blob: 1af51b1586d7f7ae0bfa65ec377634b2d8fa39c2 [file] [log] [blame]
/*
* Thermal throttle event support code (such as syslog messaging and rate
* limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c).
*
* This allows consistent reporting of CPU thermal throttle events.
*
* Maintains a counter in /sys that keeps track of the number of thermal
* events, such that the user knows how bad the thermal problem might be
* (since the logging to syslog and mcelog is rate limited).
*
* Author: Dmitriy Zavin (dmitriyz@google.com)
*
* Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c.
* Inspired by Ross Biro's and Al Borchers' counter code.
*/
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <asm/processor.h>
#include <asm/apic.h>
#include <asm/idle.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/trace/irq_vectors.h>
/* How long to wait between reporting thermal events */
#define CHECK_INTERVAL (300 * HZ)
#define THERMAL_THROTTLING_EVENT 0
#define POWER_LIMIT_EVENT 1
/*
* Current thermal event state:
*/
struct _thermal_state {
bool new_event;
int event;
u64 next_check;
unsigned long count;
unsigned long last_count;
};
struct thermal_state {
struct _thermal_state core_throttle;
struct _thermal_state core_power_limit;
struct _thermal_state package_throttle;
struct _thermal_state package_power_limit;
struct _thermal_state core_thresh0;
struct _thermal_state core_thresh1;
struct _thermal_state pkg_thresh0;
struct _thermal_state pkg_thresh1;
};
/* Callback to handle core threshold interrupts */
int (*platform_thermal_notify)(__u64 msr_val);
EXPORT_SYMBOL(platform_thermal_notify);
/* Callback to handle core package threshold_interrupts */
int (*platform_thermal_package_notify)(__u64 msr_val);
EXPORT_SYMBOL_GPL(platform_thermal_package_notify);
/* Callback support of rate control, return true, if
* callback has rate control */
bool (*platform_thermal_package_rate_control)(void);
EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control);
static DEFINE_PER_CPU(struct thermal_state, thermal_state);
static atomic_t therm_throt_en = ATOMIC_INIT(0);
static u32 lvtthmr_init __read_mostly;
#ifdef CONFIG_SYSFS
#define define_therm_throt_device_one_ro(_name) \
static DEVICE_ATTR(_name, 0444, \
therm_throt_device_show_##_name, \
NULL) \
#define define_therm_throt_device_show_func(event, name) \
\
static ssize_t therm_throt_device_show_##event##_##name( \
struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
unsigned int cpu = dev->id; \
ssize_t ret; \
\
preempt_disable(); /* CPU hotplug */ \
if (cpu_online(cpu)) { \
ret = sprintf(buf, "%lu\n", \
per_cpu(thermal_state, cpu).event.name); \
} else \
ret = 0; \
preempt_enable(); \
\
return ret; \
}
define_therm_throt_device_show_func(core_throttle, count);
define_therm_throt_device_one_ro(core_throttle_count);
define_therm_throt_device_show_func(core_power_limit, count);
define_therm_throt_device_one_ro(core_power_limit_count);
define_therm_throt_device_show_func(package_throttle, count);
define_therm_throt_device_one_ro(package_throttle_count);
define_therm_throt_device_show_func(package_power_limit, count);
define_therm_throt_device_one_ro(package_power_limit_count);
static struct attribute *thermal_throttle_attrs[] = {
&dev_attr_core_throttle_count.attr,
NULL
};
static struct attribute_group thermal_attr_group = {
.attrs = thermal_throttle_attrs,
.name = "thermal_throttle"
};
#endif /* CONFIG_SYSFS */
#define CORE_LEVEL 0
#define PACKAGE_LEVEL 1
/***
* therm_throt_process - Process thermal throttling event from interrupt
* @curr: Whether the condition is current or not (boolean), since the
* thermal interrupt normally gets called both when the thermal
* event begins and once the event has ended.
*
* This function is called by the thermal interrupt after the
* IRQ has been acknowledged.
*
* It will take care of rate limiting and printing messages to the syslog.
*
* Returns: 0 : Event should NOT be further logged, i.e. still in
* "timeout" from previous log message.
* 1 : Event should be logged further, and a message has been
* printed to the syslog.
*/
static int therm_throt_process(bool new_event, int event, int level)
{
struct _thermal_state *state;
unsigned int this_cpu = smp_processor_id();
bool old_event;
u64 now;
struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
now = get_jiffies_64();
if (level == CORE_LEVEL) {
if (event == THERMAL_THROTTLING_EVENT)
state = &pstate->core_throttle;
else if (event == POWER_LIMIT_EVENT)
state = &pstate->core_power_limit;
else
return 0;
} else if (level == PACKAGE_LEVEL) {
if (event == THERMAL_THROTTLING_EVENT)
state = &pstate->package_throttle;
else if (event == POWER_LIMIT_EVENT)
state = &pstate->package_power_limit;
else
return 0;
} else
return 0;
old_event = state->new_event;
state->new_event = new_event;
if (new_event)
state->count++;
if (time_before64(now, state->next_check) &&
state->count != state->last_count)
return 0;
state->next_check = now + CHECK_INTERVAL;
state->last_count = state->count;
/* if we just entered the thermal event */
if (new_event) {
if (event == THERMAL_THROTTLING_EVENT)
printk(KERN_CRIT "CPU%d: %s temperature above threshold, cpu clock throttled (total events = %lu)\n",
this_cpu,
level == CORE_LEVEL ? "Core" : "Package",
state->count);
return 1;
}
if (old_event) {
if (event == THERMAL_THROTTLING_EVENT)
printk(KERN_INFO "CPU%d: %s temperature/speed normal\n",
this_cpu,
level == CORE_LEVEL ? "Core" : "Package");
return 1;
}
return 0;
}
static int thresh_event_valid(int level, int event)
{
struct _thermal_state *state;
unsigned int this_cpu = smp_processor_id();
struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
u64 now = get_jiffies_64();
if (level == PACKAGE_LEVEL)
state = (event == 0) ? &pstate->pkg_thresh0 :
&pstate->pkg_thresh1;
else
state = (event == 0) ? &pstate->core_thresh0 :
&pstate->core_thresh1;
if (time_before64(now, state->next_check))
return 0;
state->next_check = now + CHECK_INTERVAL;
return 1;
}
static bool int_pln_enable;
static int __init int_pln_enable_setup(char *s)
{
int_pln_enable = true;
return 1;
}
__setup("int_pln_enable", int_pln_enable_setup);
#ifdef CONFIG_SYSFS
/* Add/Remove thermal_throttle interface for CPU device: */
static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu)
{
int err;
struct cpuinfo_x86 *c = &cpu_data(cpu);
err = sysfs_create_group(&dev->kobj, &thermal_attr_group);
if (err)
return err;
if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
err = sysfs_add_file_to_group(&dev->kobj,
&dev_attr_core_power_limit_count.attr,
thermal_attr_group.name);
if (cpu_has(c, X86_FEATURE_PTS)) {
err = sysfs_add_file_to_group(&dev->kobj,
&dev_attr_package_throttle_count.attr,
thermal_attr_group.name);
if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
err = sysfs_add_file_to_group(&dev->kobj,
&dev_attr_package_power_limit_count.attr,
thermal_attr_group.name);
}
return err;
}
static void thermal_throttle_remove_dev(struct device *dev)
{
sysfs_remove_group(&dev->kobj, &thermal_attr_group);
}
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
static int
thermal_throttle_cpu_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct device *dev;
int err = 0;
dev = get_cpu_device(cpu);
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
err = thermal_throttle_add_dev(dev, cpu);
WARN_ON(err);
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
thermal_throttle_remove_dev(dev);
break;
}
return notifier_from_errno(err);
}
static struct notifier_block thermal_throttle_cpu_notifier =
{
.notifier_call = thermal_throttle_cpu_callback,
};
static __init int thermal_throttle_init_device(void)
{
unsigned int cpu = 0;
int err;
if (!atomic_read(&therm_throt_en))
return 0;
cpu_notifier_register_begin();
/* connect live CPUs to sysfs */
for_each_online_cpu(cpu) {
err = thermal_throttle_add_dev(get_cpu_device(cpu), cpu);
WARN_ON(err);
}
__register_hotcpu_notifier(&thermal_throttle_cpu_notifier);
cpu_notifier_register_done();
return 0;
}
device_initcall(thermal_throttle_init_device);
#endif /* CONFIG_SYSFS */
static void notify_package_thresholds(__u64 msr_val)
{
bool notify_thres_0 = false;
bool notify_thres_1 = false;
if (!platform_thermal_package_notify)
return;
/* lower threshold check */
if (msr_val & THERM_LOG_THRESHOLD0)
notify_thres_0 = true;
/* higher threshold check */
if (msr_val & THERM_LOG_THRESHOLD1)
notify_thres_1 = true;
if (!notify_thres_0 && !notify_thres_1)
return;
if (platform_thermal_package_rate_control &&
platform_thermal_package_rate_control()) {
/* Rate control is implemented in callback */
platform_thermal_package_notify(msr_val);
return;
}
/* lower threshold reached */
if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0))
platform_thermal_package_notify(msr_val);
/* higher threshold reached */
if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1))
platform_thermal_package_notify(msr_val);
}
static void notify_thresholds(__u64 msr_val)
{
/* check whether the interrupt handler is defined;
* otherwise simply return
*/
if (!platform_thermal_notify)
return;
/* lower threshold reached */
if ((msr_val & THERM_LOG_THRESHOLD0) &&
thresh_event_valid(CORE_LEVEL, 0))
platform_thermal_notify(msr_val);
/* higher threshold reached */
if ((msr_val & THERM_LOG_THRESHOLD1) &&
thresh_event_valid(CORE_LEVEL, 1))
platform_thermal_notify(msr_val);
}
/* Thermal transition interrupt handler */
static void intel_thermal_interrupt(void)
{
__u64 msr_val;
rdmsrl(MSR_IA32_THERM_STATUS, msr_val);
/* Check for violation of core thermal thresholds*/
notify_thresholds(msr_val);
if (therm_throt_process(msr_val & THERM_STATUS_PROCHOT,
THERMAL_THROTTLING_EVENT,
CORE_LEVEL) != 0)
mce_log_therm_throt_event(msr_val);
if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT,
POWER_LIMIT_EVENT,
CORE_LEVEL);
if (this_cpu_has(X86_FEATURE_PTS)) {
rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
/* check violations of package thermal thresholds */
notify_package_thresholds(msr_val);
therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT,
THERMAL_THROTTLING_EVENT,
PACKAGE_LEVEL);
if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
therm_throt_process(msr_val &
PACKAGE_THERM_STATUS_POWER_LIMIT,
POWER_LIMIT_EVENT,
PACKAGE_LEVEL);
}
}
static void unexpected_thermal_interrupt(void)
{
printk(KERN_ERR "CPU%d: Unexpected LVT thermal interrupt!\n",
smp_processor_id());
}
static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt;
static inline void __smp_thermal_interrupt(void)
{
inc_irq_stat(irq_thermal_count);
smp_thermal_vector();
}
asmlinkage __visible void smp_thermal_interrupt(struct pt_regs *regs)
{
entering_irq();
__smp_thermal_interrupt();
exiting_ack_irq();
}
asmlinkage __visible void smp_trace_thermal_interrupt(struct pt_regs *regs)
{
entering_irq();
trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
__smp_thermal_interrupt();
trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
exiting_ack_irq();
}
/* Thermal monitoring depends on APIC, ACPI and clock modulation */
static int intel_thermal_supported(struct cpuinfo_x86 *c)
{
if (!cpu_has_apic)
return 0;
if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC))
return 0;
return 1;
}
void __init mcheck_intel_therm_init(void)
{
/*
* This function is only called on boot CPU. Save the init thermal
* LVT value on BSP and use that value to restore APs' thermal LVT
* entry BIOS programmed later
*/
if (intel_thermal_supported(&boot_cpu_data))
lvtthmr_init = apic_read(APIC_LVTTHMR);
}
void intel_init_thermal(struct cpuinfo_x86 *c)
{
unsigned int cpu = smp_processor_id();
int tm2 = 0;
u32 l, h;
if (!intel_thermal_supported(c))
return;
/*
* First check if its enabled already, in which case there might
* be some SMM goo which handles it, so we can't even put a handler
* since it might be delivered via SMI already:
*/
rdmsr(MSR_IA32_MISC_ENABLE, l, h);
h = lvtthmr_init;
/*
* The initial value of thermal LVT entries on all APs always reads
* 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
* sequence to them and LVT registers are reset to 0s except for
* the mask bits which are set to 1s when APs receive INIT IPI.
* If BIOS takes over the thermal interrupt and sets its interrupt
* delivery mode to SMI (not fixed), it restores the value that the
* BIOS has programmed on AP based on BSP's info we saved since BIOS
* is always setting the same value for all threads/cores.
*/
if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED)
apic_write(APIC_LVTTHMR, lvtthmr_init);
if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) {
if (system_state == SYSTEM_BOOTING)
printk(KERN_DEBUG "CPU%d: Thermal monitoring handled by SMI\n", cpu);
return;
}
/* Check whether a vector already exists */
if (h & APIC_VECTOR_MASK) {
printk(KERN_DEBUG
"CPU%d: Thermal LVT vector (%#x) already installed\n",
cpu, (h & APIC_VECTOR_MASK));
return;
}
/* early Pentium M models use different method for enabling TM2 */
if (cpu_has(c, X86_FEATURE_TM2)) {
if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) {
rdmsr(MSR_THERM2_CTL, l, h);
if (l & MSR_THERM2_CTL_TM_SELECT)
tm2 = 1;
} else if (l & MSR_IA32_MISC_ENABLE_TM2)
tm2 = 1;
}
/* We'll mask the thermal vector in the lapic till we're ready: */
h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED;
apic_write(APIC_LVTTHMR, h);
rdmsr(MSR_IA32_THERM_INTERRUPT, l, h);
if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
wrmsr(MSR_IA32_THERM_INTERRUPT,
(l | (THERM_INT_LOW_ENABLE
| THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h);
else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
wrmsr(MSR_IA32_THERM_INTERRUPT,
l | (THERM_INT_LOW_ENABLE
| THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h);
else
wrmsr(MSR_IA32_THERM_INTERRUPT,
l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h);
if (cpu_has(c, X86_FEATURE_PTS)) {
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
(l | (PACKAGE_THERM_INT_LOW_ENABLE
| PACKAGE_THERM_INT_HIGH_ENABLE))
& ~PACKAGE_THERM_INT_PLN_ENABLE, h);
else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
l | (PACKAGE_THERM_INT_LOW_ENABLE
| PACKAGE_THERM_INT_HIGH_ENABLE
| PACKAGE_THERM_INT_PLN_ENABLE), h);
else
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
l | (PACKAGE_THERM_INT_LOW_ENABLE
| PACKAGE_THERM_INT_HIGH_ENABLE), h);
}
smp_thermal_vector = intel_thermal_interrupt;
rdmsr(MSR_IA32_MISC_ENABLE, l, h);
wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h);
/* Unmask the thermal vector: */
l = apic_read(APIC_LVTTHMR);
apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED);
printk_once(KERN_INFO "CPU0: Thermal monitoring enabled (%s)\n",
tm2 ? "TM2" : "TM1");
/* enable thermal throttle processing */
atomic_set(&therm_throt_en, 1);
}