| /* |
| * Handle caching attributes in page tables (PAT) |
| * |
| * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * Suresh B Siddha <suresh.b.siddha@intel.com> |
| * |
| * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/bootmem.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/rbtree.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/x86_init.h> |
| #include <asm/pgtable.h> |
| #include <asm/fcntl.h> |
| #include <asm/e820.h> |
| #include <asm/mtrr.h> |
| #include <asm/page.h> |
| #include <asm/msr.h> |
| #include <asm/pat.h> |
| #include <asm/io.h> |
| |
| #include "pat_internal.h" |
| #include "mm_internal.h" |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "" fmt |
| |
| static bool boot_cpu_done; |
| |
| static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT); |
| |
| static inline void pat_disable(const char *reason) |
| { |
| __pat_enabled = 0; |
| pr_info("x86/PAT: %s\n", reason); |
| } |
| |
| static int __init nopat(char *str) |
| { |
| pat_disable("PAT support disabled."); |
| return 0; |
| } |
| early_param("nopat", nopat); |
| |
| bool pat_enabled(void) |
| { |
| return !!__pat_enabled; |
| } |
| EXPORT_SYMBOL_GPL(pat_enabled); |
| |
| int pat_debug_enable; |
| |
| static int __init pat_debug_setup(char *str) |
| { |
| pat_debug_enable = 1; |
| return 0; |
| } |
| __setup("debugpat", pat_debug_setup); |
| |
| #ifdef CONFIG_X86_PAT |
| /* |
| * X86 PAT uses page flags arch_1 and uncached together to keep track of |
| * memory type of pages that have backing page struct. |
| * |
| * X86 PAT supports 4 different memory types: |
| * - _PAGE_CACHE_MODE_WB |
| * - _PAGE_CACHE_MODE_WC |
| * - _PAGE_CACHE_MODE_UC_MINUS |
| * - _PAGE_CACHE_MODE_WT |
| * |
| * _PAGE_CACHE_MODE_WB is the default type. |
| */ |
| |
| #define _PGMT_WB 0 |
| #define _PGMT_WC (1UL << PG_arch_1) |
| #define _PGMT_UC_MINUS (1UL << PG_uncached) |
| #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1) |
| #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1) |
| #define _PGMT_CLEAR_MASK (~_PGMT_MASK) |
| |
| static inline enum page_cache_mode get_page_memtype(struct page *pg) |
| { |
| unsigned long pg_flags = pg->flags & _PGMT_MASK; |
| |
| if (pg_flags == _PGMT_WB) |
| return _PAGE_CACHE_MODE_WB; |
| else if (pg_flags == _PGMT_WC) |
| return _PAGE_CACHE_MODE_WC; |
| else if (pg_flags == _PGMT_UC_MINUS) |
| return _PAGE_CACHE_MODE_UC_MINUS; |
| else |
| return _PAGE_CACHE_MODE_WT; |
| } |
| |
| static inline void set_page_memtype(struct page *pg, |
| enum page_cache_mode memtype) |
| { |
| unsigned long memtype_flags; |
| unsigned long old_flags; |
| unsigned long new_flags; |
| |
| switch (memtype) { |
| case _PAGE_CACHE_MODE_WC: |
| memtype_flags = _PGMT_WC; |
| break; |
| case _PAGE_CACHE_MODE_UC_MINUS: |
| memtype_flags = _PGMT_UC_MINUS; |
| break; |
| case _PAGE_CACHE_MODE_WT: |
| memtype_flags = _PGMT_WT; |
| break; |
| case _PAGE_CACHE_MODE_WB: |
| default: |
| memtype_flags = _PGMT_WB; |
| break; |
| } |
| |
| do { |
| old_flags = pg->flags; |
| new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags; |
| } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags); |
| } |
| #else |
| static inline enum page_cache_mode get_page_memtype(struct page *pg) |
| { |
| return -1; |
| } |
| static inline void set_page_memtype(struct page *pg, |
| enum page_cache_mode memtype) |
| { |
| } |
| #endif |
| |
| enum { |
| PAT_UC = 0, /* uncached */ |
| PAT_WC = 1, /* Write combining */ |
| PAT_WT = 4, /* Write Through */ |
| PAT_WP = 5, /* Write Protected */ |
| PAT_WB = 6, /* Write Back (default) */ |
| PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */ |
| }; |
| |
| #define CM(c) (_PAGE_CACHE_MODE_ ## c) |
| |
| static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg) |
| { |
| enum page_cache_mode cache; |
| char *cache_mode; |
| |
| switch (pat_val) { |
| case PAT_UC: cache = CM(UC); cache_mode = "UC "; break; |
| case PAT_WC: cache = CM(WC); cache_mode = "WC "; break; |
| case PAT_WT: cache = CM(WT); cache_mode = "WT "; break; |
| case PAT_WP: cache = CM(WP); cache_mode = "WP "; break; |
| case PAT_WB: cache = CM(WB); cache_mode = "WB "; break; |
| case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break; |
| default: cache = CM(WB); cache_mode = "WB "; break; |
| } |
| |
| memcpy(msg, cache_mode, 4); |
| |
| return cache; |
| } |
| |
| #undef CM |
| |
| /* |
| * Update the cache mode to pgprot translation tables according to PAT |
| * configuration. |
| * Using lower indices is preferred, so we start with highest index. |
| */ |
| void pat_init_cache_modes(u64 pat) |
| { |
| enum page_cache_mode cache; |
| char pat_msg[33]; |
| int i; |
| |
| pat_msg[32] = 0; |
| for (i = 7; i >= 0; i--) { |
| cache = pat_get_cache_mode((pat >> (i * 8)) & 7, |
| pat_msg + 4 * i); |
| update_cache_mode_entry(i, cache); |
| } |
| pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg); |
| } |
| |
| #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8)) |
| |
| static void pat_bsp_init(u64 pat) |
| { |
| u64 tmp_pat; |
| |
| if (!cpu_has_pat) { |
| pat_disable("PAT not supported by CPU."); |
| return; |
| } |
| |
| if (!pat_enabled()) |
| goto done; |
| |
| rdmsrl(MSR_IA32_CR_PAT, tmp_pat); |
| if (!tmp_pat) { |
| pat_disable("PAT MSR is 0, disabled."); |
| return; |
| } |
| |
| wrmsrl(MSR_IA32_CR_PAT, pat); |
| |
| done: |
| pat_init_cache_modes(pat); |
| } |
| |
| static void pat_ap_init(u64 pat) |
| { |
| if (!pat_enabled()) |
| return; |
| |
| if (!cpu_has_pat) { |
| /* |
| * If this happens we are on a secondary CPU, but switched to |
| * PAT on the boot CPU. We have no way to undo PAT. |
| */ |
| panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n"); |
| } |
| |
| wrmsrl(MSR_IA32_CR_PAT, pat); |
| } |
| |
| void pat_init(void) |
| { |
| u64 pat; |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| if (!pat_enabled()) { |
| /* |
| * No PAT. Emulate the PAT table that corresponds to the two |
| * cache bits, PWT (Write Through) and PCD (Cache Disable). This |
| * setup is the same as the BIOS default setup when the system |
| * has PAT but the "nopat" boot option has been specified. This |
| * emulated PAT table is used when MSR_IA32_CR_PAT returns 0. |
| * |
| * PTE encoding: |
| * |
| * PCD |
| * |PWT PAT |
| * || slot |
| * 00 0 WB : _PAGE_CACHE_MODE_WB |
| * 01 1 WT : _PAGE_CACHE_MODE_WT |
| * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS |
| * 11 3 UC : _PAGE_CACHE_MODE_UC |
| * |
| * NOTE: When WC or WP is used, it is redirected to UC- per |
| * the default setup in __cachemode2pte_tbl[]. |
| */ |
| pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) | |
| PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC); |
| |
| } else if ((c->x86_vendor == X86_VENDOR_INTEL) && |
| (((c->x86 == 0x6) && (c->x86_model <= 0xd)) || |
| ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) { |
| /* |
| * PAT support with the lower four entries. Intel Pentium 2, |
| * 3, M, and 4 are affected by PAT errata, which makes the |
| * upper four entries unusable. To be on the safe side, we don't |
| * use those. |
| * |
| * PTE encoding: |
| * PAT |
| * |PCD |
| * ||PWT PAT |
| * ||| slot |
| * 000 0 WB : _PAGE_CACHE_MODE_WB |
| * 001 1 WC : _PAGE_CACHE_MODE_WC |
| * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS |
| * 011 3 UC : _PAGE_CACHE_MODE_UC |
| * PAT bit unused |
| * |
| * NOTE: When WT or WP is used, it is redirected to UC- per |
| * the default setup in __cachemode2pte_tbl[]. |
| */ |
| pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | |
| PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC); |
| } else { |
| /* |
| * Full PAT support. We put WT in slot 7 to improve |
| * robustness in the presence of errata that might cause |
| * the high PAT bit to be ignored. This way, a buggy slot 7 |
| * access will hit slot 3, and slot 3 is UC, so at worst |
| * we lose performance without causing a correctness issue. |
| * Pentium 4 erratum N46 is an example for such an erratum, |
| * although we try not to use PAT at all on affected CPUs. |
| * |
| * PTE encoding: |
| * PAT |
| * |PCD |
| * ||PWT PAT |
| * ||| slot |
| * 000 0 WB : _PAGE_CACHE_MODE_WB |
| * 001 1 WC : _PAGE_CACHE_MODE_WC |
| * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS |
| * 011 3 UC : _PAGE_CACHE_MODE_UC |
| * 100 4 WB : Reserved |
| * 101 5 WC : Reserved |
| * 110 6 UC-: Reserved |
| * 111 7 WT : _PAGE_CACHE_MODE_WT |
| * |
| * The reserved slots are unused, but mapped to their |
| * corresponding types in the presence of PAT errata. |
| */ |
| pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | |
| PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT); |
| } |
| |
| if (!boot_cpu_done) { |
| pat_bsp_init(pat); |
| boot_cpu_done = true; |
| } else { |
| pat_ap_init(pat); |
| } |
| } |
| |
| #undef PAT |
| |
| static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */ |
| |
| /* |
| * Does intersection of PAT memory type and MTRR memory type and returns |
| * the resulting memory type as PAT understands it. |
| * (Type in pat and mtrr will not have same value) |
| * The intersection is based on "Effective Memory Type" tables in IA-32 |
| * SDM vol 3a |
| */ |
| static unsigned long pat_x_mtrr_type(u64 start, u64 end, |
| enum page_cache_mode req_type) |
| { |
| /* |
| * Look for MTRR hint to get the effective type in case where PAT |
| * request is for WB. |
| */ |
| if (req_type == _PAGE_CACHE_MODE_WB) { |
| u8 mtrr_type, uniform; |
| |
| mtrr_type = mtrr_type_lookup(start, end, &uniform); |
| if (mtrr_type != MTRR_TYPE_WRBACK) |
| return _PAGE_CACHE_MODE_UC_MINUS; |
| |
| return _PAGE_CACHE_MODE_WB; |
| } |
| |
| return req_type; |
| } |
| |
| struct pagerange_state { |
| unsigned long cur_pfn; |
| int ram; |
| int not_ram; |
| }; |
| |
| static int |
| pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg) |
| { |
| struct pagerange_state *state = arg; |
| |
| state->not_ram |= initial_pfn > state->cur_pfn; |
| state->ram |= total_nr_pages > 0; |
| state->cur_pfn = initial_pfn + total_nr_pages; |
| |
| return state->ram && state->not_ram; |
| } |
| |
| static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) |
| { |
| int ret = 0; |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| struct pagerange_state state = {start_pfn, 0, 0}; |
| |
| /* |
| * For legacy reasons, physical address range in the legacy ISA |
| * region is tracked as non-RAM. This will allow users of |
| * /dev/mem to map portions of legacy ISA region, even when |
| * some of those portions are listed(or not even listed) with |
| * different e820 types(RAM/reserved/..) |
| */ |
| if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT) |
| start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT; |
| |
| if (start_pfn < end_pfn) { |
| ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, |
| &state, pagerange_is_ram_callback); |
| } |
| |
| return (ret > 0) ? -1 : (state.ram ? 1 : 0); |
| } |
| |
| /* |
| * For RAM pages, we use page flags to mark the pages with appropriate type. |
| * The page flags are limited to four types, WB (default), WC, WT and UC-. |
| * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting |
| * a new memory type is only allowed for a page mapped with the default WB |
| * type. |
| * |
| * Here we do two passes: |
| * - Find the memtype of all the pages in the range, look for any conflicts. |
| * - In case of no conflicts, set the new memtype for pages in the range. |
| */ |
| static int reserve_ram_pages_type(u64 start, u64 end, |
| enum page_cache_mode req_type, |
| enum page_cache_mode *new_type) |
| { |
| struct page *page; |
| u64 pfn; |
| |
| if (req_type == _PAGE_CACHE_MODE_WP) { |
| if (new_type) |
| *new_type = _PAGE_CACHE_MODE_UC_MINUS; |
| return -EINVAL; |
| } |
| |
| if (req_type == _PAGE_CACHE_MODE_UC) { |
| /* We do not support strong UC */ |
| WARN_ON_ONCE(1); |
| req_type = _PAGE_CACHE_MODE_UC_MINUS; |
| } |
| |
| for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { |
| enum page_cache_mode type; |
| |
| page = pfn_to_page(pfn); |
| type = get_page_memtype(page); |
| if (type != _PAGE_CACHE_MODE_WB) { |
| pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n", |
| start, end - 1, type, req_type); |
| if (new_type) |
| *new_type = type; |
| |
| return -EBUSY; |
| } |
| } |
| |
| if (new_type) |
| *new_type = req_type; |
| |
| for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { |
| page = pfn_to_page(pfn); |
| set_page_memtype(page, req_type); |
| } |
| return 0; |
| } |
| |
| static int free_ram_pages_type(u64 start, u64 end) |
| { |
| struct page *page; |
| u64 pfn; |
| |
| for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { |
| page = pfn_to_page(pfn); |
| set_page_memtype(page, _PAGE_CACHE_MODE_WB); |
| } |
| return 0; |
| } |
| |
| /* |
| * req_type typically has one of the: |
| * - _PAGE_CACHE_MODE_WB |
| * - _PAGE_CACHE_MODE_WC |
| * - _PAGE_CACHE_MODE_UC_MINUS |
| * - _PAGE_CACHE_MODE_UC |
| * - _PAGE_CACHE_MODE_WT |
| * |
| * If new_type is NULL, function will return an error if it cannot reserve the |
| * region with req_type. If new_type is non-NULL, function will return |
| * available type in new_type in case of no error. In case of any error |
| * it will return a negative return value. |
| */ |
| int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type, |
| enum page_cache_mode *new_type) |
| { |
| struct memtype *new; |
| enum page_cache_mode actual_type; |
| int is_range_ram; |
| int err = 0; |
| |
| BUG_ON(start >= end); /* end is exclusive */ |
| |
| if (!pat_enabled()) { |
| /* This is identical to page table setting without PAT */ |
| if (new_type) |
| *new_type = req_type; |
| return 0; |
| } |
| |
| /* Low ISA region is always mapped WB in page table. No need to track */ |
| if (x86_platform.is_untracked_pat_range(start, end)) { |
| if (new_type) |
| *new_type = _PAGE_CACHE_MODE_WB; |
| return 0; |
| } |
| |
| /* |
| * Call mtrr_lookup to get the type hint. This is an |
| * optimization for /dev/mem mmap'ers into WB memory (BIOS |
| * tools and ACPI tools). Use WB request for WB memory and use |
| * UC_MINUS otherwise. |
| */ |
| actual_type = pat_x_mtrr_type(start, end, req_type); |
| |
| if (new_type) |
| *new_type = actual_type; |
| |
| is_range_ram = pat_pagerange_is_ram(start, end); |
| if (is_range_ram == 1) { |
| |
| err = reserve_ram_pages_type(start, end, req_type, new_type); |
| |
| return err; |
| } else if (is_range_ram < 0) { |
| return -EINVAL; |
| } |
| |
| new = kzalloc(sizeof(struct memtype), GFP_KERNEL); |
| if (!new) |
| return -ENOMEM; |
| |
| new->start = start; |
| new->end = end; |
| new->type = actual_type; |
| |
| spin_lock(&memtype_lock); |
| |
| err = rbt_memtype_check_insert(new, new_type); |
| if (err) { |
| pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n", |
| start, end - 1, |
| cattr_name(new->type), cattr_name(req_type)); |
| kfree(new); |
| spin_unlock(&memtype_lock); |
| |
| return err; |
| } |
| |
| spin_unlock(&memtype_lock); |
| |
| dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n", |
| start, end - 1, cattr_name(new->type), cattr_name(req_type), |
| new_type ? cattr_name(*new_type) : "-"); |
| |
| return err; |
| } |
| |
| int free_memtype(u64 start, u64 end) |
| { |
| int err = -EINVAL; |
| int is_range_ram; |
| struct memtype *entry; |
| |
| if (!pat_enabled()) |
| return 0; |
| |
| /* Low ISA region is always mapped WB. No need to track */ |
| if (x86_platform.is_untracked_pat_range(start, end)) |
| return 0; |
| |
| is_range_ram = pat_pagerange_is_ram(start, end); |
| if (is_range_ram == 1) { |
| |
| err = free_ram_pages_type(start, end); |
| |
| return err; |
| } else if (is_range_ram < 0) { |
| return -EINVAL; |
| } |
| |
| spin_lock(&memtype_lock); |
| entry = rbt_memtype_erase(start, end); |
| spin_unlock(&memtype_lock); |
| |
| if (!entry) { |
| pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n", |
| current->comm, current->pid, start, end - 1); |
| return -EINVAL; |
| } |
| |
| kfree(entry); |
| |
| dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * lookup_memtype - Looksup the memory type for a physical address |
| * @paddr: physical address of which memory type needs to be looked up |
| * |
| * Only to be called when PAT is enabled |
| * |
| * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS |
| * or _PAGE_CACHE_MODE_WT. |
| */ |
| static enum page_cache_mode lookup_memtype(u64 paddr) |
| { |
| enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB; |
| struct memtype *entry; |
| |
| if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) |
| return rettype; |
| |
| if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { |
| struct page *page; |
| |
| page = pfn_to_page(paddr >> PAGE_SHIFT); |
| return get_page_memtype(page); |
| } |
| |
| spin_lock(&memtype_lock); |
| |
| entry = rbt_memtype_lookup(paddr); |
| if (entry != NULL) |
| rettype = entry->type; |
| else |
| rettype = _PAGE_CACHE_MODE_UC_MINUS; |
| |
| spin_unlock(&memtype_lock); |
| return rettype; |
| } |
| |
| /** |
| * io_reserve_memtype - Request a memory type mapping for a region of memory |
| * @start: start (physical address) of the region |
| * @end: end (physical address) of the region |
| * @type: A pointer to memtype, with requested type. On success, requested |
| * or any other compatible type that was available for the region is returned |
| * |
| * On success, returns 0 |
| * On failure, returns non-zero |
| */ |
| int io_reserve_memtype(resource_size_t start, resource_size_t end, |
| enum page_cache_mode *type) |
| { |
| resource_size_t size = end - start; |
| enum page_cache_mode req_type = *type; |
| enum page_cache_mode new_type; |
| int ret; |
| |
| WARN_ON_ONCE(iomem_map_sanity_check(start, size)); |
| |
| ret = reserve_memtype(start, end, req_type, &new_type); |
| if (ret) |
| goto out_err; |
| |
| if (!is_new_memtype_allowed(start, size, req_type, new_type)) |
| goto out_free; |
| |
| if (kernel_map_sync_memtype(start, size, new_type) < 0) |
| goto out_free; |
| |
| *type = new_type; |
| return 0; |
| |
| out_free: |
| free_memtype(start, end); |
| ret = -EBUSY; |
| out_err: |
| return ret; |
| } |
| |
| /** |
| * io_free_memtype - Release a memory type mapping for a region of memory |
| * @start: start (physical address) of the region |
| * @end: end (physical address) of the region |
| */ |
| void io_free_memtype(resource_size_t start, resource_size_t end) |
| { |
| free_memtype(start, end); |
| } |
| |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| return vma_prot; |
| } |
| |
| #ifdef CONFIG_STRICT_DEVMEM |
| /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */ |
| static inline int range_is_allowed(unsigned long pfn, unsigned long size) |
| { |
| return 1; |
| } |
| #else |
| /* This check is needed to avoid cache aliasing when PAT is enabled */ |
| static inline int range_is_allowed(unsigned long pfn, unsigned long size) |
| { |
| u64 from = ((u64)pfn) << PAGE_SHIFT; |
| u64 to = from + size; |
| u64 cursor = from; |
| |
| if (!pat_enabled()) |
| return 1; |
| |
| while (cursor < to) { |
| if (!devmem_is_allowed(pfn)) { |
| pr_info("x86/PAT: Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx], PAT prevents it\n", |
| current->comm, from, to - 1); |
| return 0; |
| } |
| cursor += PAGE_SIZE; |
| pfn++; |
| } |
| return 1; |
| } |
| #endif /* CONFIG_STRICT_DEVMEM */ |
| |
| int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t *vma_prot) |
| { |
| enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB; |
| |
| if (!range_is_allowed(pfn, size)) |
| return 0; |
| |
| if (file->f_flags & O_DSYNC) |
| pcm = _PAGE_CACHE_MODE_UC_MINUS; |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * On the PPro and successors, the MTRRs are used to set |
| * memory types for physical addresses outside main memory, |
| * so blindly setting UC or PWT on those pages is wrong. |
| * For Pentiums and earlier, the surround logic should disable |
| * caching for the high addresses through the KEN pin, but |
| * we maintain the tradition of paranoia in this code. |
| */ |
| if (!pat_enabled() && |
| !(boot_cpu_has(X86_FEATURE_MTRR) || |
| boot_cpu_has(X86_FEATURE_K6_MTRR) || |
| boot_cpu_has(X86_FEATURE_CYRIX_ARR) || |
| boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) && |
| (pfn << PAGE_SHIFT) >= __pa(high_memory)) { |
| pcm = _PAGE_CACHE_MODE_UC; |
| } |
| #endif |
| |
| *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | |
| cachemode2protval(pcm)); |
| return 1; |
| } |
| |
| /* |
| * Change the memory type for the physial address range in kernel identity |
| * mapping space if that range is a part of identity map. |
| */ |
| int kernel_map_sync_memtype(u64 base, unsigned long size, |
| enum page_cache_mode pcm) |
| { |
| unsigned long id_sz; |
| |
| if (base > __pa(high_memory-1)) |
| return 0; |
| |
| /* |
| * some areas in the middle of the kernel identity range |
| * are not mapped, like the PCI space. |
| */ |
| if (!page_is_ram(base >> PAGE_SHIFT)) |
| return 0; |
| |
| id_sz = (__pa(high_memory-1) <= base + size) ? |
| __pa(high_memory) - base : |
| size; |
| |
| if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) { |
| pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n", |
| current->comm, current->pid, |
| cattr_name(pcm), |
| base, (unsigned long long)(base + size-1)); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Internal interface to reserve a range of physical memory with prot. |
| * Reserved non RAM regions only and after successful reserve_memtype, |
| * this func also keeps identity mapping (if any) in sync with this new prot. |
| */ |
| static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, |
| int strict_prot) |
| { |
| int is_ram = 0; |
| int ret; |
| enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot); |
| enum page_cache_mode pcm = want_pcm; |
| |
| is_ram = pat_pagerange_is_ram(paddr, paddr + size); |
| |
| /* |
| * reserve_pfn_range() for RAM pages. We do not refcount to keep |
| * track of number of mappings of RAM pages. We can assert that |
| * the type requested matches the type of first page in the range. |
| */ |
| if (is_ram) { |
| if (!pat_enabled()) |
| return 0; |
| |
| pcm = lookup_memtype(paddr); |
| if (want_pcm != pcm) { |
| pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n", |
| current->comm, current->pid, |
| cattr_name(want_pcm), |
| (unsigned long long)paddr, |
| (unsigned long long)(paddr + size - 1), |
| cattr_name(pcm)); |
| *vma_prot = __pgprot((pgprot_val(*vma_prot) & |
| (~_PAGE_CACHE_MASK)) | |
| cachemode2protval(pcm)); |
| } |
| return 0; |
| } |
| |
| ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm); |
| if (ret) |
| return ret; |
| |
| if (pcm != want_pcm) { |
| if (strict_prot || |
| !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) { |
| free_memtype(paddr, paddr + size); |
| pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n", |
| current->comm, current->pid, |
| cattr_name(want_pcm), |
| (unsigned long long)paddr, |
| (unsigned long long)(paddr + size - 1), |
| cattr_name(pcm)); |
| return -EINVAL; |
| } |
| /* |
| * We allow returning different type than the one requested in |
| * non strict case. |
| */ |
| *vma_prot = __pgprot((pgprot_val(*vma_prot) & |
| (~_PAGE_CACHE_MASK)) | |
| cachemode2protval(pcm)); |
| } |
| |
| if (kernel_map_sync_memtype(paddr, size, pcm) < 0) { |
| free_memtype(paddr, paddr + size); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Internal interface to free a range of physical memory. |
| * Frees non RAM regions only. |
| */ |
| static void free_pfn_range(u64 paddr, unsigned long size) |
| { |
| int is_ram; |
| |
| is_ram = pat_pagerange_is_ram(paddr, paddr + size); |
| if (is_ram == 0) |
| free_memtype(paddr, paddr + size); |
| } |
| |
| /* |
| * track_pfn_copy is called when vma that is covering the pfnmap gets |
| * copied through copy_page_range(). |
| * |
| * If the vma has a linear pfn mapping for the entire range, we get the prot |
| * from pte and reserve the entire vma range with single reserve_pfn_range call. |
| */ |
| int track_pfn_copy(struct vm_area_struct *vma) |
| { |
| resource_size_t paddr; |
| unsigned long prot; |
| unsigned long vma_size = vma->vm_end - vma->vm_start; |
| pgprot_t pgprot; |
| |
| if (vma->vm_flags & VM_PAT) { |
| /* |
| * reserve the whole chunk covered by vma. We need the |
| * starting address and protection from pte. |
| */ |
| if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { |
| WARN_ON_ONCE(1); |
| return -EINVAL; |
| } |
| pgprot = __pgprot(prot); |
| return reserve_pfn_range(paddr, vma_size, &pgprot, 1); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * prot is passed in as a parameter for the new mapping. If the vma has a |
| * linear pfn mapping for the entire range reserve the entire vma range with |
| * single reserve_pfn_range call. |
| */ |
| int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
| unsigned long pfn, unsigned long addr, unsigned long size) |
| { |
| resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; |
| enum page_cache_mode pcm; |
| |
| /* reserve the whole chunk starting from paddr */ |
| if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) { |
| int ret; |
| |
| ret = reserve_pfn_range(paddr, size, prot, 0); |
| if (!ret) |
| vma->vm_flags |= VM_PAT; |
| return ret; |
| } |
| |
| if (!pat_enabled()) |
| return 0; |
| |
| /* |
| * For anything smaller than the vma size we set prot based on the |
| * lookup. |
| */ |
| pcm = lookup_memtype(paddr); |
| |
| /* Check memtype for the remaining pages */ |
| while (size > PAGE_SIZE) { |
| size -= PAGE_SIZE; |
| paddr += PAGE_SIZE; |
| if (pcm != lookup_memtype(paddr)) |
| return -EINVAL; |
| } |
| |
| *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) | |
| cachemode2protval(pcm)); |
| |
| return 0; |
| } |
| |
| int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
| unsigned long pfn) |
| { |
| enum page_cache_mode pcm; |
| |
| if (!pat_enabled()) |
| return 0; |
| |
| /* Set prot based on lookup */ |
| pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT); |
| *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) | |
| cachemode2protval(pcm)); |
| |
| return 0; |
| } |
| |
| /* |
| * untrack_pfn is called while unmapping a pfnmap for a region. |
| * untrack can be called for a specific region indicated by pfn and size or |
| * can be for the entire vma (in which case pfn, size are zero). |
| */ |
| void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, |
| unsigned long size) |
| { |
| resource_size_t paddr; |
| unsigned long prot; |
| |
| if (!(vma->vm_flags & VM_PAT)) |
| return; |
| |
| /* free the chunk starting from pfn or the whole chunk */ |
| paddr = (resource_size_t)pfn << PAGE_SHIFT; |
| if (!paddr && !size) { |
| if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { |
| WARN_ON_ONCE(1); |
| return; |
| } |
| |
| size = vma->vm_end - vma->vm_start; |
| } |
| free_pfn_range(paddr, size); |
| vma->vm_flags &= ~VM_PAT; |
| } |
| |
| pgprot_t pgprot_writecombine(pgprot_t prot) |
| { |
| return __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_WC)); |
| } |
| EXPORT_SYMBOL_GPL(pgprot_writecombine); |
| |
| pgprot_t pgprot_writethrough(pgprot_t prot) |
| { |
| return __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_WT)); |
| } |
| EXPORT_SYMBOL_GPL(pgprot_writethrough); |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) |
| |
| static struct memtype *memtype_get_idx(loff_t pos) |
| { |
| struct memtype *print_entry; |
| int ret; |
| |
| print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL); |
| if (!print_entry) |
| return NULL; |
| |
| spin_lock(&memtype_lock); |
| ret = rbt_memtype_copy_nth_element(print_entry, pos); |
| spin_unlock(&memtype_lock); |
| |
| if (!ret) { |
| return print_entry; |
| } else { |
| kfree(print_entry); |
| return NULL; |
| } |
| } |
| |
| static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| if (*pos == 0) { |
| ++*pos; |
| seq_puts(seq, "PAT memtype list:\n"); |
| } |
| |
| return memtype_get_idx(*pos); |
| } |
| |
| static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return memtype_get_idx(*pos); |
| } |
| |
| static void memtype_seq_stop(struct seq_file *seq, void *v) |
| { |
| } |
| |
| static int memtype_seq_show(struct seq_file *seq, void *v) |
| { |
| struct memtype *print_entry = (struct memtype *)v; |
| |
| seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type), |
| print_entry->start, print_entry->end); |
| kfree(print_entry); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations memtype_seq_ops = { |
| .start = memtype_seq_start, |
| .next = memtype_seq_next, |
| .stop = memtype_seq_stop, |
| .show = memtype_seq_show, |
| }; |
| |
| static int memtype_seq_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &memtype_seq_ops); |
| } |
| |
| static const struct file_operations memtype_fops = { |
| .open = memtype_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static int __init pat_memtype_list_init(void) |
| { |
| if (pat_enabled()) { |
| debugfs_create_file("pat_memtype_list", S_IRUSR, |
| arch_debugfs_dir, NULL, &memtype_fops); |
| } |
| return 0; |
| } |
| |
| late_initcall(pat_memtype_list_init); |
| |
| #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */ |