spin_unlock_irqrestore(&unwritten_done_lock, flags); |
| |
| xfs_finish_ioend(ioend); |
| } |
| |
| STATIC int |
| xfs_map_blocks( |
| struct inode *inode, |
| loff_t offset, |
| ssize_t count, |
| xfs_iomap_t *mapp, |
| int flags) |
| { |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| int error, nmaps = 1; |
| |
| VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error); |
| if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE))) |
| VMODIFY(vp); |
| return -error; |
| } |
| |
| /* |
| * Finds the corresponding mapping in block @map array of the |
| * given @offset within a @page. |
| */ |
| STATIC xfs_iomap_t * |
| xfs_offset_to_map( |
| struct page *page, |
| xfs_iomap_t *iomapp, |
| unsigned long offset) |
| { |
| loff_t full_offset; /* offset from start of file */ |
| |
| ASSERT(offset < PAGE_CACHE_SIZE); |
| |
| full_offset = page->index; /* NB: using 64bit number */ |
| full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */ |
| full_offset += offset; /* offset from page start */ |
| |
| if (full_offset < iomapp->iomap_offset) |
| return NULL; |
| if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset) |
| return iomapp; |
| return NULL; |
| } |
| |
| STATIC void |
| xfs_map_at_offset( |
| struct page *page, |
| struct buffer_head *bh, |
| unsigned long offset, |
| int block_bits, |
| xfs_iomap_t *iomapp) |
| { |
| xfs_daddr_t bn; |
| loff_t delta; |
| int sector_shift; |
| |
| ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE)); |
| ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY)); |
| ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL); |
| |
| delta = page->index; |
| delta <<= PAGE_CACHE_SHIFT; |
| delta += offset; |
| delta -= iomapp->iomap_offset; |
| delta >>= block_bits; |
| |
| sector_shift = block_bits - BBSHIFT; |
| bn = iomapp->iomap_bn >> sector_shift; |
| bn += delta; |
| BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME)); |
| ASSERT((bn << sector_shift) >= iomapp->iomap_bn); |
| |
| lock_buffer(bh); |
| bh->b_blocknr = bn; |
| bh->b_bdev = iomapp->iomap_target->pbr_bdev; |
| set_buffer_mapped(bh); |
| clear_buffer_delay(bh); |
| } |
| |
| /* |
| * Look for a page at index which is unlocked and contains our |
| * unwritten extent flagged buffers at its head. Returns page |
| * locked and with an extra reference count, and length of the |
| * unwritten extent component on this page that we can write, |
| * in units of filesystem blocks. |
| */ |
| STATIC struct page * |
| xfs_probe_unwritten_page( |
| struct address_space *mapping, |
| pgoff_t index, |
| xfs_iomap_t *iomapp, |
| xfs_ioend_t *ioend, |
| unsigned long max_offset, |
| unsigned long *fsbs, |
| unsigned int bbits) |
| { |
| struct page *page; |
| |
| page = find_trylock_page(mapping, index); |
| if (!page) |
| return NULL; |
| if (PageWriteback(page)) |
| goto out; |
| |
| if (page->mapping && page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| unsigned long p_offset = 0; |
| |
| *fsbs = 0; |
| bh = head = page_buffers(page); |
| do { |
| if (!buffer_unwritten(bh) || !buffer_uptodate(bh)) |
| break; |
| if (!xfs_offset_to_map(page, iomapp, p_offset)) |
| break; |
| if (p_offset >= max_offset) |
| break; |
| xfs_map_at_offset(page, bh, p_offset, bbits, iomapp); |
| set_buffer_unwritten_io(bh); |
| bh->b_private = ioend; |
| p_offset += bh->b_size; |
| (*fsbs)++; |
| } while ((bh = bh->b_this_page) != head); |
| |
| if (p_offset) |
| return page; |
| } |
| |
| out: |
| unlock_page(page); |
| return NULL; |
| } |
| |
| /* |
| * Look for a page at index which is unlocked and not mapped |
| * yet - clustering for mmap write case. |
| */ |
| STATIC unsigned int |
| xfs_probe_unmapped_page( |
| struct address_space *mapping, |
| pgoff_t index, |
| unsigned int pg_offset) |
| { |
| struct page *page; |
| int ret = 0; |
| |
| page = find_trylock_page(mapping, index); |
| if (!page) |
| return 0; |
| if (PageWriteback(page)) |
| goto out; |
| |
| if (page->mapping && PageDirty(page)) { |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_mapped(bh) || !buffer_uptodate(bh)) |
| break; |
| ret += bh->b_size; |
| if (ret >= pg_offset) |
| break; |
| } while ((bh = bh->b_this_page) != head); |
| } else |
| ret = PAGE_CACHE_SIZE; |
| } |
| |
| out: |
| unlock_page(page); |
| return ret; |
| } |
| |
| STATIC unsigned int |
| xfs_probe_unmapped_cluster( |
| struct inode *inode, |
| struct page *startpage, |
| struct buffer_head *bh, |
| struct buffer_head *head) |
| { |
| pgoff_t tindex, tlast, tloff; |
| unsigned int pg_offset, len, total = 0; |
| struct address_space *mapping = inode->i_mapping; |
| |
| /* First sum forwards in this page */ |
| do { |
| if (buffer_mapped(bh)) |
| break; |
| total += bh->b_size; |
| } while ((bh = bh->b_this_page) != head); |
| |
| /* If we reached the end of the page, sum forwards in |
| * following pages. |
| */ |
| if (bh == head) { |
| tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; |
| /* Prune this back to avoid pathological behavior */ |
| tloff = min(tlast, startpage->index + 64); |
| for (tindex = startpage->index + 1; tindex < tloff; tindex++) { |
| len = xfs_probe_unmapped_page(mapping, tindex, |
| PAGE_CACHE_SIZE); |
| if (!len) |
| return total; |
| total += len; |
| } |
| if (tindex == tlast && |
| (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { |
| total += xfs_probe_unmapped_page(mapping, |
| tindex, pg_offset); |
| } |
| } |
| return total; |
| } |
| |
| /* |
| * Probe for a given page (index) in the inode and test if it is delayed |
| * and without unwritten buffers. Returns page locked and with an extra |
| * reference count. |
| */ |
| STATIC struct page * |
| xfs_probe_delalloc_page( |
| struct inode *inode, |
| pgoff_t index) |
| { |
| struct page *page; |
| |
| page = find_trylock_page(inode->i_mapping, index); |
| if (!page) |
| return NULL; |
| if (PageWriteback(page)) |
| goto out; |
| |
| if (page->mapping && page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| int acceptable = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_unwritten(bh)) { |
| acceptable = 0; |
| break; |
| } else if (buffer_delay(bh)) { |
| acceptable = 1; |
| } |
| } while ((bh = bh->b_this_page) != head); |
| |
| if (acceptable) |
| return page; |
| } |
| |
| out: |
| unlock_page(page); |
| return NULL; |
| } |
| |
| STATIC int |
| xfs_map_unwritten( |
| struct inode *inode, |
| struct page *start_page, |
| struct buffer_head *head, |
| struct buffer_head *curr, |
| unsigned long p_offset, |
| int block_bits, |
| xfs_iomap_t *iomapp, |
| struct writeback_control *wbc, |
| int startio, |
| int all_bh) |
| { |
| struct buffer_head *bh = curr; |
| xfs_iomap_t *tmp; |
| xfs_ioend_t *ioend; |
| loff_t offset; |
| unsigned long nblocks = 0; |
| |
| offset = start_page->index; |
| offset <<= PAGE_CACHE_SHIFT; |
| offset += p_offset; |
| |
| ioend = xfs_alloc_ioend(inode); |
| |
| /* First map forwards in the page consecutive buffers |
| * covering this unwritten extent |
| */ |
| do { |
| if (!buffer_unwritten(bh)) |
| break; |
| tmp = xfs_offset_to_map(start_page, iomapp, p_offset); |
| if (!tmp) |
| break; |
| xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp); |
| set_buffer_unwritten_io(bh); |
| bh->b_private = ioend; |
| p_offset += bh->b_size; |
| nblocks++; |
| } while ((bh = bh->b_this_page) != head); |
| |
| atomic_add(nblocks, &ioend->io_remaining); |
| |
| /* If we reached the end of the page, map forwards in any |
| * following pages which are also covered by this extent. |
| */ |
| if (bh == head) { |
| struct address_space *mapping = inode->i_mapping; |
| pgoff_t tindex, tloff, tlast; |
| unsigned long bs; |
| unsigned int pg_offset, bbits = inode->i_blkbits; |
| struct page *page; |
| |
| tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; |
| tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT; |
| tloff = min(tlast, tloff); |
| for (tindex = start_page->index + 1; tindex < tloff; tindex++) { |
| page = xfs_probe_unwritten_page(mapping, |
| tindex, iomapp, ioend, |
| PAGE_CACHE_SIZE, &bs, bbits); |
| if (!page) |
| break; |
| nblocks += bs; |
| atomic_add(bs, &ioend->io_remaining); |
| xfs_convert_page(inode, page, iomapp, wbc, ioend, |
| startio, all_bh); |
| /* stop if converting the next page might add |
| * enough blocks that the corresponding byte |
| * count won't fit in our ulong page buf length */ |
| if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits)) |
| goto enough; |
| } |
| |
| if (tindex == tlast && |
| (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) { |
| page = xfs_probe_unwritten_page(mapping, |
| tindex, iomapp, ioend, |
| pg_offset, &bs, bbits); |
| if (page) { |
| nblocks += bs; |
| atomic_add(bs, &ioend->io_remaining); |
| xfs_convert_page(inode, page, iomapp, wbc, ioend, |
| startio, all_bh); |
| if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits)) |
| goto enough; |
| } |
| } |
| } |
| |
| enough: |
| ioend->io_size = (xfs_off_t)nblocks << block_bits; |
| ioend->io_offset = offset; |
| xfs_finish_ioend(ioend); |
| return 0; |
| } |
| |
| STATIC void |
| xfs_submit_page( |
| struct page *page, |
| struct writeback_control *wbc, |
| struct buffer_head *bh_arr[], |
| int bh_count, |
| int probed_page, |
| int clear_dirty) |
| { |
| struct buffer_head *bh; |
| int i; |
| |
| BUG_ON(PageWriteback(page)); |
| if (bh_count) |
| set_page_writeback(page); |
| if (clear_dirty) |
| clear_page_dirty(page); |
| unlock_page(page); |
| |
| if (bh_count) { |
| for (i = 0; i < bh_count; i++) { |
| bh = bh_arr[i]; |
| mark_buffer_async_write(bh); |
| if (buffer_unwritten(bh)) |
| set_buffer_unwritten_io(bh); |
| set_buffer_uptodate(bh); |
| clear_buffer_dirty(bh); |
| } |
| |
| for (i = 0; i < bh_count; i++) |
| submit_bh(WRITE, bh_arr[i]); |
| |
| if (probed_page && clear_dirty) |
| wbc->nr_to_write--; /* Wrote an "extra" page */ |
| } |
| } |
| |
| /* |
| * Allocate & map buffers for page given the extent map. Write it out. |
| * except for the original page of a writepage, this is called on |
| * delalloc/unwritten pages only, for the original page it is possible |
| * that the page has no mapping at all. |
| */ |
| STATIC void |
| xfs_convert_page( |
| struct inode *inode, |
| struct page *page, |
| xfs_iomap_t *iomapp, |
| struct writeback_control *wbc, |
| void *private, |
| int startio, |
| int all_bh) |
| { |
| struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head; |
| xfs_iomap_t *mp = iomapp, *tmp; |
| unsigned long offset, end_offset; |
| int index = 0; |
| int bbits = inode->i_blkbits; |
| int len, page_dirty; |
| |
| end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)); |
| |
| /* |
| * page_dirty is initially a count of buffers on the page before |
| * EOF and is decrememted as we move each into a cleanable state. |
| */ |
| len = 1 << inode->i_blkbits; |
| end_offset = max(end_offset, PAGE_CACHE_SIZE); |
| end_offset = roundup(end_offset, len); |
| page_dirty = end_offset / len; |
| |
| offset = 0; |
| bh = head = page_buffers(page); |
| do { |
| if (offset >= end_offset) |
| break; |
| if (!(PageUptodate(page) || buffer_uptodate(bh))) |
| continue; |
| if (buffer_mapped(bh) && all_bh && |
| !(buffer_unwritten(bh) || buffer_delay(bh))) { |
| if (startio) { |
| lock_buffer(bh); |
| bh_arr[index++] = bh; |
| page_dirty--; |
| } |
| continue; |
| } |
| tmp = xfs_offset_to_map(page, mp, offset); |
| if (!tmp) |
| continue; |
| ASSERT(!(tmp->iomap_flags & IOMAP_HOLE)); |
| ASSERT(!(tmp->iomap_flags & IOMAP_DELAY)); |
| |
| /* If this is a new unwritten extent buffer (i.e. one |
| * that we haven't passed in private data for, we must |
| * now map this buffer too. |
| */ |
| if (buffer_unwritten(bh) && !bh->b_end_io) { |
| ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN); |
| xfs_map_unwritten(inode, page, head, bh, offset, |
| bbits, tmp, wbc, startio, all_bh); |
| } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) { |
| xfs_map_at_offset(page, bh, offset, bbits, tmp); |
| if (buffer_unwritten(bh)) { |
| set_buffer_unwritten_io(bh); |
| bh->b_private = private; |
| ASSERT(private); |
| } |
| } |
| if (startio) { |
| bh_arr[index++] = bh; |
| } else { |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty(bh); |
| } |
| page_dirty--; |
| } while (offset += len, (bh = bh->b_this_page) != head); |
| |
| if (startio && index) { |
| xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty); |
| } else { |
| unlock_page(page); |
| } |
| } |
| |
| /* |
| * Convert & write out a cluster of pages in the same extent as defined |
| * by mp and following the start page. |
| */ |
| STATIC void |
| xfs_cluster_write( |
| struct inode *inode, |
| pgoff_t tindex, |
| xfs_iomap_t *iomapp, |
| struct writeback_control *wbc, |
| int startio, |
| int all_bh, |
| pgoff_t tlast) |
| { |
| struct page *page; |
| |
| for (; tindex <= tlast; tindex++) { |
| page = xfs_probe_delalloc_page(inode, tindex); |
| if (!page) |
| break; |
| xfs_convert_page(inode, page, iomapp, wbc, NULL, |
| startio, all_bh); |
| } |
| } |
| |
| /* |
| * Calling this without startio set means we are being asked to make a dirty |
| * page ready for freeing it's buffers. When called with startio set then |
| * we are coming from writepage. |
| * |
| * When called with startio set it is important that we write the WHOLE |
| * page if possible. |
| * The bh->b_state's cannot know if any of the blocks or which block for |
| * that matter are dirty due to mmap writes, and therefore bh uptodate is |
| * only vaild if the page itself isn't completely uptodate. Some layers |
| * may clear the page dirty flag prior to calling write page, under the |
| * assumption the entire page will be written out; by not writing out the |
| * whole page the page can be reused before all valid dirty data is |
| * written out. Note: in the case of a page that has been dirty'd by |
| * mapwrite and but partially setup by block_prepare_write the |
| * bh->b_states's will not agree and only ones setup by BPW/BCW will have |
| * valid state, thus the whole page must be written out thing. |
| */ |
| |
| STATIC int |
| xfs_page_state_convert( |
| struct inode *inode, |
| struct page *page, |
| struct writeback_control *wbc, |
| int startio, |
| int unmapped) /* also implies page uptodate */ |
| { |
| struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head; |
| xfs_iomap_t *iomp, iomap; |
| loff_t offset; |
| unsigned long p_offset = 0; |
| __uint64_t end_offset; |
| pgoff_t end_index, last_index, tlast; |
| int len, err, i, cnt = 0, uptodate = 1; |
| int flags; |
| int page_dirty; |
| |
| /* wait for other IO threads? */ |
| flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK; |
| |
| /* Is this page beyond the end of the file? */ |
| offset = i_size_read(inode); |
| end_index = offset >> PAGE_CACHE_SHIFT; |
| last_index = (offset - 1) >> PAGE_CACHE_SHIFT; |
| if (page->index >= end_index) { |
| if ((page->index >= end_index + 1) || |
| !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { |
| err = -EIO; |
| goto error; |
| } |
| } |
| |
| end_offset = min_t(unsigned long long, |
| (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); |
| offset = (loff_t)page->index << PAGE_CACHE_SHIFT; |
| |
| /* |
| * page_dirty is initially a count of buffers on the page before |
| * EOF and is decrememted as we move each into a cleanable state. |
| */ |
| len = 1 << inode->i_blkbits; |
| p_offset = max(p_offset, PAGE_CACHE_SIZE); |
| p_offset = roundup(p_offset, len); |
| page_dirty = p_offset / len; |
| |
| iomp = NULL; |
| p_offset = 0; |
| bh = head = page_buffers(page); |
| |
| do { |
| if (offset >= end_offset) |
| break; |
| if (!buffer_uptodate(bh)) |
| uptodate = 0; |
| if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) |
| continue; |
| |
| if (iomp) { |
| iomp = xfs_offset_to_map(page, &iomap, p_offset); |
| } |
| |
| /* |
| * First case, map an unwritten extent and prepare for |
| * extent state conversion transaction on completion. |
| */ |
| if (buffer_unwritten(bh)) { |
| if (!startio) |
| continue; |
| if (!iomp) { |
| err = xfs_map_blocks(inode, offset, len, &iomap, |
| BMAPI_WRITE|BMAPI_IGNSTATE); |
| if (err) { |
| goto error; |
| } |
| iomp = xfs_offset_to_map(page, &iomap, |
| p_offset); |
| } |
| if (iomp) { |
| if (!bh->b_end_io) { |
| err = xfs_map_unwritten(inode, page, |
| head, bh, p_offset, |
| inode->i_blkbits, iomp, |
| wbc, startio, unmapped); |
| if (err) { |
| goto error; |
| } |
| } else { |
| set_bit(BH_Lock, &bh->b_state); |
| } |
| BUG_ON(!buffer_locked(bh)); |
| bh_arr[cnt++] = bh; |
| page_dirty--; |
| } |
| /* |
| * Second case, allocate space for a delalloc buffer. |
| * We can return EAGAIN here in the release page case. |
| */ |
| } else if (buffer_delay(bh)) { |
| if (!iomp) { |
| err = xfs_map_blocks(inode, offset, len, &iomap, |
| BMAPI_ALLOCATE | flags); |
| if (err) { |
| goto error; |
| } |
| iomp = xfs_offset_to_map(page, &iomap, |
| p_offset); |
| } |
| if (iomp) { |
| xfs_map_at_offset(page, bh, p_offset, |
| inode->i_blkbits, iomp); |
| if (startio) { |
| bh_arr[cnt++] = bh; |
| } else { |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty(bh); |
| } |
| page_dirty--; |
| } |
| } else if ((buffer_uptodate(bh) || PageUptodate(page)) && |
| (unmapped || startio)) { |
| |
| if (!buffer_mapped(bh)) { |
| int size; |
| |
| /* |
| * Getting here implies an unmapped buffer |
| * was found, and we are in a path where we |
| * need to write the whole page out. |
| */ |
| if (!iomp) { |
| size = xfs_probe_unmapped_cluster( |
| inode, page, bh, head); |
| err = xfs_map_blocks(inode, offset, |
| size, &iomap, |
| BMAPI_WRITE|BMAPI_MMAP); |
| if (err) { |
| goto error; |
| } |
| iomp = xfs_offset_to_map(page, &iomap, |
| p_offset); |
| } |
| if (iomp) { |
| xfs_map_at_offset(page, |
| bh, p_offset, |
| inode->i_blkbits, iomp); |
| if (startio) { |
| bh_arr[cnt++] = bh; |
| } else { |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty(bh); |
| } |
| page_dirty--; |
| } |
| } else if (startio) { |
| if (buffer_uptodate(bh) && |
| !test_and_set_bit(BH_Lock, &bh->b_state)) { |
| bh_arr[cnt++] = bh; |
| page_dirty--; |
| } |
| } |
| } |
| } while (offset += len, p_offset += len, |
| ((bh = bh->b_this_page) != head)); |
| |
| if (uptodate && bh == head) |
| SetPageUptodate(page); |
| |
| if (startio) { |
| xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty); |
| } |
| |
| if (iomp) { |
| offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >> |
| PAGE_CACHE_SHIFT; |
| tlast = min_t(pgoff_t, offset, last_index); |
| xfs_cluster_write(inode, page->index + 1, iomp, wbc, |
| startio, unmapped, tlast); |
| } |
| |
| return page_dirty; |
| |
| error: |
| for (i = 0; i < cnt; i++) { |
| unlock_buffer(bh_arr[i]); |
| } |
| |
| /* |
| * If it's delalloc and we have nowhere to put it, |
| * throw it away, unless the lower layers told |
| * us to try again. |
| */ |
| if (err != -EAGAIN) { |
| if (!unmapped) { |
| block_invalidatepage(page, 0); |
| } |
| ClearPageUptodate(page); |
| } |
| return err; |
| } |
| |
| STATIC int |
| __linvfs_get_block( |
| struct inode *inode, |
| sector_t iblock, |
| unsigned long blocks, |
| struct buffer_head *bh_result, |
| int create, |
| int direct, |
| bmapi_flags_t flags) |
| { |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| xfs_iomap_t iomap; |
| int retpbbm = 1; |
| int error; |
| ssize_t size; |
| loff_t offset = (loff_t)iblock << inode->i_blkbits; |
| |
| if (blocks) |
| size = blocks << inode->i_blkbits; |
| else |
| size = 1 << inode->i_blkbits; |
| |
| VOP_BMAP(vp, offset, size, |
| create ? flags : BMAPI_READ, &iomap, &retpbbm, error); |
| if (error) |
| return -error; |
| |
| if (retpbbm == 0) |
| return 0; |
| |
| if (iomap.iomap_bn != IOMAP_DADDR_NULL) { |
| xfs_daddr_t bn; |
| loff_t delta; |
| |
| /* For unwritten extents do not report a disk address on |
| * the read case (treat as if we're reading into a hole). |
| */ |
| if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) { |
| delta = offset - iomap.iomap_offset; |
| delta >>= inode->i_blkbits; |
| |
| bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT); |
| bn += delta; |
| BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME)); |
| bh_result->b_blocknr = bn; |
| set_buffer_mapped(bh_result); |
| } |
| if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) { |
| if (direct) |
| bh_result->b_private = inode; |
| set_buffer_unwritten(bh_result); |
| set_buffer_delay(bh_result); |
| } |
| } |
| |
| /* If this is a realtime file, data might be on a new device */ |
| bh_result->b_bdev = iomap.iomap_target->pbr_bdev; |
| |
| /* If we previously allocated a block out beyond eof and |
| * we are now coming back to use it then we will need to |
| * flag it as new even if it has a disk address. |
| */ |
| if (create && |
| ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || |
| (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW))) { |
| set_buffer_new(bh_result); |
| } |
| |
| if (iomap.iomap_flags & IOMAP_DELAY) { |
| BUG_ON(direct); |
| if (create) { |
| set_buffer_uptodate(bh_result); |
| set_buffer_mapped(bh_result); |
| set_buffer_delay(bh_result); |
| } |
| } |
| |
| if (blocks) { |
| bh_result->b_size = (ssize_t)min( |
| (loff_t)(iomap.iomap_bsize - iomap.iomap_delta), |
| (loff_t)(blocks << inode->i_blkbits)); |
| } |
| |
| return 0; |
| } |
| |
| int |
| linvfs_get_block( |
| struct inode *inode, |
| sector_t iblock, |
| struct buffer_head *bh_result, |
| int create) |
| { |
| return __linvfs_get_block(inode, iblock, 0, bh_result, |
| create, 0, BMAPI_WRITE); |
| } |
| |
| STATIC int |
| linvfs_get_blocks_direct( |
| struct inode *inode, |
| sector_t iblock, |
| unsigned long max_blocks, |
| struct buffer_head *bh_result, |
| int create) |
| { |
| return __linvfs_get_block(inode, iblock, max_blocks, bh_result, |
| create, 1, BMAPI_WRITE|BMAPI_DIRECT); |
| } |
| |
| STATIC void |
| linvfs_end_io_direct( |
| struct kiocb *iocb, |
| loff_t offset, |
| ssize_t size, |
| void *private) |
| { |
| xfs_ioend_t *ioend = iocb->private; |
| |
| /* |
| * Non-NULL private data means we need to issue a transaction to |
| * convert a range from unwritten to written extents. This needs |
| * to happen from process contect but aio+dio I/O completion |
| * happens from irq context so we need to defer it to a workqueue. |
| * This is not nessecary for synchronous direct I/O, but we do |
| * it anyway to keep the code uniform and simpler. |
| * |
| * The core direct I/O code might be changed to always call the |
| * completion handler in the future, in which case all this can |
| * go away. |
| */ |
| if (private && size > 0) { |
| ioend->io_offset = offset; |
| ioend->io_size = size; |
| xfs_finish_ioend(ioend); |
| } else { |
| ASSERT(size >= 0); |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * blockdev_direct_IO can return an error even afer the I/O |
| * completion handler was called. Thus we need to protect |
| * against double-freeing. |
| */ |
| iocb->private = NULL; |
| } |
| |
| STATIC ssize_t |
| linvfs_direct_IO( |
| int rw, |
| struct kiocb *iocb, |
| const struct iovec *iov, |
| loff_t offset, |
| unsigned long nr_segs) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| xfs_iomap_t iomap; |
| int maps = 1; |
| int error; |
| ssize_t ret; |
| |
| VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error); |
| if (error) |
| return -error; |
| |
| iocb->private = xfs_alloc_ioend(inode); |
| |
| ret = blockdev_direct_IO_own_locking(rw, iocb, inode, |
| iomap.iomap_target->pbr_bdev, |
| iov, offset, nr_segs, |
| linvfs_get_blocks_direct, |
| linvfs_end_io_direct); |
| |
| if (unlikely(ret <= 0 && iocb->private)) |
| xfs_destroy_ioend(iocb->private); |
| return ret; |
| } |
| |
| |
| STATIC sector_t |
| linvfs_bmap( |
| struct address_space *mapping, |
| sector_t block) |
| { |
| struct inode *inode = (struct inode *)mapping->host; |
| vnode_t *vp = LINVFS_GET_VP(inode); |
| int error; |
| |
| vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address); |
| |
| VOP_RWLOCK(vp, VRWLOCK_READ); |
| VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error); |
| VOP_RWUNLOCK(vp, VRWLOCK_READ); |
| return generic_block_bmap(mapping, block, linvfs_get_block); |
| } |
| |
| STATIC int |
| linvfs_readpage( |
| struct file *unused, |
| struct page *page) |
| { |
| return mpage_readpage(page, linvfs_get_block); |
| } |
| |
| STATIC int |
| linvfs_readpages( |
| struct file *unused, |
| struct address_space *mapping, |
| struct list_head *pages, |
| unsigned nr_pages) |
| { |
| return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block); |
| } |
| |
| STATIC void |
| xfs_count_page_state( |
| struct page *page, |
| int *delalloc, |
| int *unmapped, |
| int *unwritten) |
| { |
| struct buffer_head *bh, *head; |
| |
| *delalloc = *unmapped = *unwritten = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_uptodate(bh) && !buffer_mapped(bh)) |
| (*unmapped) = 1; |
| else if (buffer_unwritten(bh) && !buffer_delay(bh)) |
| clear_buffer_unwritten(bh); |
| else if (buffer_unwritten(bh)) |
| (*unwritten) = 1; |
| else if (buffer_delay(bh)) |
| (*delalloc) = 1; |
| } while ((bh = bh->b_this_page) != head); |
| } |
| |
| |
| /* |
| * writepage: Called from one of two places: |
| * |
| * 1. we are flushing a delalloc buffer head. |
| * |
| * 2. we are writing out a dirty page. Typically the page dirty |
| * state is cleared before we get here. In this case is it |
| * conceivable we have no buffer heads. |
| * |
| * For delalloc space on the page we need to allocate space and |
| * flush it. For unmapped buffer heads on the page we should |
| * allocate space if the page is uptodate. For any other dirty |
| * buffer heads on the page we should flush them. |
| * |
| * If we detect that a transaction would be required to flush |
| * the page, we have to check the process flags first, if we |
| * are already in a transaction or disk I/O during allocations |
| * is off, we need to fail the writepage and redirty the page. |
| */ |
| |
| STATIC int |
| linvfs_writepage( |
| struct page *page, |
| struct writeback_control *wbc) |
| { |
| int error; |
| int need_trans; |
| int delalloc, unmapped, unwritten; |
| struct inode *inode = page->mapping->host; |
| |
| xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0); |
| |
| /* |
| * We need a transaction if: |
| * 1. There are delalloc buffers on the page |
| * 2. The page is uptodate and we have unmapped buffers |
| * 3. The page is uptodate and we have no buffers |
| * 4. There are unwritten buffers on the page |
| */ |
| |
| if (!page_has_buffers(page)) { |
| unmapped = 1; |
| need_trans = 1; |
| } else { |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| if (!PageUptodate(page)) |
| unmapped = 0; |
| need_trans = delalloc + unmapped + unwritten; |
| } |
| |
| /* |
| * If we need a transaction and the process flags say |
| * we are already in a transaction, or no IO is allowed |
| * then mark the page dirty again and leave the page |
| * as is. |
| */ |
| if (PFLAGS_TEST_FSTRANS() && need_trans) |
| goto out_fail; |
| |
| /* |
| * Delay hooking up buffer heads until we have |
| * made our go/no-go decision. |
| */ |
| if (!page_has_buffers(page)) |
| create_empty_buffers(page, 1 << inode->i_blkbits, 0); |
| |
| /* |
| * Convert delayed allocate, unwritten or unmapped space |
| * to real space and flush out to disk. |
| */ |
| error = xfs_page_state_convert(inode, page, wbc, 1, unmapped); |
| if (error == -EAGAIN) |
| goto out_fail; |
| if (unlikely(error < 0)) |
| goto out_unlock; |
| |
| return 0; |
| |
| out_fail: |
| redirty_page_for_writepage(wbc, page); |
| unlock_page(page); |
| return 0; |
| out_unlock: |
| unlock_page(page); |
| return error; |
| } |
| |
| STATIC int |
| linvfs_invalidate_page( |
| struct page *page, |
| unsigned long offset) |
| { |
| xfs_page_trace(XFS_INVALIDPAGE_ENTER, |
| page->mapping->host, page, offset); |
| return block_invalidatepage(page, offset); |
| } |
| |
| /* |
| * Called to move a page into cleanable state - and from there |
| * to be released. Possibly the page is already clean. We always |
| * have buffer heads in this call. |
| * |
| * Returns 0 if the page is ok to release, 1 otherwise. |
| * |
| * Possible scenarios are: |
| * |
| * 1. We are being called to release a page which has been written |
| * to via regular I/O. buffer heads will be dirty and possibly |
| * delalloc. If no delalloc buffer heads in this case then we |
| * can just return zero. |
| * |
| * 2. We are called to release a page which has been written via |
| * mmap, all we need to do is ensure there is no delalloc |
| * state in the buffer heads, if not we can let the caller |
| * free them and we should come back later via writepage. |
| */ |
| STATIC int |
| linvfs_release_page( |
| struct page *page, |
| gfp_t gfp_mask) |
| { |
| struct inode *inode = page->mapping->host; |
| int dirty, delalloc, unmapped, unwritten; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = 1, |
| }; |
| |
| xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask); |
| |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| if (!delalloc && !unwritten) |
| goto free_buffers; |
| |
| if (!(gfp_mask & __GFP_FS)) |
| return 0; |
| |
| /* If we are already inside a transaction or the thread cannot |
| * do I/O, we cannot release this page. |
| */ |
| if (PFLAGS_TEST_FSTRANS()) |
| return 0; |
| |
| /* |
| * Convert delalloc space to real space, do not flush the |
| * data out to disk, that will be done by the caller. |
| * Never need to allocate space here - we will always |
| * come back to writepage in that case. |
| */ |
| dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0); |
| if (dirty == 0 && !unwritten) |
| goto free_buffers; |
| return 0; |
| |
| free_buffers: |
| return try_to_free_buffers(page); |
| } |
| |
| STATIC int |
| linvfs_prepare_write( |
| struct file *file, |
| struct page *page, |
| unsigned int from, |
| unsigned int to) |
| { |
| return block_prepare_write(page, from, to, linvfs_get_block); |
| } |
| |
| struct address_space_operations linvfs_aops = { |
| .readpage = linvfs_readpage, |
| .readpages = linvfs_readpages, |
| .writepage = linvfs_writepage, |
| .sync_page = block_sync_page, |
| .releasepage = linvfs_release_page, |
| .invalidatepage = linvfs_invalidate_page, |
| .prepare_write = linvfs_prepare_write, |
| .commit_write = generic_commit_write, |
| .bmap = linvfs_bmap, |
| .direct_IO = linvfs_direct_IO, |
| }; |