| /* |
| * drivers/cpufreq/cpufreq_governor.c |
| * |
| * CPUFREQ governors common code |
| * |
| * Copyright (C) 2001 Russell King |
| * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> |
| * (C) 2009 Alexander Clouter <alex@digriz.org.uk> |
| * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/export.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/slab.h> |
| |
| #include "cpufreq_governor.h" |
| |
| static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data) |
| { |
| if (have_governor_per_policy()) |
| return dbs_data->cdata->attr_group_gov_pol; |
| else |
| return dbs_data->cdata->attr_group_gov_sys; |
| } |
| |
| void dbs_check_cpu(struct dbs_data *dbs_data, int cpu) |
| { |
| struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu); |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; |
| struct cpufreq_policy *policy = cdbs->shared->policy; |
| unsigned int sampling_rate; |
| unsigned int max_load = 0; |
| unsigned int ignore_nice; |
| unsigned int j; |
| |
| if (dbs_data->cdata->governor == GOV_ONDEMAND) { |
| struct od_cpu_dbs_info_s *od_dbs_info = |
| dbs_data->cdata->get_cpu_dbs_info_s(cpu); |
| |
| /* |
| * Sometimes, the ondemand governor uses an additional |
| * multiplier to give long delays. So apply this multiplier to |
| * the 'sampling_rate', so as to keep the wake-up-from-idle |
| * detection logic a bit conservative. |
| */ |
| sampling_rate = od_tuners->sampling_rate; |
| sampling_rate *= od_dbs_info->rate_mult; |
| |
| ignore_nice = od_tuners->ignore_nice_load; |
| } else { |
| sampling_rate = cs_tuners->sampling_rate; |
| ignore_nice = cs_tuners->ignore_nice_load; |
| } |
| |
| /* Get Absolute Load */ |
| for_each_cpu(j, policy->cpus) { |
| struct cpu_dbs_info *j_cdbs; |
| u64 cur_wall_time, cur_idle_time; |
| unsigned int idle_time, wall_time; |
| unsigned int load; |
| int io_busy = 0; |
| |
| j_cdbs = dbs_data->cdata->get_cpu_cdbs(j); |
| |
| /* |
| * For the purpose of ondemand, waiting for disk IO is |
| * an indication that you're performance critical, and |
| * not that the system is actually idle. So do not add |
| * the iowait time to the cpu idle time. |
| */ |
| if (dbs_data->cdata->governor == GOV_ONDEMAND) |
| io_busy = od_tuners->io_is_busy; |
| cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy); |
| |
| wall_time = (unsigned int) |
| (cur_wall_time - j_cdbs->prev_cpu_wall); |
| j_cdbs->prev_cpu_wall = cur_wall_time; |
| |
| if (cur_idle_time < j_cdbs->prev_cpu_idle) |
| cur_idle_time = j_cdbs->prev_cpu_idle; |
| |
| idle_time = (unsigned int) |
| (cur_idle_time - j_cdbs->prev_cpu_idle); |
| j_cdbs->prev_cpu_idle = cur_idle_time; |
| |
| if (ignore_nice) { |
| u64 cur_nice; |
| unsigned long cur_nice_jiffies; |
| |
| cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - |
| cdbs->prev_cpu_nice; |
| /* |
| * Assumption: nice time between sampling periods will |
| * be less than 2^32 jiffies for 32 bit sys |
| */ |
| cur_nice_jiffies = (unsigned long) |
| cputime64_to_jiffies64(cur_nice); |
| |
| cdbs->prev_cpu_nice = |
| kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| idle_time += jiffies_to_usecs(cur_nice_jiffies); |
| } |
| |
| if (unlikely(!wall_time || wall_time < idle_time)) |
| continue; |
| |
| /* |
| * If the CPU had gone completely idle, and a task just woke up |
| * on this CPU now, it would be unfair to calculate 'load' the |
| * usual way for this elapsed time-window, because it will show |
| * near-zero load, irrespective of how CPU intensive that task |
| * actually is. This is undesirable for latency-sensitive bursty |
| * workloads. |
| * |
| * To avoid this, we reuse the 'load' from the previous |
| * time-window and give this task a chance to start with a |
| * reasonably high CPU frequency. (However, we shouldn't over-do |
| * this copy, lest we get stuck at a high load (high frequency) |
| * for too long, even when the current system load has actually |
| * dropped down. So we perform the copy only once, upon the |
| * first wake-up from idle.) |
| * |
| * Detecting this situation is easy: the governor's deferrable |
| * timer would not have fired during CPU-idle periods. Hence |
| * an unusually large 'wall_time' (as compared to the sampling |
| * rate) indicates this scenario. |
| * |
| * prev_load can be zero in two cases and we must recalculate it |
| * for both cases: |
| * - during long idle intervals |
| * - explicitly set to zero |
| */ |
| if (unlikely(wall_time > (2 * sampling_rate) && |
| j_cdbs->prev_load)) { |
| load = j_cdbs->prev_load; |
| |
| /* |
| * Perform a destructive copy, to ensure that we copy |
| * the previous load only once, upon the first wake-up |
| * from idle. |
| */ |
| j_cdbs->prev_load = 0; |
| } else { |
| load = 100 * (wall_time - idle_time) / wall_time; |
| j_cdbs->prev_load = load; |
| } |
| |
| if (load > max_load) |
| max_load = load; |
| } |
| |
| dbs_data->cdata->gov_check_cpu(cpu, max_load); |
| } |
| EXPORT_SYMBOL_GPL(dbs_check_cpu); |
| |
| void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay) |
| { |
| struct dbs_data *dbs_data = policy->governor_data; |
| struct cpu_dbs_info *cdbs; |
| int cpu; |
| |
| for_each_cpu(cpu, policy->cpus) { |
| cdbs = dbs_data->cdata->get_cpu_cdbs(cpu); |
| cdbs->timer.expires = jiffies + delay; |
| add_timer_on(&cdbs->timer, cpu); |
| } |
| } |
| EXPORT_SYMBOL_GPL(gov_add_timers); |
| |
| static inline void gov_cancel_timers(struct cpufreq_policy *policy) |
| { |
| struct dbs_data *dbs_data = policy->governor_data; |
| struct cpu_dbs_info *cdbs; |
| int i; |
| |
| for_each_cpu(i, policy->cpus) { |
| cdbs = dbs_data->cdata->get_cpu_cdbs(i); |
| del_timer_sync(&cdbs->timer); |
| } |
| } |
| |
| void gov_cancel_work(struct cpu_common_dbs_info *shared) |
| { |
| /* Tell dbs_timer_handler() to skip queuing up work items. */ |
| atomic_inc(&shared->skip_work); |
| /* |
| * If dbs_timer_handler() is already running, it may not notice the |
| * incremented skip_work, so wait for it to complete to prevent its work |
| * item from being queued up after the cancel_work_sync() below. |
| */ |
| gov_cancel_timers(shared->policy); |
| /* |
| * In case dbs_timer_handler() managed to run and spawn a work item |
| * before the timers have been canceled, wait for that work item to |
| * complete and then cancel all of the timers set up by it. If |
| * dbs_timer_handler() runs again at that point, it will see the |
| * positive value of skip_work and won't spawn any more work items. |
| */ |
| cancel_work_sync(&shared->work); |
| gov_cancel_timers(shared->policy); |
| atomic_set(&shared->skip_work, 0); |
| } |
| EXPORT_SYMBOL_GPL(gov_cancel_work); |
| |
| /* Will return if we need to evaluate cpu load again or not */ |
| static bool need_load_eval(struct cpu_common_dbs_info *shared, |
| unsigned int sampling_rate) |
| { |
| if (policy_is_shared(shared->policy)) { |
| ktime_t time_now = ktime_get(); |
| s64 delta_us = ktime_us_delta(time_now, shared->time_stamp); |
| |
| /* Do nothing if we recently have sampled */ |
| if (delta_us < (s64)(sampling_rate / 2)) |
| return false; |
| else |
| shared->time_stamp = time_now; |
| } |
| |
| return true; |
| } |
| |
| static void dbs_work_handler(struct work_struct *work) |
| { |
| struct cpu_common_dbs_info *shared = container_of(work, struct |
| cpu_common_dbs_info, work); |
| struct cpufreq_policy *policy; |
| struct dbs_data *dbs_data; |
| unsigned int sampling_rate, delay; |
| bool eval_load; |
| |
| policy = shared->policy; |
| dbs_data = policy->governor_data; |
| |
| /* Kill all timers */ |
| gov_cancel_timers(policy); |
| |
| if (dbs_data->cdata->governor == GOV_CONSERVATIVE) { |
| struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; |
| |
| sampling_rate = cs_tuners->sampling_rate; |
| } else { |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| |
| sampling_rate = od_tuners->sampling_rate; |
| } |
| |
| eval_load = need_load_eval(shared, sampling_rate); |
| |
| /* |
| * Make sure cpufreq_governor_limits() isn't evaluating load in |
| * parallel. |
| */ |
| mutex_lock(&shared->timer_mutex); |
| delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load); |
| mutex_unlock(&shared->timer_mutex); |
| |
| atomic_dec(&shared->skip_work); |
| |
| gov_add_timers(policy, delay); |
| } |
| |
| static void dbs_timer_handler(unsigned long data) |
| { |
| struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data; |
| struct cpu_common_dbs_info *shared = cdbs->shared; |
| |
| /* |
| * Timer handler may not be allowed to queue the work at the moment, |
| * because: |
| * - Another timer handler has done that |
| * - We are stopping the governor |
| * - Or we are updating the sampling rate of the ondemand governor |
| */ |
| if (atomic_inc_return(&shared->skip_work) > 1) |
| atomic_dec(&shared->skip_work); |
| else |
| queue_work(system_wq, &shared->work); |
| } |
| |
| static void set_sampling_rate(struct dbs_data *dbs_data, |
| unsigned int sampling_rate) |
| { |
| if (dbs_data->cdata->governor == GOV_CONSERVATIVE) { |
| struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; |
| cs_tuners->sampling_rate = sampling_rate; |
| } else { |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| od_tuners->sampling_rate = sampling_rate; |
| } |
| } |
| |
| static int alloc_common_dbs_info(struct cpufreq_policy *policy, |
| struct common_dbs_data *cdata) |
| { |
| struct cpu_common_dbs_info *shared; |
| int j; |
| |
| /* Allocate memory for the common information for policy->cpus */ |
| shared = kzalloc(sizeof(*shared), GFP_KERNEL); |
| if (!shared) |
| return -ENOMEM; |
| |
| /* Set shared for all CPUs, online+offline */ |
| for_each_cpu(j, policy->related_cpus) |
| cdata->get_cpu_cdbs(j)->shared = shared; |
| |
| mutex_init(&shared->timer_mutex); |
| atomic_set(&shared->skip_work, 0); |
| INIT_WORK(&shared->work, dbs_work_handler); |
| return 0; |
| } |
| |
| static void free_common_dbs_info(struct cpufreq_policy *policy, |
| struct common_dbs_data *cdata) |
| { |
| struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu); |
| struct cpu_common_dbs_info *shared = cdbs->shared; |
| int j; |
| |
| mutex_destroy(&shared->timer_mutex); |
| |
| for_each_cpu(j, policy->cpus) |
| cdata->get_cpu_cdbs(j)->shared = NULL; |
| |
| kfree(shared); |
| } |
| |
| static int cpufreq_governor_init(struct cpufreq_policy *policy, |
| struct dbs_data *dbs_data, |
| struct common_dbs_data *cdata) |
| { |
| unsigned int latency; |
| int ret; |
| |
| /* State should be equivalent to EXIT */ |
| if (policy->governor_data) |
| return -EBUSY; |
| |
| if (dbs_data) { |
| if (WARN_ON(have_governor_per_policy())) |
| return -EINVAL; |
| |
| ret = alloc_common_dbs_info(policy, cdata); |
| if (ret) |
| return ret; |
| |
| dbs_data->usage_count++; |
| policy->governor_data = dbs_data; |
| return 0; |
| } |
| |
| dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); |
| if (!dbs_data) |
| return -ENOMEM; |
| |
| ret = alloc_common_dbs_info(policy, cdata); |
| if (ret) |
| goto free_dbs_data; |
| |
| dbs_data->cdata = cdata; |
| dbs_data->usage_count = 1; |
| |
| ret = cdata->init(dbs_data, !policy->governor->initialized); |
| if (ret) |
| goto free_common_dbs_info; |
| |
| /* policy latency is in ns. Convert it to us first */ |
| latency = policy->cpuinfo.transition_latency / 1000; |
| if (latency == 0) |
| latency = 1; |
| |
| /* Bring kernel and HW constraints together */ |
| dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, |
| MIN_LATENCY_MULTIPLIER * latency); |
| set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate, |
| latency * LATENCY_MULTIPLIER)); |
| |
| if (!have_governor_per_policy()) |
| cdata->gdbs_data = dbs_data; |
| |
| policy->governor_data = dbs_data; |
| |
| ret = sysfs_create_group(get_governor_parent_kobj(policy), |
| get_sysfs_attr(dbs_data)); |
| if (ret) |
| goto reset_gdbs_data; |
| |
| return 0; |
| |
| reset_gdbs_data: |
| policy->governor_data = NULL; |
| |
| if (!have_governor_per_policy()) |
| cdata->gdbs_data = NULL; |
| cdata->exit(dbs_data, !policy->governor->initialized); |
| free_common_dbs_info: |
| free_common_dbs_info(policy, cdata); |
| free_dbs_data: |
| kfree(dbs_data); |
| return ret; |
| } |
| |
| static int cpufreq_governor_exit(struct cpufreq_policy *policy, |
| struct dbs_data *dbs_data) |
| { |
| struct common_dbs_data *cdata = dbs_data->cdata; |
| struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu); |
| |
| /* State should be equivalent to INIT */ |
| if (!cdbs->shared || cdbs->shared->policy) |
| return -EBUSY; |
| |
| if (!--dbs_data->usage_count) { |
| sysfs_remove_group(get_governor_parent_kobj(policy), |
| get_sysfs_attr(dbs_data)); |
| |
| policy->governor_data = NULL; |
| |
| if (!have_governor_per_policy()) |
| cdata->gdbs_data = NULL; |
| |
| cdata->exit(dbs_data, policy->governor->initialized == 1); |
| kfree(dbs_data); |
| } else { |
| policy->governor_data = NULL; |
| } |
| |
| free_common_dbs_info(policy, cdata); |
| return 0; |
| } |
| |
| static int cpufreq_governor_start(struct cpufreq_policy *policy, |
| struct dbs_data *dbs_data) |
| { |
| struct common_dbs_data *cdata = dbs_data->cdata; |
| unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu; |
| struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu); |
| struct cpu_common_dbs_info *shared = cdbs->shared; |
| int io_busy = 0; |
| |
| if (!policy->cur) |
| return -EINVAL; |
| |
| /* State should be equivalent to INIT */ |
| if (!shared || shared->policy) |
| return -EBUSY; |
| |
| if (cdata->governor == GOV_CONSERVATIVE) { |
| struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; |
| |
| sampling_rate = cs_tuners->sampling_rate; |
| ignore_nice = cs_tuners->ignore_nice_load; |
| } else { |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| |
| sampling_rate = od_tuners->sampling_rate; |
| ignore_nice = od_tuners->ignore_nice_load; |
| io_busy = od_tuners->io_is_busy; |
| } |
| |
| shared->policy = policy; |
| shared->time_stamp = ktime_get(); |
| |
| for_each_cpu(j, policy->cpus) { |
| struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j); |
| unsigned int prev_load; |
| |
| j_cdbs->prev_cpu_idle = |
| get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy); |
| |
| prev_load = (unsigned int)(j_cdbs->prev_cpu_wall - |
| j_cdbs->prev_cpu_idle); |
| j_cdbs->prev_load = 100 * prev_load / |
| (unsigned int)j_cdbs->prev_cpu_wall; |
| |
| if (ignore_nice) |
| j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| |
| __setup_timer(&j_cdbs->timer, dbs_timer_handler, |
| (unsigned long)j_cdbs, |
| TIMER_DEFERRABLE | TIMER_IRQSAFE); |
| } |
| |
| if (cdata->governor == GOV_CONSERVATIVE) { |
| struct cs_cpu_dbs_info_s *cs_dbs_info = |
| cdata->get_cpu_dbs_info_s(cpu); |
| |
| cs_dbs_info->down_skip = 0; |
| cs_dbs_info->requested_freq = policy->cur; |
| } else { |
| struct od_ops *od_ops = cdata->gov_ops; |
| struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu); |
| |
| od_dbs_info->rate_mult = 1; |
| od_dbs_info->sample_type = OD_NORMAL_SAMPLE; |
| od_ops->powersave_bias_init_cpu(cpu); |
| } |
| |
| gov_add_timers(policy, delay_for_sampling_rate(sampling_rate)); |
| return 0; |
| } |
| |
| static int cpufreq_governor_stop(struct cpufreq_policy *policy, |
| struct dbs_data *dbs_data) |
| { |
| struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu); |
| struct cpu_common_dbs_info *shared = cdbs->shared; |
| |
| /* State should be equivalent to START */ |
| if (!shared || !shared->policy) |
| return -EBUSY; |
| |
| gov_cancel_work(shared); |
| shared->policy = NULL; |
| |
| return 0; |
| } |
| |
| static int cpufreq_governor_limits(struct cpufreq_policy *policy, |
| struct dbs_data *dbs_data) |
| { |
| struct common_dbs_data *cdata = dbs_data->cdata; |
| unsigned int cpu = policy->cpu; |
| struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu); |
| |
| /* State should be equivalent to START */ |
| if (!cdbs->shared || !cdbs->shared->policy) |
| return -EBUSY; |
| |
| mutex_lock(&cdbs->shared->timer_mutex); |
| if (policy->max < cdbs->shared->policy->cur) |
| __cpufreq_driver_target(cdbs->shared->policy, policy->max, |
| CPUFREQ_RELATION_H); |
| else if (policy->min > cdbs->shared->policy->cur) |
| __cpufreq_driver_target(cdbs->shared->policy, policy->min, |
| CPUFREQ_RELATION_L); |
| dbs_check_cpu(dbs_data, cpu); |
| mutex_unlock(&cdbs->shared->timer_mutex); |
| |
| return 0; |
| } |
| |
| int cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| struct common_dbs_data *cdata, unsigned int event) |
| { |
| struct dbs_data *dbs_data; |
| int ret; |
| |
| /* Lock governor to block concurrent initialization of governor */ |
| mutex_lock(&cdata->mutex); |
| |
| if (have_governor_per_policy()) |
| dbs_data = policy->governor_data; |
| else |
| dbs_data = cdata->gdbs_data; |
| |
| if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| switch (event) { |
| case CPUFREQ_GOV_POLICY_INIT: |
| ret = cpufreq_governor_init(policy, dbs_data, cdata); |
| break; |
| case CPUFREQ_GOV_POLICY_EXIT: |
| ret = cpufreq_governor_exit(policy, dbs_data); |
| break; |
| case CPUFREQ_GOV_START: |
| ret = cpufreq_governor_start(policy, dbs_data); |
| break; |
| case CPUFREQ_GOV_STOP: |
| ret = cpufreq_governor_stop(policy, dbs_data); |
| break; |
| case CPUFREQ_GOV_LIMITS: |
| ret = cpufreq_governor_limits(policy, dbs_data); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| unlock: |
| mutex_unlock(&cdata->mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cpufreq_governor_dbs); |