blob: 0a6a943b3779ec700af7f7bb5a30f220f0c1ab4d [file] [log] [blame]
/*
* libata-core.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
* Standards documents from:
* http://www.t13.org (ATA standards, PCI DMA IDE spec)
* http://www.t10.org (SCSI MMC - for ATAPI MMC)
* http://www.sata-io.org (SATA)
* http://www.compactflash.org (CF)
* http://www.qic.org (QIC157 - Tape and DSC)
* http://www.ce-ata.org (CE-ATA: not supported)
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h>
#include <linux/workqueue.h>
#include <linux/scatterlist.h>
#include <linux/io.h>
#include <linux/async.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/byteorder.h>
#include <linux/cdrom.h>
#include <linux/ratelimit.h>
#include "libata.h"
#include "libata-transport.h"
/* debounce timing parameters in msecs { interval, duration, timeout } */
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
const struct ata_port_operations ata_base_port_ops = {
.prereset = ata_std_prereset,
.postreset = ata_std_postreset,
.error_handler = ata_std_error_handler,
};
const struct ata_port_operations sata_port_ops = {
.inherits = &ata_base_port_ops,
.qc_defer = ata_std_qc_defer,
.hardreset = sata_std_hardreset,
};
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors);
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
static void ata_dev_xfermask(struct ata_device *dev);
static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
unsigned int ata_print_id = 1;
struct ata_force_param {
const char *name;
unsigned int cbl;
int spd_limit;
unsigned long xfer_mask;
unsigned int horkage_on;
unsigned int horkage_off;
unsigned int lflags;
};
struct ata_force_ent {
int port;
int device;
struct ata_force_param param;
};
static struct ata_force_ent *ata_force_tbl;
static int ata_force_tbl_size;
static char ata_force_param_buf[PAGE_SIZE] __initdata;
/* param_buf is thrown away after initialization, disallow read */
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
static int atapi_enabled = 1;
module_param(atapi_enabled, int, 0444);
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
static int atapi_dmadir = 0;
module_param(atapi_dmadir, int, 0444);
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
int atapi_passthru16 = 1;
module_param(atapi_passthru16, int, 0444);
MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
int libata_fua = 0;
module_param_named(fua, libata_fua, int, 0444);
MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
static int ata_ignore_hpa;
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
module_param_named(dma, libata_dma_mask, int, 0444);
MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
static int ata_probe_timeout;
module_param(ata_probe_timeout, int, 0444);
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
int libata_noacpi = 0;
module_param_named(noacpi, libata_noacpi, int, 0444);
MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
int libata_allow_tpm = 0;
module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
static int atapi_an;
module_param(atapi_an, int, 0444);
MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static bool ata_sstatus_online(u32 sstatus)
{
return (sstatus & 0xf) == 0x3;
}
/**
* ata_link_next - link iteration helper
* @link: the previous link, NULL to start
* @ap: ATA port containing links to iterate
* @mode: iteration mode, one of ATA_LITER_*
*
* LOCKING:
* Host lock or EH context.
*
* RETURNS:
* Pointer to the next link.
*/
struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
enum ata_link_iter_mode mode)
{
BUG_ON(mode != ATA_LITER_EDGE &&
mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
/* NULL link indicates start of iteration */
if (!link)
switch (mode) {
case ATA_LITER_EDGE:
case ATA_LITER_PMP_FIRST:
if (sata_pmp_attached(ap))
return ap->pmp_link;
/* fall through */
case ATA_LITER_HOST_FIRST:
return &ap->link;
}
/* we just iterated over the host link, what's next? */
if (link == &ap->link)
switch (mode) {
case ATA_LITER_HOST_FIRST:
if (sata_pmp_attached(ap))
return ap->pmp_link;
/* fall through */
case ATA_LITER_PMP_FIRST:
if (unlikely(ap->slave_link))
return ap->slave_link;
/* fall through */
case ATA_LITER_EDGE:
return NULL;
}
/* slave_link excludes PMP */
if (unlikely(link == ap->slave_link))
return NULL;
/* we were over a PMP link */
if (++link < ap->pmp_link + ap->nr_pmp_links)
return link;
if (mode == ATA_LITER_PMP_FIRST)
return &ap->link;
return NULL;
}
/**
* ata_dev_next - device iteration helper
* @dev: the previous device, NULL to start
* @link: ATA link containing devices to iterate
* @mode: iteration mode, one of ATA_DITER_*
*
* LOCKING:
* Host lock or EH context.
*
* RETURNS:
* Pointer to the next device.
*/
struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
enum ata_dev_iter_mode mode)
{
BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
/* NULL dev indicates start of iteration */
if (!dev)
switch (mode) {
case ATA_DITER_ENABLED:
case ATA_DITER_ALL:
dev = link->device;
goto check;
case ATA_DITER_ENABLED_REVERSE:
case ATA_DITER_ALL_REVERSE:
dev = link->device + ata_link_max_devices(link) - 1;
goto check;
}
next:
/* move to the next one */
switch (mode) {
case ATA_DITER_ENABLED:
case ATA_DITER_ALL:
if (++dev < link->device + ata_link_max_devices(link))
goto check;
return NULL;
case ATA_DITER_ENABLED_REVERSE:
case ATA_DITER_ALL_REVERSE:
if (--dev >= link->device)
goto check;
return NULL;
}
check:
if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
!ata_dev_enabled(dev))
goto next;
return dev;
}
/**
* ata_dev_phys_link - find physical link for a device
* @dev: ATA device to look up physical link for
*
* Look up physical link which @dev is attached to. Note that
* this is different from @dev->link only when @dev is on slave
* link. For all other cases, it's the same as @dev->link.
*
* LOCKING:
* Don't care.
*
* RETURNS:
* Pointer to the found physical link.
*/
struct ata_link *ata_dev_phys_link(struct ata_device *dev)
{
struct ata_port *ap = dev->link->ap;
if (!ap->slave_link)
return dev->link;
if (!dev->devno)
return &ap->link;
return ap->slave_link;
}
/**
* ata_force_cbl - force cable type according to libata.force
* @ap: ATA port of interest
*
* Force cable type according to libata.force and whine about it.
* The last entry which has matching port number is used, so it
* can be specified as part of device force parameters. For
* example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
* same effect.
*
* LOCKING:
* EH context.
*/
void ata_force_cbl(struct ata_port *ap)
{
int i;
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
const struct ata_force_ent *fe = &ata_force_tbl[i];
if (fe->port != -1 && fe->port != ap->print_id)
continue;
if (fe->param.cbl == ATA_CBL_NONE)
continue;
ap->cbl = fe->param.cbl;
ata_port_printk(ap, KERN_NOTICE,
"FORCE: cable set to %s\n", fe->param.name);
return;
}
}
/**
* ata_force_link_limits - force link limits according to libata.force
* @link: ATA link of interest
*
* Force link flags and SATA spd limit according to libata.force
* and whine about it. When only the port part is specified
* (e.g. 1:), the limit applies to all links connected to both
* the host link and all fan-out ports connected via PMP. If the
* device part is specified as 0 (e.g. 1.00:), it specifies the
* first fan-out link not the host link. Device number 15 always
* points to the host link whether PMP is attached or not. If the
* controller has slave link, device number 16 points to it.
*
* LOCKING:
* EH context.
*/
static void ata_force_link_limits(struct ata_link *link)
{
bool did_spd = false;
int linkno = link->pmp;
int i;
if (ata_is_host_link(link))
linkno += 15;
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
const struct ata_force_ent *fe = &ata_force_tbl[i];
if (fe->port != -1 && fe->port != link->ap->print_id)
continue;
if (fe->device != -1 && fe->device != linkno)
continue;
/* only honor the first spd limit */
if (!did_spd && fe->param.spd_limit) {
link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
ata_link_printk(link, KERN_NOTICE,
"FORCE: PHY spd limit set to %s\n",
fe->param.name);
did_spd = true;
}
/* let lflags stack */
if (fe->param.lflags) {
link->flags |= fe->param.lflags;
ata_link_printk(link, KERN_NOTICE,
"FORCE: link flag 0x%x forced -> 0x%x\n",
fe->param.lflags, link->flags);
}
}
}
/**
* ata_force_xfermask - force xfermask according to libata.force
* @dev: ATA device of interest
*
* Force xfer_mask according to libata.force and whine about it.
* For consistency with link selection, device number 15 selects
* the first device connected to the host link.
*
* LOCKING:
* EH context.
*/
static void ata_force_xfermask(struct ata_device *dev)
{
int devno = dev->link->pmp + dev->devno;
int alt_devno = devno;
int i;
/* allow n.15/16 for devices attached to host port */
if (ata_is_host_link(dev->link))
alt_devno += 15;
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
const struct ata_force_ent *fe = &ata_force_tbl[i];
unsigned long pio_mask, mwdma_mask, udma_mask;
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
continue;
if (fe->device != -1 && fe->device != devno &&
fe->device != alt_devno)
continue;
if (!fe->param.xfer_mask)
continue;
ata_unpack_xfermask(fe->param.xfer_mask,
&pio_mask, &mwdma_mask, &udma_mask);
if (udma_mask)
dev->udma_mask = udma_mask;
else if (mwdma_mask) {
dev->udma_mask = 0;
dev->mwdma_mask = mwdma_mask;
} else {
dev->udma_mask = 0;
dev->mwdma_mask = 0;
dev->pio_mask = pio_mask;
}
ata_dev_printk(dev, KERN_NOTICE,
"FORCE: xfer_mask set to %s\n", fe->param.name);
return;
}
}
/**
* ata_force_horkage - force horkage according to libata.force
* @dev: ATA device of interest
*
* Force horkage according to libata.force and whine about it.
* For consistency with link selection, device number 15 selects
* the first device connected to the host link.
*
* LOCKING:
* EH context.
*/
static void ata_force_horkage(struct ata_device *dev)
{
int devno = dev->link->pmp + dev->devno;
int alt_devno = devno;
int i;
/* allow n.15/16 for devices attached to host port */
if (ata_is_host_link(dev->link))
alt_devno += 15;
for (i = 0; i < ata_force_tbl_size; i++) {
const struct ata_force_ent *fe = &ata_force_tbl[i];
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
continue;
if (fe->device != -1 && fe->device != devno &&
fe->device != alt_devno)
continue;
if (!(~dev->horkage & fe->param.horkage_on) &&
!(dev->horkage & fe->param.horkage_off))
continue;
dev->horkage |= fe->param.horkage_on;
dev->horkage &= ~fe->param.horkage_off;
ata_dev_printk(dev, KERN_NOTICE,
"FORCE: horkage modified (%s)\n", fe->param.name);
}
}
/**
* atapi_cmd_type - Determine ATAPI command type from SCSI opcode
* @opcode: SCSI opcode
*
* Determine ATAPI command type from @opcode.
*
* LOCKING:
* None.
*
* RETURNS:
* ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
*/
int atapi_cmd_type(u8 opcode)
{
switch (opcode) {
case GPCMD_READ_10:
case GPCMD_READ_12:
return ATAPI_READ;
case GPCMD_WRITE_10:
case GPCMD_WRITE_12:
case GPCMD_WRITE_AND_VERIFY_10:
return ATAPI_WRITE;
case GPCMD_READ_CD:
case GPCMD_READ_CD_MSF:
return ATAPI_READ_CD;
case ATA_16:
case ATA_12:
if (atapi_passthru16)
return ATAPI_PASS_THRU;
/* fall thru */
default:
return ATAPI_MISC;
}
}
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @pmp: Port multiplier port
* @is_cmd: This FIS is for command
* @fis: Buffer into which data will output
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = pmp & 0xf; /* Port multiplier number*/
if (is_cmd)
fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
static const u8 ata_rw_cmds[] = {
/* pio multi */
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
0,
0,
0,
ATA_CMD_WRITE_MULTI_FUA_EXT,
/* pio */
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
0,
0,
0,
0,
/* dma */
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
0,
0,
0,
ATA_CMD_WRITE_FUA_EXT
};
/**
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
* @tf: command to examine and configure
* @dev: device tf belongs to
*
* Examine the device configuration and tf->flags to calculate
* the proper read/write commands and protocol to use.
*
* LOCKING:
* caller.
*/
static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
{
u8 cmd;
int index, fua, lba48, write;
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
if (dev->flags & ATA_DFLAG_PIO) {
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
/* Unable to use DMA due to host limitation */
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else {
tf->protocol = ATA_PROT_DMA;
index = 16;
}
cmd = ata_rw_cmds[index + fua + lba48 + write];
if (cmd) {
tf->command = cmd;
return 0;
}
return -1;
}
/**
* ata_tf_read_block - Read block address from ATA taskfile
* @tf: ATA taskfile of interest
* @dev: ATA device @tf belongs to
*
* LOCKING:
* None.
*
* Read block address from @tf. This function can handle all
* three address formats - LBA, LBA48 and CHS. tf->protocol and
* flags select the address format to use.
*
* RETURNS:
* Block address read from @tf.
*/
u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
{
u64 block = 0;
if (tf->flags & ATA_TFLAG_LBA) {
if (tf->flags & ATA_TFLAG_LBA48) {
block |= (u64)tf->hob_lbah << 40;
block |= (u64)tf->hob_lbam << 32;
block |= (u64)tf->hob_lbal << 24;
} else
block |= (tf->device & 0xf) << 24;
block |= tf->lbah << 16;
block |= tf->lbam << 8;
block |= tf->lbal;
} else {
u32 cyl, head, sect;
cyl = tf->lbam | (tf->lbah << 8);
head = tf->device & 0xf;
sect = tf->lbal;
if (!sect) {
ata_dev_printk(dev, KERN_WARNING, "device reported "
"invalid CHS sector 0\n");
sect = 1; /* oh well */
}
block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
}
return block;
}
/**
* ata_build_rw_tf - Build ATA taskfile for given read/write request
* @tf: Target ATA taskfile
* @dev: ATA device @tf belongs to
* @block: Block address
* @n_block: Number of blocks
* @tf_flags: RW/FUA etc...
* @tag: tag
*
* LOCKING:
* None.
*
* Build ATA taskfile @tf for read/write request described by
* @block, @n_block, @tf_flags and @tag on @dev.
*
* RETURNS:
*
* 0 on success, -ERANGE if the request is too large for @dev,
* -EINVAL if the request is invalid.
*/
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
u64 block, u32 n_block, unsigned int tf_flags,
unsigned int tag)
{
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf->flags |= tf_flags;
if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
/* yay, NCQ */
if (!lba_48_ok(block, n_block))
return -ERANGE;
tf->protocol = ATA_PROT_NCQ;
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
if (tf->flags & ATA_TFLAG_WRITE)
tf->command = ATA_CMD_FPDMA_WRITE;
else
tf->command = ATA_CMD_FPDMA_READ;
tf->nsect = tag << 3;
tf->hob_feature = (n_block >> 8) & 0xff;
tf->feature = n_block & 0xff;
tf->hob_lbah = (block >> 40) & 0xff;
tf->hob_lbam = (block >> 32) & 0xff;
tf->hob_lbal = (block >> 24) & 0xff;
tf->lbah = (block >> 16) & 0xff;
tf->lbam = (block >> 8) & 0xff;
tf->lbal = block & 0xff;
tf->device = 1 << 6;
if (tf->flags & ATA_TFLAG_FUA)
tf->device |= 1 << 7;
} else if (dev->flags & ATA_DFLAG_LBA) {
tf->flags |= ATA_TFLAG_LBA;
if (lba_28_ok(block, n_block)) {
/* use LBA28 */
tf->device |= (block >> 24) & 0xf;
} else if (lba_48_ok(block, n_block)) {
if (!(dev->flags & ATA_DFLAG_LBA48))
return -ERANGE;
/* use LBA48 */
tf->flags |= ATA_TFLAG_LBA48;
tf->hob_nsect = (n_block >> 8) & 0xff;
tf->hob_lbah = (block >> 40) & 0xff;
tf->hob_lbam = (block >> 32) & 0xff;
tf->hob_lbal = (block >> 24) & 0xff;
} else
/* request too large even for LBA48 */
return -ERANGE;
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
return -EINVAL;
tf->nsect = n_block & 0xff;
tf->lbah = (block >> 16) & 0xff;
tf->lbam = (block >> 8) & 0xff;
tf->lbal = block & 0xff;
tf->device |= ATA_LBA;
} else {
/* CHS */
u32 sect, head, cyl, track;
/* The request -may- be too large for CHS addressing. */
if (!lba_28_ok(block, n_block))
return -ERANGE;
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
return -EINVAL;
/* Convert LBA to CHS */
track = (u32)block / dev->sectors;
cyl = track / dev->heads;
head = track % dev->heads;
sect = (u32)block % dev->sectors + 1;
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
(u32)block, track, cyl, head, sect);
/* Check whether the converted CHS can fit.
Cylinder: 0-65535
Head: 0-15
Sector: 1-255*/
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
return -ERANGE;
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
tf->lbal = sect;
tf->lbam = cyl;
tf->lbah = cyl >> 8;
tf->device |= head;
}
return 0;
}
/**
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
* @pio_mask: pio_mask
* @mwdma_mask: mwdma_mask
* @udma_mask: udma_mask
*
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
* unsigned int xfer_mask.
*
* LOCKING:
* None.
*
* RETURNS:
* Packed xfer_mask.
*/
unsigned long ata_pack_xfermask(unsigned long pio_mask,
unsigned long mwdma_mask,
unsigned long udma_mask)
{
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
}
/**
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
* @xfer_mask: xfer_mask to unpack
* @pio_mask: resulting pio_mask
* @mwdma_mask: resulting mwdma_mask
* @udma_mask: resulting udma_mask
*
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
* Any NULL distination masks will be ignored.
*/
void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
unsigned long *mwdma_mask, unsigned long *udma_mask)
{
if (pio_mask)
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
if (mwdma_mask)
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
if (udma_mask)
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
}
static const struct ata_xfer_ent {
int shift, bits;
u8 base;
} ata_xfer_tbl[] = {
{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
{ -1, },
};
/**
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
* @xfer_mask: xfer_mask of interest
*
* Return matching XFER_* value for @xfer_mask. Only the highest
* bit of @xfer_mask is considered.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching XFER_* value, 0xff if no match found.
*/
u8 ata_xfer_mask2mode(unsigned long xfer_mask)
{
int highbit = fls(xfer_mask) - 1;
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
return ent->base + highbit - ent->shift;
return 0xff;
}
/**
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_mask for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_mask, 0 if no match found.
*/
unsigned long ata_xfer_mode2mask(u8 xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
& ~((1 << ent->shift) - 1);
return 0;
}
/**
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_shift for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_shift, -1 if no match found.
*/
int ata_xfer_mode2shift(unsigned long xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return ent->shift;
return -1;
}
/**
* ata_mode_string - convert xfer_mask to string
* @xfer_mask: mask of bits supported; only highest bit counts.
*
* Determine string which represents the highest speed
* (highest bit in @modemask).
*
* LOCKING:
* None.
*
* RETURNS:
* Constant C string representing highest speed listed in
* @mode_mask, or the constant C string "<n/a>".
*/
const char *ata_mode_string(unsigned long xfer_mask)
{
static const char * const xfer_mode_str[] = {
"PIO0",
"PIO1",
"PIO2",
"PIO3",
"PIO4",
"PIO5",
"PIO6",
"MWDMA0",
"MWDMA1",
"MWDMA2",
"MWDMA3",
"MWDMA4",
"UDMA/16",
"UDMA/25",
"UDMA/33",
"UDMA/44",
"UDMA/66",
"UDMA/100",
"UDMA/133",
"UDMA7",
};
int highbit;
highbit = fls(xfer_mask) - 1;
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
return xfer_mode_str[highbit];
return "<n/a>";
}
const char *sata_spd_string(unsigned int spd)
{
static const char * const spd_str[] = {
"1.5 Gbps",
"3.0 Gbps",
"6.0 Gbps",
};
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
return "<unknown>";
return spd_str[spd - 1];
}
/**
* ata_dev_classify - determine device type based on ATA-spec signature
* @tf: ATA taskfile register set for device to be identified
*
* Determine from taskfile register contents whether a device is
* ATA or ATAPI, as per "Signature and persistence" section
* of ATA/PI spec (volume 1, sect 5.14).
*
* LOCKING:
* None.
*
* RETURNS:
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
* %ATA_DEV_UNKNOWN the event of failure.
*/
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
{
/* Apple's open source Darwin code hints that some devices only
* put a proper signature into the LBA mid/high registers,
* So, we only check those. It's sufficient for uniqueness.
*
* ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
* signatures for ATA and ATAPI devices attached on SerialATA,
* 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
* spec has never mentioned about using different signatures
* for ATA/ATAPI devices. Then, Serial ATA II: Port
* Multiplier specification began to use 0x69/0x96 to identify
* port multpliers and 0x3c/0xc3 to identify SEMB device.
* ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
* 0x69/0x96 shortly and described them as reserved for
* SerialATA.
*
* We follow the current spec and consider that 0x69/0x96
* identifies a port multiplier and 0x3c/0xc3 a SEMB device.
* Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
* SEMB signature. This is worked around in
* ata_dev_read_id().
*/
if ((tf->lbam == 0) && (tf->lbah == 0)) {
DPRINTK("found ATA device by sig\n");
return ATA_DEV_ATA;
}
if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
DPRINTK("found ATAPI device by sig\n");
return ATA_DEV_ATAPI;
}
if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
DPRINTK("found PMP device by sig\n");
return ATA_DEV_PMP;
}
if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
DPRINTK("found SEMB device by sig (could be ATA device)\n");
return ATA_DEV_SEMB;
}
DPRINTK("unknown device\n");
return ATA_DEV_UNKNOWN;
}
/**
* ata_id_string - Convert IDENTIFY DEVICE page into string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an even number.
*
* The strings in the IDENTIFY DEVICE page are broken up into
* 16-bit chunks. Run through the string, and output each
* 8-bit chunk linearly, regardless of platform.
*
* LOCKING:
* caller.
*/
void ata_id_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned int c;
BUG_ON(len & 1);
while (len > 0) {
c = id[ofs] >> 8;
*s = c;
s++;
c = id[ofs] & 0xff;
*s = c;
s++;
ofs++;
len -= 2;
}
}
/**
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an odd number.
*
* This function is identical to ata_id_string except that it
* trims trailing spaces and terminates the resulting string with
* null. @len must be actual maximum length (even number) + 1.
*
* LOCKING:
* caller.
*/
void ata_id_c_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned char *p;
ata_id_string(id, s, ofs, len - 1);
p = s + strnlen(s, len - 1);
while (p > s && p[-1] == ' ')
p--;
*p = '\0';
}
static u64 ata_id_n_sectors(const u16 *id)
{
if (ata_id_has_lba(id)) {
if (ata_id_has_lba48(id))
return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
else
return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
} else {
if (ata_id_current_chs_valid(id))
return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
id[ATA_ID_CUR_SECTORS];
else
return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
id[ATA_ID_SECTORS];
}
}
u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
{
u64 sectors = 0;
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
sectors |= (tf->lbah & 0xff) << 16;
sectors |= (tf->lbam & 0xff) << 8;
sectors |= (tf->lbal & 0xff);
return sectors;
}
u64 ata_tf_to_lba(const struct ata_taskfile *tf)
{
u64 sectors = 0;
sectors |= (tf->device & 0x0f) << 24;
sectors |= (tf->lbah & 0xff) << 16;
sectors |= (tf->lbam & 0xff) << 8;
sectors |= (tf->lbal & 0xff);
return sectors;
}
/**
* ata_read_native_max_address - Read native max address
* @dev: target device
* @max_sectors: out parameter for the result native max address
*
* Perform an LBA48 or LBA28 native size query upon the device in
* question.
*
* RETURNS:
* 0 on success, -EACCES if command is aborted by the drive.
* -EIO on other errors.
*/
static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
{
unsigned int err_mask;
struct ata_taskfile tf;
int lba48 = ata_id_has_lba48(dev->id);
ata_tf_init(dev, &tf);
/* always clear all address registers */
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
if (lba48) {
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
tf.flags |= ATA_TFLAG_LBA48;
} else
tf.command = ATA_CMD_READ_NATIVE_MAX;
tf.protocol |= ATA_PROT_NODATA;
tf.device |= ATA_LBA;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
if (err_mask) {
ata_dev_printk(dev, KERN_WARNING, "failed to read native "
"max address (err_mask=0x%x)\n", err_mask);
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
return -EACCES;
return -EIO;
}
if (lba48)
*max_sectors = ata_tf_to_lba48(&tf) + 1;
else
*max_sectors = ata_tf_to_lba(&tf) + 1;
if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
(*max_sectors)--;
return 0;
}
/**
* ata_set_max_sectors - Set max sectors
* @dev: target device
* @new_sectors: new max sectors value to set for the device
*
* Set max sectors of @dev to @new_sectors.
*
* RETURNS:
* 0 on success, -EACCES if command is aborted or denied (due to
* previous non-volatile SET_MAX) by the drive. -EIO on other
* errors.
*/
static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
{
unsigned int err_mask;
struct ata_taskfile tf;
int lba48 = ata_id_has_lba48(dev->id);
new_sectors--;
ata_tf_init(dev, &tf);
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
if (lba48) {
tf.command = ATA_CMD_SET_MAX_EXT;
tf.flags |= ATA_TFLAG_LBA48;
tf.hob_lbal = (new_sectors >> 24) & 0xff;
tf.hob_lbam = (new_sectors >> 32) & 0xff;
tf.hob_lbah = (new_sectors >> 40) & 0xff;
} else {
tf.command = ATA_CMD_SET_MAX;
tf.device |= (new_sectors >> 24) & 0xf;
}
tf.protocol |= ATA_PROT_NODATA;
tf.device |= ATA_LBA;
tf.lbal = (new_sectors >> 0) & 0xff;
tf.lbam = (new_sectors >> 8) & 0xff;
tf.lbah = (new_sectors >> 16) & 0xff;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
if (err_mask) {
ata_dev_printk(dev, KERN_WARNING, "failed to set "
"max address (err_mask=0x%x)\n", err_mask);
if (err_mask == AC_ERR_DEV &&
(tf.feature & (ATA_ABORTED | ATA_IDNF)))
return -EACCES;
return -EIO;
}
return 0;
}
/**
* ata_hpa_resize - Resize a device with an HPA set
* @dev: Device to resize
*
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
* it if required to the full size of the media. The caller must check
* the drive has the HPA feature set enabled.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int ata_hpa_resize(struct ata_device *dev)
{
struct ata_eh_context *ehc = &dev->link->eh_context;
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
u64 sectors = ata_id_n_sectors(dev->id);
u64 native_sectors;
int rc;
/* do we need to do it? */
if (dev->class != ATA_DEV_ATA ||
!ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
(dev->horkage & ATA_HORKAGE_BROKEN_HPA))
return 0;
/* read native max address */
rc = ata_read_native_max_address(dev, &native_sectors);
if (rc) {
/* If device aborted the command or HPA isn't going to
* be unlocked, skip HPA resizing.
*/
if (rc == -EACCES || !unlock_hpa) {
ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
"broken, skipping HPA handling\n");
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
/* we can continue if device aborted the command */
if (rc == -EACCES)
rc = 0;
}
return rc;
}
dev->n_native_sectors = native_sectors;
/* nothing to do? */
if (native_sectors <= sectors || !unlock_hpa) {
if (!print_info || native_sectors == sectors)
return 0;
if (native_sectors > sectors)
ata_dev_printk(dev, KERN_INFO,
"HPA detected: current %llu, native %llu\n",
(unsigned long long)sectors,
(unsigned long long)native_sectors);
else if (native_sectors < sectors)
ata_dev_printk(dev, KERN_WARNING,
"native sectors (%llu) is smaller than "
"sectors (%llu)\n",
(unsigned long long)native_sectors,
(unsigned long long)sectors);
return 0;
}
/* let's unlock HPA */
rc = ata_set_max_sectors(dev, native_sectors);
if (rc == -EACCES) {
/* if device aborted the command, skip HPA resizing */
ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
"(%llu -> %llu), skipping HPA handling\n",
(unsigned long long)sectors,
(unsigned long long)native_sectors);
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
return 0;
} else if (rc)
return rc;
/* re-read IDENTIFY data */
rc = ata_dev_reread_id(dev, 0);
if (rc) {
ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
"data after HPA resizing\n");
return rc;
}
if (print_info) {
u64 new_sectors = ata_id_n_sectors(dev->id);
ata_dev_printk(dev, KERN_INFO,
"HPA unlocked: %llu -> %llu, native %llu\n",
(unsigned long long)sectors,
(unsigned long long)new_sectors,
(unsigned long long)native_sectors);
}
return 0;
}
/**
* ata_dump_id - IDENTIFY DEVICE info debugging output
* @id: IDENTIFY DEVICE page to dump
*
* Dump selected 16-bit words from the given IDENTIFY DEVICE
* page.
*
* LOCKING:
* caller.
*/
static inline void ata_dump_id(const u16 *id)
{
DPRINTK("49==0x%04x "
"53==0x%04x "
"63==0x%04x "
"64==0x%04x "
"75==0x%04x \n",
id[49],
id[53],
id[63],
id[64],
id[75]);
DPRINTK("80==0x%04x "
"81==0x%04x "
"82==0x%04x "
"83==0x%04x "
"84==0x%04x \n",
id[80],
id[81],
id[82],
id[83],
id[84]);
DPRINTK("88==0x%04x "
"93==0x%04x\n",
id[88],
id[93]);
}
/**
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
* @id: IDENTIFY data to compute xfer mask from
*
* Compute the xfermask for this device. This is not as trivial
* as it seems if we must consider early devices correctly.
*
* FIXME: pre IDE drive timing (do we care ?).
*
* LOCKING:
* None.
*
* RETURNS:
* Computed xfermask
*/
unsigned long ata_id_xfermask(const u16 *id)
{
unsigned long pio_mask, mwdma_mask, udma_mask;
/* Usual case. Word 53 indicates word 64 is valid */
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
pio_mask <<= 3;
pio_mask |= 0x7;
} else {
/* If word 64 isn't valid then Word 51 high byte holds
* the PIO timing number for the maximum. Turn it into
* a mask.
*/
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
if (mode < 5) /* Valid PIO range */
pio_mask = (2 << mode) - 1;
else
pio_mask = 1;
/* But wait.. there's more. Design your standards by
* committee and you too can get a free iordy field to
* process. However its the speeds not the modes that
* are supported... Note drivers using the timing API
* will get this right anyway
*/
}
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
if (ata_id_is_cfa(id)) {
/*
* Process compact flash extended modes
*/
int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
if (pio)
pio_mask |= (1 << 5);
if (pio > 1)
pio_mask |= (1 << 6);
if (dma)
mwdma_mask |= (1 << 3);
if (dma > 1)
mwdma_mask |= (1 << 4);
}
udma_mask = 0;
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
}
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
{
struct completion *waiting = qc->private_data;
complete(waiting);
}
/**
* ata_exec_internal_sg - execute libata internal command
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @cdb: CDB for packet command
* @dma_dir: Data tranfer direction of the command
* @sgl: sg list for the data buffer of the command
* @n_elem: Number of sg entries
* @timeout: Timeout in msecs (0 for default)
*
* Executes libata internal command with timeout. @tf contains
* command on entry and result on return. Timeout and error
* conditions are reported via return value. No recovery action
* is taken after a command times out. It's caller's duty to
* clean up after timeout.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned ata_exec_internal_sg(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, struct scatterlist *sgl,
unsigned int n_elem, unsigned long timeout)
{
struct ata_link *link = dev->link;
struct ata_port *ap = link->ap;
u8 command = tf->command;
int auto_timeout = 0;
struct ata_queued_cmd *qc;
unsigned int tag, preempted_tag;
u32 preempted_sactive, preempted_qc_active;
int preempted_nr_active_links;
DECLARE_COMPLETION_ONSTACK(wait);
unsigned long flags;
unsigned int err_mask;
int rc;
spin_lock_irqsave(ap->lock, flags);
/* no internal command while frozen */
if (ap->pflags & ATA_PFLAG_FROZEN) {
spin_unlock_irqrestore(ap->lock, flags);
return AC_ERR_SYSTEM;
}
/* initialize internal qc */
/* XXX: Tag 0 is used for drivers with legacy EH as some
* drivers choke if any other tag is given. This breaks
* ata_tag_internal() test for those drivers. Don't use new
* EH stuff without converting to it.
*/
if (ap->ops->error_handler)
tag = ATA_TAG_INTERNAL;
else
tag = 0;
if (test_and_set_bit(tag, &ap->qc_allocated))
BUG();
qc = __ata_qc_from_tag(ap, tag);
qc->tag = tag;
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
preempted_tag = link->active_tag;
preempted_sactive = link->sactive;
preempted_qc_active = ap->qc_active;
preempted_nr_active_links = ap->nr_active_links;
link->active_tag = ATA_TAG_POISON;
link->sactive = 0;
ap->qc_active = 0;
ap->nr_active_links = 0;
/* prepare & issue qc */
qc->tf = *tf;
if (cdb)
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
qc->flags |= ATA_QCFLAG_RESULT_TF;
qc->dma_dir = dma_dir;
if (dma_dir != DMA_NONE) {
unsigned int i, buflen = 0;
struct scatterlist *sg;
for_each_sg(sgl, sg, n_elem, i)
buflen += sg->length;
ata_sg_init(qc, sgl, n_elem);
qc->nbytes = buflen;
}
qc->private_data = &wait;
qc->complete_fn = ata_qc_complete_internal;
ata_qc_issue(qc);
spin_unlock_irqrestore(ap->lock, flags);
if (!timeout) {
if (ata_probe_timeout)
timeout = ata_probe_timeout * 1000;
else {
timeout = ata_internal_cmd_timeout(dev, command);
auto_timeout = 1;
}
}
if (ap->ops->error_handler)
ata_eh_release(ap);
rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
if (ap->ops->error_handler)
ata_eh_acquire(ap);
ata_sff_flush_pio_task(ap);
if (!rc) {
spin_lock_irqsave(ap->lock, flags);
/* We're racing with irq here. If we lose, the
* following test prevents us from completing the qc
* twice. If we win, the port is frozen and will be
* cleaned up by ->post_internal_cmd().
*/
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask |= AC_ERR_TIMEOUT;
if (ap->ops->error_handler)
ata_port_freeze(ap);
else
ata_qc_complete(qc);
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING,
"qc timeout (cmd 0x%x)\n", command);
}
spin_unlock_irqrestore(ap->lock, flags);
}
/* do post_internal_cmd */
if (ap->ops->post_internal_cmd)
ap->ops->post_internal_cmd(qc);
/* perform minimal error analysis */
if (qc->flags & ATA_QCFLAG_FAILED) {
if (qc->result_tf.command & (ATA_ERR | ATA_DF))
qc->err_mask |= AC_ERR_DEV;
if (!qc->err_mask)
qc->err_mask |= AC_ERR_OTHER;
if (qc->err_mask & ~AC_ERR_OTHER)
qc->err_mask &= ~AC_ERR_OTHER;
}
/* finish up */
spin_lock_irqsave(ap->lock, flags);
*tf = qc->result_tf;
err_mask = qc->err_mask;
ata_qc_free(qc);
link->active_tag = preempted_tag;
link->sactive = preempted_sactive;
ap->qc_active = preempted_qc_active;
ap->nr_active_links = preempted_nr_active_links;
spin_unlock_irqrestore(ap->lock, flags);
if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
ata_internal_cmd_timed_out(dev, command);
return err_mask;
}
/**
* ata_exec_internal - execute libata internal command
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @cdb: CDB for packet command
* @dma_dir: Data tranfer direction of the command
* @buf: Data buffer of the command
* @buflen: Length of data buffer
* @timeout: Timeout in msecs (0 for default)
*
* Wrapper around ata_exec_internal_sg() which takes simple
* buffer instead of sg list.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned ata_exec_internal(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, void *buf, unsigned int buflen,
unsigned long timeout)
{
struct scatterlist *psg = NULL, sg;
unsigned int n_elem = 0;
if (dma_dir != DMA_NONE) {
WARN_ON(!buf);
sg_init_one(&sg, buf, buflen);
psg = &sg;
n_elem++;
}
return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
timeout);
}
/**
* ata_do_simple_cmd - execute simple internal command
* @dev: Device to which the command is sent
* @cmd: Opcode to execute
*
* Execute a 'simple' command, that only consists of the opcode
* 'cmd' itself, without filling any other registers
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
{
struct ata_taskfile tf;
ata_tf_init(dev, &tf);
tf.command = cmd;
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
}
/**
* ata_pio_need_iordy - check if iordy needed
* @adev: ATA device
*
* Check if the current speed of the device requires IORDY. Used
* by various controllers for chip configuration.
*/
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
{
/* Don't set IORDY if we're preparing for reset. IORDY may
* lead to controller lock up on certain controllers if the
* port is not occupied. See bko#11703 for details.
*/
if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
return 0;
/* Controller doesn't support IORDY. Probably a pointless
* check as the caller should know this.
*/
if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
return 0;
/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
if (ata_id_is_cfa(adev->id)
&& (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
return 0;
/* PIO3 and higher it is mandatory */
if (adev->pio_mode > XFER_PIO_2)
return 1;
/* We turn it on when possible */
if (ata_id_has_iordy(adev->id))
return 1;
return 0;
}
/**
* ata_pio_mask_no_iordy - Return the non IORDY mask
* @adev: ATA device
*
* Compute the highest mode possible if we are not using iordy. Return
* -1 if no iordy mode is available.
*/
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
{
/* If we have no drive specific rule, then PIO 2 is non IORDY */
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
u16 pio = adev->id[ATA_ID_EIDE_PIO];
/* Is the speed faster than the drive allows non IORDY ? */
if (pio) {
/* This is cycle times not frequency - watch the logic! */
if (pio > 240) /* PIO2 is 240nS per cycle */
return 3 << ATA_SHIFT_PIO;
return 7 << ATA_SHIFT_PIO;
}
}
return 3 << ATA_SHIFT_PIO;
}
/**
* ata_do_dev_read_id - default ID read method
* @dev: device
* @tf: proposed taskfile
* @id: data buffer
*
* Issue the identify taskfile and hand back the buffer containing
* identify data. For some RAID controllers and for pre ATA devices
* this function is wrapped or replaced by the driver
*/
unsigned int ata_do_dev_read_id(struct ata_device *dev,
struct ata_taskfile *tf, u16 *id)
{
return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
id, sizeof(id[0]) * ATA_ID_WORDS, 0);
}
/**
* ata_dev_read_id - Read ID data from the specified device
* @dev: target device
* @p_class: pointer to class of the target device (may be changed)
* @flags: ATA_READID_* flags
* @id: buffer to read IDENTIFY data into
*
* Read ID data from the specified device. ATA_CMD_ID_ATA is
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
* for pre-ATA4 drives.
*
* FIXME: ATA_CMD_ID_ATA is optional for early drives and right
* now we abort if we hit that case.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
unsigned int flags, u16 *id)
{
struct ata_port *ap = dev->link->ap;
unsigned int class = *p_class;
struct ata_taskfile tf;
unsigned int err_mask = 0;
const char *reason;
bool is_semb = class == ATA_DEV_SEMB;
int may_fallback = 1, tried_spinup = 0;
int rc;
if (ata_msg_ctl(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
retry:
ata_tf_init(dev, &tf);
switch (class) {
case ATA_DEV_SEMB:
class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
case ATA_DEV_ATA:
tf.command = ATA_CMD_ID_ATA;
break;
case ATA_DEV_ATAPI:
tf.command = ATA_CMD_ID_ATAPI;
break;
default:
rc = -ENODEV;
reason = "unsupported class";
goto err_out;
}
tf.protocol = ATA_PROT_PIO;
/* Some devices choke if TF registers contain garbage. Make
* sure those are properly initialized.
*/
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
/* Device presence detection is unreliable on some
* controllers. Always poll IDENTIFY if available.
*/
tf.flags |= ATA_TFLAG_POLLING;
if (ap->ops->read_id)
err_mask = ap->ops->read_id(dev, &tf, id);
else
err_mask = ata_do_dev_read_id(dev, &tf, id);
if (err_mask) {
if (err_mask & AC_ERR_NODEV_HINT) {
ata_dev_printk(dev, KERN_DEBUG,
"NODEV after polling detection\n");
return -ENOENT;
}
if (is_semb) {
ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
"device w/ SEMB sig, disabled\n");
/* SEMB is not supported yet */
*p_class = ATA_DEV_SEMB_UNSUP;
return 0;
}
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
/* Device or controller might have reported
* the wrong device class. Give a shot at the
* other IDENTIFY if the current one is
* aborted by the device.
*/
if (may_fallback) {
may_fallback = 0;
if (class == ATA_DEV_ATA)
class = ATA_DEV_ATAPI;
else
class = ATA_DEV_ATA;
goto retry;
}
/* Control reaches here iff the device aborted
* both flavors of IDENTIFYs which happens
* sometimes with phantom devices.
*/
ata_dev_printk(dev, KERN_DEBUG,
"both IDENTIFYs aborted, assuming NODEV\n");
return -ENOENT;
}
rc = -EIO;
reason = "I/O error";
goto err_out;
}
if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
"class=%d may_fallback=%d tried_spinup=%d\n",
class, may_fallback, tried_spinup);
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
}
/* Falling back doesn't make sense if ID data was read
* successfully at least once.
*/
may_fallback = 0;
swap_buf_le16(id, ATA_ID_WORDS);
/* sanity check */
rc = -EINVAL;
reason = "device reports invalid type";
if (class == ATA_DEV_ATA) {
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
goto err_out;
} else {
if (ata_id_is_ata(id))
goto err_out;
}
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
tried_spinup = 1;
/*
* Drive powered-up in standby mode, and requires a specific
* SET_FEATURES spin-up subcommand before it will accept
* anything other than the original IDENTIFY command.
*/
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
if (err_mask && id[2] != 0x738c) {
rc = -EIO;
reason = "SPINUP failed";
goto err_out;
}
/*
* If the drive initially returned incomplete IDENTIFY info,
* we now must reissue the IDENTIFY command.
*/
if (id[2] == 0x37c8)
goto retry;
}
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY (optional in early ATA)
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
* anything else..
* Some drives were very specific about that exact sequence.
*
* Note that ATA4 says lba is mandatory so the second check
* should never trigger.
*/
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
err_mask = ata_dev_init_params(dev, id[3], id[6]);
if (err_mask) {
rc = -EIO;
reason = "INIT_DEV_PARAMS failed";
goto err_out;
}
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
flags &= ~ATA_READID_POSTRESET;
goto retry;
}
}
*p_class = class;
return 0;
err_out:
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
"(%s, err_mask=0x%x)\n", reason, err_mask);
return rc;
}
static int ata_do_link_spd_horkage(struct ata_device *dev)
{
struct ata_link *plink = ata_dev_phys_link(dev);
u32 target, target_limit;
if (!sata_scr_valid(plink))
return 0;
if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
target = 1;
else
return 0;
target_limit = (1 << target) - 1;
/* if already on stricter limit, no need to push further */
if (plink->sata_spd_limit <= target_limit)
return 0;
plink->sata_spd_limit = target_limit;
/* Request another EH round by returning -EAGAIN if link is
* going faster than the target speed. Forward progress is
* guaranteed by setting sata_spd_limit to target_limit above.
*/
if (plink->sata_spd > target) {
ata_dev_printk(dev, KERN_INFO,
"applying link speed limit horkage to %s\n",
sata_spd_string(target));
return -EAGAIN;
}
return 0;
}
static inline u8 ata_dev_knobble(struct ata_device *dev)
{
struct ata_port *ap = dev->link->ap;
if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
return 0;
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
}
static int ata_dev_config_ncq(struct ata_device *dev,
char *desc, size_t desc_sz)
{
struct ata_port *ap = dev->link->ap;
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
unsigned int err_mask;
char *aa_desc = "";
if (!ata_id_has_ncq(dev->id)) {
desc[0] = '\0';
return 0;
}
if (dev->horkage & ATA_HORKAGE_NONCQ) {
snprintf(desc, desc_sz, "NCQ (not used)");
return 0;
}
if (ap->flags & ATA_FLAG_NCQ) {
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
dev->flags |= ATA_DFLAG_NCQ;
}
if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
(ap->flags & ATA_FLAG_FPDMA_AA) &&
ata_id_has_fpdma_aa(dev->id)) {
err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
SATA_FPDMA_AA);
if (err_mask) {
ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
"(error_mask=0x%x)\n", err_mask);
if (err_mask != AC_ERR_DEV) {
dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
return -EIO;
}
} else
aa_desc = ", AA";
}
if (hdepth >= ddepth)
snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
else
snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
ddepth, aa_desc);
return 0;
}
/**
* ata_dev_configure - Configure the specified ATA/ATAPI device
* @dev: Target device to configure
*
* Configure @dev according to @dev->id. Generic and low-level
* driver specific fixups are also applied.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise
*/
int ata_dev_configure(struct ata_device *dev)
{
struct ata_port *ap = dev->link->ap;
struct ata_eh_context *ehc = &dev->link->eh_context;
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
const u16 *id = dev->id;
unsigned long xfer_mask;
char revbuf[7]; /* XYZ-99\0 */
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
char modelbuf[ATA_ID_PROD_LEN+1];
int rc;
if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
__func__);
return 0;
}
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
/* set horkage */
dev->horkage |= ata_dev_blacklisted(dev);
ata_force_horkage(dev);
if (dev->horkage & ATA_HORKAGE_DISABLE) {
ata_dev_printk(dev, KERN_INFO,
"unsupported device, disabling\n");
ata_dev_disable(dev);
return 0;
}
if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
dev->class == ATA_DEV_ATAPI) {
ata_dev_printk(dev, KERN_WARNING,
"WARNING: ATAPI is %s, device ignored.\n",
atapi_enabled ? "not supported with this driver"
: "disabled");
ata_dev_disable(dev);
return 0;
}
rc = ata_do_link_spd_horkage(dev);
if (rc)
return rc;
/* let ACPI work its magic */
rc = ata_acpi_on_devcfg(dev);
if (rc)
return rc;
/* massage HPA, do it early as it might change IDENTIFY data */
rc = ata_hpa_resize(dev);
if (rc)
return rc;
/* print device capabilities */
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
"85:%04x 86:%04x 87:%04x 88:%04x\n",
__func__,
id[49], id[82], id[83], id[84],
id[85], id[86], id[87], id[88]);
/* initialize to-be-configured parameters */
dev->flags &= ~ATA_DFLAG_CFG_MASK;
dev->max_sectors = 0;
dev->cdb_len = 0;
dev->n_sectors = 0;
dev->cylinders = 0;
dev->heads = 0;
dev->sectors = 0;
dev->multi_count = 0;
/*
* common ATA, ATAPI feature tests
*/
/* find max transfer mode; for printk only */
xfer_mask = ata_id_xfermask(id);
if (ata_msg_probe(ap))
ata_dump_id(id);
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
sizeof(fwrevbuf));
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
sizeof(modelbuf));
/* ATA-specific feature tests */
if (dev->class == ATA_DEV_ATA) {
if (ata_id_is_cfa(id)) {
/* CPRM may make this media unusable */
if (id[ATA_ID_CFA_KEY_MGMT] & 1)
ata_dev_printk(dev, KERN_WARNING,
"supports DRM functions and may "
"not be fully accessable.\n");
snprintf(revbuf, 7, "CFA");
} else {
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
/* Warn the user if the device has TPM extensions */
if (ata_id_has_tpm(id))
ata_dev_printk(dev, KERN_WARNING,
"supports DRM functions and may "
"not be fully accessable.\n");
}
dev->n_sectors = ata_id_n_sectors(id);
/* get current R/W Multiple count setting */
if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
unsigned int max = dev->id[47] & 0xff;
unsigned int cnt = dev->id[59] & 0xff;
/* only recognize/allow powers of two here */
if (is_power_of_2(max) && is_power_of_2(cnt))
if (cnt <= max)
dev->multi_count = cnt;
}
if (ata_id_has_lba(id)) {
const char *lba_desc;
char ncq_desc[24];
lba_desc = "LBA";
dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(id)) {
dev->flags |= ATA_DFLAG_LBA48;
lba_desc = "LBA48";
if (dev->n_sectors >= (1UL << 28) &&
ata_id_has_flush_ext(id))
dev->flags |= ATA_DFLAG_FLUSH_EXT;
}
/* config NCQ */
rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
if (rc)
return rc;
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info) {
ata_dev_printk(dev, KERN_INFO,
"%s: %s, %s, max %s\n",
revbuf, modelbuf, fwrevbuf,
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_INFO,
"%Lu sectors, multi %u: %s %s\n",
(unsigned long long)dev->n_sectors,
dev->multi_count, lba_desc, ncq_desc);
}
} else {
/* CHS */
/* Default translation */
dev->cylinders = id[1];
dev->heads = id[3];
dev->sectors = id[6];
if (ata_id_current_chs_valid(id)) {
/* Current CHS translation is valid. */
dev->cylinders = id[54];
dev->heads = id[55];
dev->sectors = id[56];
}
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info) {
ata_dev_printk(dev, KERN_INFO,
"%s: %s, %s, max %s\n",
revbuf, modelbuf, fwrevbuf,
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_INFO,
"%Lu sectors, multi %u, CHS %u/%u/%u\n",
(unsigned long long)dev->n_sectors,
dev->multi_count, dev->cylinders,
dev->heads, dev->sectors);
}
}
dev->cdb_len = 16;
}
/* ATAPI-specific feature tests */
else if (dev->class == ATA_DEV_ATAPI) {
const char *cdb_intr_string = "";
const char *atapi_an_string = "";
const char *dma_dir_string = "";
u32 sntf;
rc = atapi_cdb_len(id);
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING,
"unsupported CDB len\n");
rc = -EINVAL;
goto err_out_nosup;
}
dev->cdb_len = (unsigned int) rc;
/* Enable ATAPI AN if both the host and device have
* the support. If PMP is attached, SNTF is required
* to enable ATAPI AN to discern between PHY status
* changed notifications and ATAPI ANs.
*/
if (atapi_an &&
(ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
(!sata_pmp_attached(ap) ||
sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
unsigned int err_mask;
/* issue SET feature command to turn this on */
err_mask = ata_dev_set_feature(dev,
SETFEATURES_SATA_ENABLE, SATA_AN);
if (err_mask)
ata_dev_printk(dev, KERN_ERR,
"failed to enable ATAPI AN "
"(err_mask=0x%x)\n", err_mask);
else {
dev->flags |= ATA_DFLAG_AN;
atapi_an_string = ", ATAPI AN";
}
}
if (ata_id_cdb_intr(dev->id)) {
dev->flags |= ATA_DFLAG_CDB_INTR;
cdb_intr_string = ", CDB intr";
}
if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
dev->flags |= ATA_DFLAG_DMADIR;
dma_dir_string = ", DMADIR";
}
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info)
ata_dev_printk(dev, KERN_INFO,
"ATAPI: %s, %s, max %s%s%s%s\n",
modelbuf, fwrevbuf,
ata_mode_string(xfer_mask),
cdb_intr_string, atapi_an_string,
dma_dir_string);
}
/* determine max_sectors */
dev->max_sectors = ATA_MAX_SECTORS;
if (dev->flags & ATA_DFLAG_LBA48)
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
/* Limit PATA drive on SATA cable bridge transfers to udma5,
200 sectors */
if (ata_dev_knobble(dev)) {
if (ata_msg_drv(ap) && print_info)
ata_dev_printk(dev, KERN_INFO,
"applying bridge limits\n");
dev->udma_mask &= ATA_UDMA5;
dev->max_sectors = ATA_MAX_SECTORS;
}
if ((dev->class == ATA_DEV_ATAPI) &&
(atapi_command_packet_set(id) == TYPE_TAPE)) {
dev->max_sectors = ATA_MAX_SECTORS_TAPE;
dev->horkage |= ATA_HORKAGE_STUCK_ERR;
}
if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
dev->max_sectors);
if (ap->ops->dev_config)
ap->ops->dev_config(dev);
if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
/* Let the user know. We don't want to disallow opens for
rescue purposes, or in case the vendor is just a blithering
idiot. Do this after the dev_config call as some controllers
with buggy firmware may want to avoid reporting false device
bugs */
if (print_info) {
ata_dev_printk(dev, KERN_WARNING,
"Drive reports diagnostics failure. This may indicate a drive\n");
ata_dev_printk(dev, KERN_WARNING,
"fault or invalid emulation. Contact drive vendor for information.\n");
}
}
if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
"firmware update to be fully functional.\n");
ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
"or visit http://ata.wiki.kernel.org.\n");
}
return 0;
err_out_nosup:
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: EXIT, err\n", __func__);
return rc;
}
/**
* ata_cable_40wire - return 40 wire cable type
* @ap: port
*
* Helper method for drivers which want to hardwire 40 wire cable
* detection.
*/
int ata_cable_40wire(struct ata_port *ap)
{
return ATA_CBL_PATA40;
}
/**
* ata_cable_80wire - return 80 wire cable type
* @ap: port
*
* Helper method for drivers which want to hardwire 80 wire cable
* detection.
*/
int ata_cable_80wire(struct ata_port *ap)
{
return ATA_CBL_PATA80;
}
/**
* ata_cable_unknown - return unknown PATA cable.
* @ap: port
*
* Helper method for drivers which have no PATA cable detection.
*/
int ata_cable_unknown(struct ata_port *ap)
{
return ATA_CBL_PATA_UNK;
}
/**
* ata_cable_ignore - return ignored PATA cable.
* @ap: port
*
* Helper method for drivers which don't use cable type to limit
* transfer mode.
*/
int ata_cable_ignore(struct ata_port *ap)
{
return ATA_CBL_PATA_IGN;
}
/**
* ata_cable_sata - return SATA cable type
* @ap: port
*
* Helper method for drivers which have SATA cables
*/
int ata_cable_sata(struct ata_port *ap)
{
return ATA_CBL_SATA;
}
/**
* ata_bus_probe - Reset and probe ATA bus
* @ap: Bus to probe
*
* Master ATA bus probing function. Initiates a hardware-dependent
* bus reset, then attempts to identify any devices found on
* the bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, negative errno otherwise.
*/
int ata_bus_probe(struct ata_port *ap)
{
unsigned int classes[ATA_MAX_DEVICES];
int tries[ATA_MAX_DEVICES];
int rc;
struct ata_device *dev;
ata_for_each_dev(dev, &ap->link, ALL)
tries[dev->devno] = ATA_PROBE_MAX_TRIES;
retry:
ata_for_each_dev(dev, &ap->link, ALL) {
/* If we issue an SRST then an ATA drive (not ATAPI)
* may change configuration and be in PIO0 timing. If
* we do a hard reset (or are coming from power on)
* this is true for ATA or ATAPI. Until we've set a
* suitable controller mode we should not touch the
* bus as we may be talking too fast.
*/
dev->pio_mode = XFER_PIO_0;
/* If the controller has a pio mode setup function
* then use it to set the chipset to rights. Don't
* touch the DMA setup as that will be dealt with when
* configuring devices.
*/
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* reset and determine device classes */
ap->ops->phy_reset(ap);
ata_for_each_dev(dev, &ap->link, ALL) {
if (dev->class != ATA_DEV_UNKNOWN)
classes[dev->devno] = dev->class;
else
classes[dev->devno] = ATA_DEV_NONE;
dev->class = ATA_DEV_UNKNOWN;
}
/* read IDENTIFY page and configure devices. We have to do the identify
specific sequence bass-ackwards so that PDIAG- is released by
the slave device */
ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
if (tries[dev->devno])
dev->class = classes[dev->devno];
if (!ata_dev_enabled(dev))
continue;
rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
dev->id);
if (rc)
goto fail;
}
/* Now ask for the cable type as PDIAG- should have been released */
if (ap->ops->cable_detect)
ap->cbl = ap->ops->cable_detect(ap);
/* We may have SATA bridge glue hiding here irrespective of
* the reported cable types and sensed types. When SATA
* drives indicate we have a bridge, we don't know which end
* of the link the bridge is which is a problem.
*/
ata_for_each_dev(dev, &ap->link, ENABLED)
if (ata_id_is_sata(dev->id))
ap->cbl = ATA_CBL_SATA;
/* After the identify sequence we can now set up the devices. We do
this in the normal order so that the user doesn't get confused */
ata_for_each_dev(dev, &ap->link, ENABLED) {
ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
rc = ata_dev_configure(dev);
ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
if (rc)
goto fail;
}
/* configure transfer mode */
rc = ata_set_mode(&ap->link, &dev);
if (rc)
goto fail;
ata_for_each_dev(dev, &ap->link, ENABLED)
return 0;
return -ENODEV;
fail:
tries[dev->devno]--;
switch (rc) {
case -EINVAL:
/* eeek, something went very wrong, give up */
tries[dev->devno] = 0;
break;
case -ENODEV:
/* give it just one more chance */
tries[dev->devno] = min(tries[dev->devno], 1);
case -EIO:
if (tries[dev->devno] == 1) {
/* This is the last chance, better to slow
* down than lose it.
*/
sata_down_spd_limit(&ap->link, 0);
ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
}
}
if (!tries[dev->devno])
ata_dev_disable(dev);
goto retry;
}
/**
* sata_print_link_status - Print SATA link status
* @link: SATA link to printk link status about
*
* This function prints link speed and status of a SATA link.
*
* LOCKING:
* None.
*/
static void sata_print_link_status(struct ata_link *link)
{
u32 sstatus, scontrol, tmp;
if (sata_scr_read(link, SCR_STATUS, &sstatus))
return;
sata_scr_read(link, SCR_CONTROL, &scontrol);
if (ata_phys_link_online(link)) {
tmp = (sstatus >> 4) & 0xf;
ata_link_printk(link, KERN_INFO,
"SATA link up %s (SStatus %X SControl %X)\n",
sata_spd_string(tmp), sstatus, scontrol);
} else {
ata_link_printk(link, KERN_INFO,
"SATA link down (SStatus %X SControl %X)\n",
sstatus, scontrol);
}
}
/**
* ata_dev_pair - return other device on cable
* @adev: device
*
* Obtain the other device on the same cable, or if none is
* present NULL is returned
*/
struct ata_device *ata_dev_pair(struct ata_device *adev)
{
struct ata_link *link = adev->link;
struct ata_device *pair = &link->device[1 - adev->devno];
if (!ata_dev_enabled(pair))
return NULL;
return pair;
}
/**
* sata_down_spd_limit - adjust SATA spd limit downward
* @link: Link to adjust SATA spd limit for
* @spd_limit: Additional limit
*
* Adjust SATA spd limit of @link downward. Note that this
* function only adjusts the limit. The change must be applied
* using sata_set_spd().
*
* If @spd_limit is non-zero, the speed is limited to equal to or
* lower than @spd_limit if such speed is supported. If
* @spd_limit is slower than any supported speed, only the lowest
* supported speed is allowed.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
{
u32 sstatus, spd, mask;
int rc, bit;
if (!sata_scr_valid(link))
return -EOPNOTSUPP;
/* If SCR can be read, use it to determine the current SPD.
* If not, use cached value in link->sata_spd.
*/
rc = sata_scr_read(link, SCR_STATUS, &sstatus);
if (rc == 0 && ata_sstatus_online(sstatus))
spd = (sstatus >> 4) & 0xf;
else
spd = link->sata_spd;
mask = link->sata_spd_limit;
if (mask <= 1)
return -EINVAL;
/* unconditionally mask off the highest bit */
bit = fls(mask) - 1;
mask &= ~(1 << bit);
/* Mask off all speeds higher than or equal to the current
* one. Force 1.5Gbps if current SPD is not available.
*/
if (spd > 1)
mask &= (1 << (spd - 1)) - 1;
else
mask &= 1;
/* were we already at the bottom? */
if (!mask)
return -EINVAL;
if (spd_limit) {
if (mask & ((1 << spd_limit) - 1))
mask &= (1 << spd_limit) - 1;
else {
bit = ffs(mask) - 1;
mask = 1 << bit;
}
}
link->sata_spd_limit = mask;
ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
sata_spd_string(fls(mask)));
return 0;
}
static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
{
struct ata_link *host_link = &link->ap->link;
u32 limit, target, spd;
limit = link->sata_spd_limit;
/* Don't configure downstream link faster than upstream link.
* It doesn't speed up anything and some PMPs choke on such
* configuration.
*/
if (!ata_is_host_link(link) && host_link->sata_spd)
limit &= (1 << host_link->sata_spd) - 1;
if (limit == UINT_MAX)
target = 0;
else
target = fls(limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
return spd != target;
}
/**
* sata_set_spd_needed - is SATA spd configuration needed
* @link: Link in question
*
* Test whether the spd limit in SControl matches
* @link->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
static int sata_set_spd_needed(struct ata_link *link)
{
u32 scontrol;
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
return 1;
return __sata_set_spd_needed(link, &scontrol);
}
/**
* sata_set_spd - set SATA spd according to spd limit
* @link: Link to set SATA spd for
*
* Set SATA spd of @link according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. Negative errno if SCR registers are inaccessible.
*/
int sata_set_spd(struct ata_link *link)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
if (!__sata_set_spd_needed(link, &scontrol))
return 0;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
return 1;
}
/*
* This mode timing computation functionality is ported over from
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
*/
/*
* PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for UDMA6, which is currently supported only by Maxtor drives.
*
* For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
*/
static const struct ata_timing ata_timing[] = {
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
{ XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
{ XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
{ XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
{ XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
{ 0xFF }
};
#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
{
q->setup = EZ(t->setup * 1000, T);
q->act8b = EZ(t->act8b * 1000, T);
q->rec8b = EZ(t->rec8b * 1000, T);
q->cyc8b = EZ(t->cyc8b * 1000, T);
q->active = EZ(t->active * 1000, T);
q->recover = EZ(t->recover * 1000, T);
q->dmack_hold = EZ(t->dmack_hold * 1000, T);
q->cycle = EZ(t->cycle * 1000, T);
q->udma = EZ(t->udma * 1000, UT);
}
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
struct ata_timing *m, unsigned int what)
{
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
}
const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
{
const struct ata_timing *t = ata_timing;
while (xfer_mode > t->mode)
t++;
if (xfer_mode == t->mode)
return t;
return NULL;
}
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
struct ata_timing *t, int T, int UT)
{
const u16 *id = adev->id;
const struct ata_timing *s;
struct ata_timing p;
/*
* Find the mode.
*/
if (!(s = ata_timing_find_mode(speed)))
return -EINVAL;
memcpy(t, s, sizeof(*s));
/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MW_DMA cycle timing.
*/
if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
memset(&p, 0, sizeof(p));
if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
if (speed <= XFER_PIO_2)
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
else if ((speed <= XFER_PIO_4) ||
(speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
p.cycle = id[ATA_ID_EIDE_DMA_MIN];
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
}
/*
* Convert the timing to bus clock counts.
*/
ata_timing_quantize(t, t, T, UT);
/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
* S.M.A.R.T * and some other commands. We have to ensure that the
* DMA cycle timing is slower/equal than the fastest PIO timing.
*/
if (speed > XFER_PIO_6) {
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
}
/*
* Lengthen active & recovery time so that cycle time is correct.
*/
if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}
if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}
/* In a few cases quantisation may produce enough errors to
leave t->cycle too low for the sum of active and recovery
if so we must correct this */
if (t->active + t->recover > t->cycle)
t->cycle = t->active + t->recover;
return 0;
}
/**
* ata_timing_cycle2mode - find xfer mode for the specified cycle duration
* @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
* @cycle: cycle duration in ns
*
* Return matching xfer mode for @cycle. The returned mode is of
* the transfer type specified by @xfer_shift. If @cycle is too
* slow for @xfer_shift, 0xff is returned. If @cycle is faster
* than the fastest known mode, the fasted mode is returned.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_mode, 0xff if no match found.
*/
u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
{
u8 base_mode = 0xff, last_mode = 0xff;
const struct ata_xfer_ent *ent;
const struct ata_timing *t;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (ent->shift == xfer_shift)
base_mode = ent->base;
for (t = ata_timing_find_mode(base_mode);
t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
unsigned short this_cycle;
switch (xfer_shift) {
case ATA_SHIFT_PIO:
case ATA_SHIFT_MWDMA:
this_cycle = t->cycle;
break;
case ATA_SHIFT_UDMA:
this_cycle = t->udma;
break;
default:
return 0xff;
}
if (cycle > this_cycle)
break;
last_mode = t->mode;
}
return last_mode;
}
/**
* ata_down_xfermask_limit - adjust dev xfer masks downward
* @dev: Device to adjust xfer masks
* @sel: ATA_DNXFER_* selector
*
* Adjust xfer masks of @dev downward. Note that this function
* does not apply the change. Invoking ata_set_mode() afterwards
* will apply the limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
{
char buf[32];
unsigned long orig_mask, xfer_mask;
unsigned long pio_mask, mwdma_mask, udma_mask;
int quiet, highbit;
quiet = !!(sel & ATA_DNXFER_QUIET);
sel &= ~ATA_DNXFER_QUIET;
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
dev->mwdma_mask,
dev->udma_mask);
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
switch (sel) {
case ATA_DNXFER_PIO:
highbit = fls(pio_mask) - 1;
pio_mask &= ~(1 << highbit);
break;
case ATA_DNXFER_DMA:
if (udma_mask) {
highbit = fls(udma_mask) - 1;
udma_mask &= ~(1 << highbit);
if (!udma_mask)
return -ENOENT;
} else if (mwdma_mask) {
highbit = fls(mwdma_mask) - 1;
mwdma_mask &= ~(1 << highbit);
if (!mwdma_mask)
return -ENOENT;
}
break;
case ATA_DNXFER_40C:
udma_mask &= ATA_UDMA_MASK_40C;
break;
case ATA_DNXFER_FORCE_PIO0:
pio_mask &= 1;
case ATA_DNXFER_FORCE_PIO:
mwdma_mask = 0;
udma_mask = 0;
break;
default:
BUG();
}
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
return -ENOENT;
if (!quiet) {
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
snprintf(buf, sizeof(buf), "%s:%s",
ata_mode_string(xfer_mask),
ata_mode_string(xfer_mask & ATA_MASK_PIO));
else
snprintf(buf, sizeof(buf), "%s",
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_WARNING,
"limiting speed to %s\n", buf);
}
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
&dev->udma_mask);
return 0;
}
static int ata_dev_set_mode(struct ata_device *dev)
{
struct ata_port *ap = dev->link->ap;
struct ata_eh_context *ehc = &dev->link->eh_context;
const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
const char *dev_err_whine = "";
int ign_dev_err = 0;
unsigned int err_mask = 0;
int rc;
dev->flags &= ~ATA_DFLAG_PIO;
if (dev->xfer_shift == ATA_SHIFT_PIO)
dev->flags |= ATA_DFLAG_PIO;
if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
dev_err_whine = " (SET_XFERMODE skipped)";
else {
if (nosetxfer)
ata_dev_printk(dev, KERN_WARNING,
"NOSETXFER but PATA detected - can't "
"skip SETXFER, might malfunction\n");
err_mask = ata_dev_set_xfermode(dev);
}
if (err_mask & ~AC_ERR_DEV)
goto fail;
/* revalidate */
ehc->i.flags |= ATA_EHI_POST_SETMODE;
rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
if (rc)
return rc;
if (dev->xfer_shift == ATA_SHIFT_PIO) {
/* Old CFA may refuse this command, which is just fine */
if (ata_id_is_cfa(dev->id))
ign_dev_err = 1;
/* Catch several broken garbage emulations plus some pre
ATA devices */
if (ata_id_major_version(dev->id) == 0 &&
dev->pio_mode <= XFER_PIO_2)
ign_dev_err = 1;
/* Some very old devices and some bad newer ones fail
any kind of SET_XFERMODE request but support PIO0-2
timings and no IORDY */
if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
ign_dev_err = 1;
}
/* Early MWDMA devices do DMA but don't allow DMA mode setting.
Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
dev->dma_mode == XFER_MW_DMA_0 &&
(dev->id[63] >> 8) & 1)
ign_dev_err = 1;
/* if the device is actually configured correctly, ignore dev err */
if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
ign_dev_err = 1;
if (err_mask & AC_ERR_DEV) {
if (!ign_dev_err)
goto fail;
else
dev_err_whine = " (device error ignored)";
}
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
dev->xfer_shift, (int)dev->xfer_mode);
ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
dev_err_whine);
return 0;
fail:
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
"(err_mask=0x%x)\n", err_mask);
return -EIO;
}
/**
* ata_do_set_mode - Program timings and issue SET FEATURES - XFER
* @link: link on which timings will be programmed
* @r_failed_dev: out parameter for failed device
*
* Standard implementation of the function used to tune and set
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
* ata_dev_set_mode() fails, pointer to the failing device is
* returned in @r_failed_dev.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
{
struct ata_port *ap = link->ap;
struct ata_device *dev;
int rc = 0, used_dma = 0, found = 0;
/* step 1: calculate xfer_mask */
ata_for_each_dev(dev, link, ENABLED) {
unsigned long pio_mask, dma_mask;
unsigned int mode_mask;
mode_mask = ATA_DMA_MASK_ATA;
if (dev->class == ATA_DEV_ATAPI)
mode_mask = ATA_DMA_MASK_ATAPI;
else if (ata_id_is_cfa(dev->id))
mode_mask = ATA_DMA_MASK_CFA;
ata_dev_xfermask(dev);
ata_force_xfermask(dev);
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
if (libata_dma_mask & mode_mask)
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
else
dma_mask = 0;
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
found = 1;
if (ata_dma_enabled(dev))
used_dma = 1;
}
if (!found)
goto out;
/* step 2: always set host PIO timings */
ata_for_each_dev(dev, link, ENABLED) {
if (dev->pio_mode == 0xff) {
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
rc = -EINVAL;
goto out;
}
dev->xfer_mode = dev->pio_mode;
dev->xfer_shift = ATA_SHIFT_PIO;
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* step 3: set host DMA timings */
ata_for_each_dev(dev, link, ENABLED) {
if (!ata_dma_enabled(dev))
continue;
dev->xfer_mode = dev->dma_mode;
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
if (ap->ops->set_dmamode)
ap->ops->set_dmamode(ap, dev);
}
/* step 4: update devices' xfer mode */
ata_for_each_dev(dev, link, ENABLED) {
rc = ata_dev_set_mode(dev);
if (rc)
goto out;
}
/* Record simplex status. If we selected DMA then the other
* host channels are not permitted to do so.
*/
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
ap->host->simplex_claimed = ap;
out:
if (rc)
*r_failed_dev = dev;
return rc;
}
/**
* ata_wait_ready - wait for link to become ready
* @link: link to be waited on
* @deadline: deadline jiffies for the operation
* @check_ready: callback to check link readiness
*
* Wait for @link to become ready. @check_ready should return
* positive number if @link is ready, 0 if it isn't, -ENODEV if
* link doesn't seem to be occupied, other errno for other error
* conditions.
*
* Transient -ENODEV conditions are allowed for
* ATA_TMOUT_FF_WAIT.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 if @linke is ready before @deadline; otherwise, -errno.
*/
int ata_wait_ready(struct ata_link *link, unsigned long deadline,
int (*check_ready)(struct ata_link *link))
{
unsigned long start = jiffies;
unsigned long nodev_deadline;
int warned = 0;
/* choose which 0xff timeout to use, read comment in libata.h */
if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
else
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
/* Slave readiness can't be tested separately from master. On
* M/S emulation configuration, this function should be called
* only on the master and it will handle both master and slave.
*/
WARN_ON(link == link->ap->slave_link);
if (time_after(nodev_deadline, deadline))
nodev_deadline = deadline;
while (1) {
unsigned long now = jiffies;
int ready, tmp;
ready = tmp = check_ready(link);
if (ready > 0)
return 0;
/*
* -ENODEV could be transient. Ignore -ENODEV if link
* is online. Also, some SATA devices take a long
* time to clear 0xff after reset. Wait for
* ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
* offline.
*
* Note that some PATA controllers (pata_ali) explode
* if status register is read more than once when
* there's no device attached.
*/
if (ready == -ENODEV) {
if (ata_link_online(link))
ready = 0;
else if ((link->ap->flags & ATA_FLAG_SATA) &&
!ata_link_offline(link) &&
time_before(now, nodev_deadline))
ready = 0;
}
if (ready)
return ready;
if (time_after(now, deadline))
return -EBUSY;
if (!warned && time_after(now, start + 5 * HZ) &&
(deadline - now > 3 * HZ)) {
ata_link_printk(link, KERN_WARNING,
"link is slow to respond, please be patient "
"(ready=%d)\n", tmp);
warned = 1;
}
ata_msleep(link->ap, 50);
}
}
/**
* ata_wait_after_reset - wait for link to become ready after reset
* @link: link to be waited on
* @deadline: deadline jiffies for the operation
* @check_ready: callback to check link readiness
*
* Wait for @link to become ready after reset.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 if @linke is ready before @deadline; otherwise, -errno.
*/
int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
int (*check_ready)(struct ata_link *link))
{
ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
return ata_wait_ready(link, deadline, check_ready);
}
/**
* sata_link_debounce - debounce SATA phy status
* @link: ATA link to debounce SATA phy status for
* @params: timing parameters { interval, duratinon, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Make sure SStatus of @link reaches stable state, determined by
* holding the same value where DET is not 1 for @duration polled
* every @interval, before @timeout. Timeout constraints the
* beginning of the stable state. Because DET gets stuck at 1 on
* some controllers after hot unplugging, this functions waits
* until timeout then returns 0 if DET is stable at 1.
*
* @timeout is further limited by @deadline. The sooner of the
* two is used.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_debounce(struct ata_link *link, const unsigned long *params,
unsigned long deadline)
{
unsigned long interval = params[0];
unsigned long duration = params[1];
unsigned long last_jiffies, t;
u32 last, cur;
int rc;
t = ata_deadline(jiffies, params[2]);
if (time_before(t, deadline))
deadline = t;
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
last = cur;
last_jiffies = jiffies;
while (1) {
ata_msleep(link->ap, interval);
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
/* DET stable? */
if (cur == last) {
if (cur == 1 && time_before(jiffies, deadline))
continue;
if (time_after(jiffies,
ata_deadline(last_jiffies, duration)))
return 0;
continue;
}
/* unstable, start over */
last = cur;
last_jiffies = jiffies;
/* Check deadline. If debouncing failed, return
* -EPIPE to tell upper layer to lower link speed.
*/
if (time_after(jiffies, deadline))
return -EPIPE;
}
}
/**
* sata_link_resume - resume SATA link
* @link: ATA link to resume SATA
* @params: timing parameters { interval, duratinon, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Resume SATA phy @link and debounce it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_resume(struct ata_link *link, const unsigned long *params,
unsigned long deadline)
{
int tries = ATA_LINK_RESUME_TRIES;
u32 scontrol, serror;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
/*
* Writes to SControl sometimes get ignored under certain
* controllers (ata_piix SIDPR). Make sure DET actually is
* cleared.
*/
do {
scontrol = (scontrol & 0x0f0) | 0x300;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
/*
* Some PHYs react badly if SStatus is pounded
* immediately after resuming. Delay 200ms before
* debouncing.
*/
ata_msleep(link->ap, 200);
/* is SControl restored correctly? */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
} while ((scontrol & 0xf0f) != 0x300 && --tries);
if ((scontrol & 0xf0f) != 0x300) {
ata_link_printk(link, KERN_ERR,
"failed to resume link (SControl %X)\n",
scontrol);
return 0;
}
if (tries < ATA_LINK_RESUME_TRIES)
ata_link_printk(link, KERN_WARNING,
"link resume succeeded after %d retries\n",
ATA_LINK_RESUME_TRIES - tries);
if ((rc = sata_link_debounce(link, params, deadline)))
return rc;
/* clear SError, some PHYs require this even for SRST to work */
if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
rc = sata_scr_write(link, SCR_ERROR, serror);
return rc != -EINVAL ? rc : 0;
}
/**
* sata_link_scr_lpm - manipulate SControl IPM and SPM fields
* @link: ATA link to manipulate SControl for
* @policy: LPM policy to configure
* @spm_wakeup: initiate LPM transition to active state
*
* Manipulate the IPM field of the SControl register of @link
* according to @policy. If @policy is ATA_LPM_MAX_POWER and
* @spm_wakeup is %true, the SPM field is manipulated to wake up
* the link. This function also clears PHYRDY_CHG before
* returning.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 on succes, -errno otherwise.
*/
int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
bool spm_wakeup)
{
struct ata_eh_context *ehc = &link->eh_context;
bool woken_up = false;
u32 scontrol;
int rc;
rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
if (rc)
return rc;
switch (policy) {
case ATA_LPM_MAX_POWER:
/* disable all LPM transitions */
scontrol |= (0x3 << 8);
/* initiate transition to active state */
if (spm_wakeup) {
scontrol |= (0x4 << 12);
woken_up = true;
}
break;
case ATA_LPM_MED_POWER:
/* allow LPM to PARTIAL */
scontrol &= ~(0x1 << 8);
scontrol |= (0x2 << 8);
break;
case ATA_LPM_MIN_POWER:
/* no restrictions on LPM transitions */
scontrol &= ~(0x3 << 8);
break;
default:
WARN_ON(1);
}
rc = sata_scr_write(link, SCR_CONTROL, scontrol);
if (rc)
return rc;
/* give the link time to transit out of LPM state */
if (woken_up)
msleep(10);
/* clear PHYRDY_CHG from SError */
ehc->i.serror &= ~SERR_PHYRDY_CHG;
return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
}
/**
* ata_std_prereset - prepare for reset
* @link: ATA link to be reset
* @deadline: deadline jiffies for the operation
*
* @link is about to be reset. Initialize it. Failure from
* prereset makes libata abort whole reset sequence and give up
* that port, so prereset should be best-effort. It does its
* best to prepare for reset sequence but if things go wrong, it
* should just whine, not fail.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_prereset(struct ata_link *link, unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
const unsigned long *timing = sata_ehc_deb_timing(ehc);
int rc;
/* if we're about to do hardreset, nothing more to do */
if (ehc->i.action & ATA_EH_HARDRESET)
return 0;
/* if SATA, resume link */
if (ap->flags & ATA_FLAG_SATA) {
rc = sata_link_resume(link, timing, deadline);
/* whine about phy resume failure but proceed */
if (rc && rc != -EOPNOTSUPP)
ata_link_printk(link, KERN_WARNING, "failed to resume "
"link for reset (errno=%d)\n", rc);
}
/* no point in trying softreset on offline link */
if (ata_phys_link_offline(link))
ehc->i.action &= ~ATA_EH_SOFTRESET;
return 0;
}
/**
* sata_link_hardreset - reset link via SATA phy reset
* @link: link to reset
* @timing: timing parameters { interval, duratinon, timeout } in msec
* @deadline: deadline jiffies for the operation
* @online: optional out parameter indicating link onlineness
* @check_ready: optional callback to check link readiness
*
* SATA phy-reset @link using DET bits of SControl register.
* After hardreset, link readiness is waited upon using
* ata_wait_ready() if @check_ready is specified. LLDs are
* allowed to not specify @check_ready and wait itself after this
* function returns. Device classification is LLD's
* responsibility.
*
* *@online is set to one iff reset succeeded and @link is online
* after reset.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
unsigned long deadline,
bool *online, int (*check_ready)(struct ata_link *))
{
u32 scontrol;
int rc;
DPRINTK("ENTER\n");
if (online)
*online = false;
if (sata_set_spd_needed(link)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x304;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
goto out;
sata_set_spd(link);
}
/* issue phy wake/reset */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x301;
if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
goto out;
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
ata_msleep(link->ap, 1);
/* bring link back */
rc = sata_link_resume(link, timing, deadline);
if (rc)
goto out;
/* if link is offline nothing more to do */
if (ata_phys_link_offline(link))
goto out;
/* Link is online. From this point, -ENODEV too is an error. */
if (online)
*online = true;
if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
/* If PMP is supported, we have to do follow-up SRST.
* Some PMPs don't send D2H Reg FIS after hardreset if
* the first port is empty. Wait only for
* ATA_TMOUT_PMP_SRST_WAIT.
*/
if (check_ready) {
unsigned long pmp_deadline;
pmp_deadline = ata_deadline(jiffies,
ATA_TMOUT_PMP_SRST_WAIT);
if (time_after(pmp_deadline, deadline))
pmp_deadline = deadline;
ata_wait_ready(link, pmp_deadline, check_ready);
}
rc = -EAGAIN;
goto out;
}
rc = 0;
if (check_ready)
rc = ata_wait_ready(link, deadline, check_ready);
out:
if (rc && rc != -EAGAIN) {
/* online is set iff link is online && reset succeeded */
if (online)
*online = false;
ata_link_printk(link, KERN_ERR,
"COMRESET failed (errno=%d)\n", rc);
}
DPRINTK("EXIT, rc=%d\n", rc);
return rc;
}
/**
* sata_std_hardreset - COMRESET w/o waiting or classification
* @link: link to reset
* @class: resulting class of attached device
* @deadline: deadline jiffies for the operation
*
* Standard SATA COMRESET w/o waiting or classification.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 if link offline, -EAGAIN if link online, -errno on errors.
*/
int sata_std_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
bool online;
int rc;
/* do hardreset */
rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
return online ? -EAGAIN : rc;
}
/**
* ata_std_postreset - standard postreset callback
* @link: the target ata_link
* @classes: classes of attached devices
*
* This function is invoked after a successful reset. Note that
* the device might have been reset more than once using
* different reset methods before postreset is invoked.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_std_postreset(struct ata_link *link, unsigned int *classes)
{
u32 serror;
DPRINTK("ENTER\n");
/* reset complete, clear SError */
if (!sata_scr_read(link, SCR_ERROR, &serror))
sata_scr_write(link, SCR_ERROR, serror);
/* print link status */
sata_print_link_status(link);
DPRINTK("EXIT\n");
}
/**
* ata_dev_same_device - Determine whether new ID matches configured device
* @dev: device to compare against
* @new_class: class of the new device
* @new_id: IDENTIFY page of the new device
*
* Compare @new_class and @new_id against @dev and determine
* whether @dev is the device indicated by @new_class and
* @new_id.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
*/
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
const u16 *new_id)
{
const u16 *old_id = dev->id;
unsigned char model[2][ATA_ID_PROD_LEN + 1];
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
if (dev->class != new_class) {
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
dev->class, new_class);
return 0;
}
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
if (strcmp(model[0], model[1])) {
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
"'%s' != '%s'\n", model[0], model[1]);
return 0;
}
if (strcmp(serial[0], serial[1])) {
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
"'%s' != '%s'\n", serial[0], serial[1]);
return 0;
}
return 1;
}
/**
* ata_dev_reread_id - Re-read IDENTIFY data
* @dev: target ATA device
* @readid_flags: read ID flags
*
* Re-read IDENTIFY page and make sure @dev is still attached to
* the port.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
{
unsigned int class = dev->class;
u16 *id = (void *)dev->link->ap->sector_buf;
int rc;
/* read ID data */
rc = ata_dev_read_id(dev, &class, readid_flags, id);
if (rc)
return rc;
/* is the device still there? */
if (!ata_dev_same_device(dev, class, id))
return -ENODEV;
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
return 0;
}
/**
* ata_dev_revalidate - Revalidate ATA device
* @dev: device to revalidate
* @new_class: new class code
* @readid_flags: read ID flags
*
* Re-read IDENTIFY page, make sure @dev is still attached to the
* port and reconfigure it according to the new IDENTIFY page.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
unsigned int readid_flags)
{
u64 n_sectors = dev->n_sectors;
u64 n_native_sectors = dev->n_native_sectors;
int rc;
if (!ata_dev_enabled(dev))
return -ENODEV;
/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
if (ata_class_enabled(new_class) &&
new_class != ATA_DEV_ATA &&
new_class != ATA_DEV_ATAPI &&
new_class != ATA_DEV_SEMB) {
ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
dev->class, new_class);
rc = -ENODEV;
goto fail;
}
/* re-read ID */
rc = ata_dev_reread_id(dev, readid_flags);
if (rc)
goto fail;
/* configure device according to the new ID */
rc = ata_dev_configure(dev);
if (rc)
goto fail;
/* verify n_sectors hasn't changed */
if (dev->class != ATA_DEV_ATA || !n_sectors ||
dev->n_sectors == n_sectors)
return 0;
/* n_sectors has changed */
ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
(unsigned long long)n_sectors,
(unsigned long long)dev->n_sectors);
/*
* Something could have caused HPA to be unlocked
* involuntarily. If n_native_sectors hasn't changed and the
* new size matches it, keep the device.
*/
if (dev->n_native_sectors == n_native_sectors &&
dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
ata_dev_printk(dev, KERN_WARNING,
"new n_sectors matches native, probably "
"late HPA unlock, n_sectors updated\n");
/* use the larger n_sectors */
return 0;
}
/*
* Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
* unlocking HPA in those cases.
*
* https://bugzilla.kernel.org/show_bug.cgi?id=15396
*/
if (dev->n_native_sectors == n_native_sectors &&
dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
!(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
ata_dev_printk(dev, KERN_WARNING,
"old n_sectors matches native, probably "
"late HPA lock, will try to unlock HPA\n");
/* try unlocking HPA */
dev->flags |= ATA_DFLAG_UNLOCK_HPA;
rc = -EIO;
} else
rc = -ENODEV;
/* restore original n_[native_]sectors and fail */
dev->n_native_sectors = n_native_sectors;
dev->n_sectors = n_sectors;
fail:
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
return rc;
}
struct ata_blacklist_entry {
const char *model_num;
const char *model_rev;
unsigned long horkage;
};
static const struct ata_blacklist_entry ata_device_blacklist [] = {
/* Devices with DMA related problems under Linux */
{ "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-84", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
{ "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
{ "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
{ "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
{ "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
{ "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
/* Odd clown on sil3726/4726 PMPs */
{ "Config Disk", NULL, ATA_HORKAGE_DISABLE },
/* Weird ATAPI devices */
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
{ "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
/* Devices we expect to fail diagnostics */
/* Devices where NCQ should be avoided */
/* NCQ is slow */
{ "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
{ "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
/* http://thread.gmane.org/gmane.linux.ide/14907 */
{ "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
/* NCQ is broken */
{ "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
{ "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
{ "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
{ "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
{ "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
/* Seagate NCQ + FLUSH CACHE firmware bug */
{ "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
/* Blacklist entries taken from Silicon Image 3124/3132
Windows driver .inf file - also several Linux problem reports */
{ "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
{ "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
{ "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
{ "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
/* devices which puke on READ_NATIVE_MAX */
{ "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
{ "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
/* this one allows HPA unlocking but fails IOs on the area */
{ "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
/* Devices which report 1 sector over size HPA */
{ "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
{ "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
{ "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
/* Devices which get the IVB wrong */
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
/* Maybe we should just blacklist TSSTcorp... */
{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
/* Devices that do not need bridging limits applied */
{ "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
/* Devices which aren't very happy with higher link speeds */
{ "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
/*
* Devices which choke on SETXFER. Applies only if both the
* device and controller are SATA.
*/
{ "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
/* End Marker */
{ }
};
/**
* glob_match - match a text string against a glob-style pattern
* @text: the string to be examined
* @pattern: the glob-style pattern to be matched against
*
* Either/both of text and pattern can be empty strings.
*
* Match text against a glob-style pattern, with wildcards and simple sets:
*
* ? matches any single character.
* * matches any run of characters.
* [xyz] matches a single character from the set: x, y, or z.
* [a-d] matches a single character from the range: a, b, c, or d.
* [a-d0-9] matches a single character from either range.
*
* The special characters ?, [, -, or *, can be matched using a set, eg. [*]
* Behaviour with malformed patterns is undefined, though generally reasonable.
*
* Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
*
* This function uses one level of recursion per '*' in pattern.
* Since it calls _nothing_ else, and has _no_ explicit local variables,
* this will not cause stack problems for any reasonable use here.
*
* RETURNS:
* 0 on match, 1 otherwise.
*/
static int glob_match (const char *text, const char *pattern)
{
do {
/* Match single character or a '?' wildcard */
if (*text == *pattern || *pattern == '?') {
if (!*pattern++)
return 0; /* End of both strings: match */
} else {
/* Match single char against a '[' bracketed ']' pattern set */
if (!*text || *pattern != '[')
break; /* Not a pattern set */
while (*++pattern && *pattern != ']' && *text != *pattern) {
if (*pattern == '-' && *(pattern - 1) != '[')
if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
++pattern;
break;
}
}
if (!*pattern || *pattern == ']')
return 1; /* No match */
while (*pattern && *pattern++ != ']');
}
} while (*++text && *pattern);
/* Match any run of chars against a '*' wildcard */
if (*pattern == '*') {
if (!*++pattern)
return 0; /* Match: avoid recursion at end of pattern */
/* Loop to handle additional pattern chars after the wildcard */
while (*text) {
if (glob_match(text, pattern) == 0)
return 0; /* Remainder matched */
++text; /* Absorb (match) this char and try again */
}
}
if (!*text && !*pattern)
return 0; /* End of both strings: match */
return 1; /* No match */
}
static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
{
unsigned char model_num[ATA_ID_PROD_LEN + 1];
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
const struct ata_blacklist_entry *ad = ata_device_blacklist;
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
while (ad->model_num) {
if (!glob_match(model_num, ad->model_num)) {
if (ad->model_rev == NULL)
return ad->horkage;
if (!glob_match(model_rev, ad->model_rev))
return ad->horkage;
}
ad++;
}
return 0;
}
static int ata_dma_blacklisted(const struct ata_device *dev)
{
/* We don't support polling DMA.
* DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
* if the LLDD handles only interrupts in the HSM_ST_LAST state.
*/
if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
(dev->flags & ATA_DFLAG_CDB_INTR))
return 1;
return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
}
/**
* ata_is_40wire - check drive side detection
* @dev: device
*
* Perform drive side detection decoding, allowing for device vendors
* who can't follow the documentation.
*/
static int ata_is_40wire(struct ata_device *dev)
{
if (dev->horkage & ATA_HORKAGE_IVB)
return ata_drive_40wire_relaxed(dev->id);
return ata_drive_40wire(dev->id);
}
/**
* cable_is_40wire - 40/80/SATA decider
* @ap: port to consider
*
* This function encapsulates the policy for speed management
* in one place. At the moment we don't cache the result but
* there is a good case for setting ap->cbl to the result when
* we are called with unknown cables (and figuring out if it
* impacts hotplug at all).
*
* Return 1 if the cable appears to be 40 wire.
*/
static int cable_is_40wire(struct ata_port *ap)
{
struct ata_link *link;
struct ata_device *dev;
/* If the controller thinks we are 40 wire, we are. */
if (ap->cbl == ATA_CBL_PATA40)
return 1;
/* If the controller thinks we are 80 wire, we are. */
if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
return 0;
/* If the system is known to be 40 wire short cable (eg
* laptop), then we allow 80 wire modes even if the drive
* isn't sure.
*/
if (ap->cbl == ATA_CBL_PATA40_SHORT)
return 0;
/* If the controller doesn't know, we scan.
*
* Note: We look for all 40 wire detects at this point. Any
* 80 wire detect is taken to be 80 wire cable because
* - in many setups only the one drive (slave if present) will
* give a valid detect
* - if you have a non detect capable drive you don't want it
* to colour the choice
*/
ata_for_each_link(link, ap, EDGE) {
ata_for_each_dev(dev, link, ENABLED) {
if (!ata_is_40wire(dev))
return 0;
}
}
return 1;
}
/**
* ata_dev_xfermask - Compute supported xfermask of the given device
* @dev: Device to compute xfermask for
*
* Compute supported xfermask of @dev and store it in
* dev->*_mask. This function is responsible for applying all
* known limits including host controller limits, device
* blacklist, etc...
*
* LOCKING:
* None.
*/
static void ata_dev_xfermask(struct ata_device *dev)
{
struct ata_link *link = dev->link;
struct ata_port *ap = link->ap;
struct ata_host *host = ap->host;
unsigned long xfer_mask;
/* controller modes available */
xfer_mask = ata_pack_xfermask(ap->pio_mask,
ap->mwdma_mask, ap->udma_mask);
/* drive modes available */
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
dev->mwdma_mask, dev->udma_mask);
xfer_mask &= ata_id_xfermask(dev->id);
/*
* CFA Advanced TrueIDE timings are not allowed on a shared
* cable
*/
if (ata_dev_pair(dev)) {
/* No PIO5 or PIO6 */
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
/* No MWDMA3 or MWDMA 4 */
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
}
if (ata_dma_blacklisted(dev)) {
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
ata_dev_printk(dev, KERN_WARNING,
"device is on DMA blacklist, disabling DMA\n");
}
if ((host->flags & ATA_HOST_SIMPLEX) &&
host->simplex_claimed && host->simplex_claimed != ap) {
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
"other device, disabling DMA\n");
}
if (ap->flags & ATA_FLAG_NO_IORDY)
xfer_mask &= ata_pio_mask_no_iordy(dev);
if (ap->ops->mode_filter)
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
/* Apply cable rule here. Don't apply it early because when
* we handle hot plug the cable type can itself change.
* Check this last so that we know if the transfer rate was
* solely limited by the cable.
* Unknown or 80 wire cables reported host side are checked
* drive side as well. Cases where we know a 40wire cable
* is used safely for 80 are not checked here.
*/
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
/* UDMA/44 or higher would be available */
if (cable_is_40wire(ap)) {
ata_dev_printk(dev, KERN_WARNING,
"limited to UDMA/33 due to 40-wire cable\n");
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
}
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
&dev->mwdma_mask, &dev->udma_mask);
}
/**
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
* @dev: Device to which command will be sent
*
* Issue SET FEATURES - XFER MODE command to device @dev
* on port @ap.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* set up set-features taskfile */
DPRINTK("set features - xfer mode\n");
/* Some controllers and ATAPI devices show flaky interrupt
* behavior after setting xfer mode. Use polling instead.
*/
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = SETFEATURES_XFER;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
tf.protocol = ATA_PROT_NODATA;
/* If we are using IORDY we must send the mode setting command */
if (ata_pio_need_iordy(dev))
tf.nsect = dev->xfer_mode;
/* If the device has IORDY and the controller does not - turn it off */
else if (ata_id_has_iordy(dev->id))
tf.nsect = 0x01;
else /* In the ancient relic department - skip all of this */
return 0;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
* @dev: Device to which command will be sent
* @enable: Whether to enable or disable the feature
* @feature: The sector count represents the feature to set
*
* Issue SET FEATURES - SATA FEATURES command to device @dev
* on port @ap with sector count
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* set up set-features taskfile */
DPRINTK("set features - SATA features\n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = enable;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = feature;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_dev_init_params - Issue INIT DEV PARAMS command
* @dev: Device to which command will be sent
* @heads: Number of heads (taskfile parameter)
* @sectors: Number of sectors (taskfile parameter)
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* Number of sectors per track 1-255. Number of heads 1-16 */
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return AC_ERR_INVALID;
/* set up init dev params taskfile */
DPRINTK("init dev params \n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
/* A clean abort indicates an original or just out of spec drive
and we should continue as we issue the setup based on the
drive reported working geometry */
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
err_mask = 0;
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_sg_clean - Unmap DMA memory associated with command
* @qc: Command containing DMA memory to be released
*
* Unmap all mapped DMA memory associated with this command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_sg_clean(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->sg;
int dir = qc->dma_dir;
WARN_ON_ONCE(sg == NULL);
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
if (qc->n_elem)
dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->sg = NULL;
}
/**
* atapi_check_dma - Check whether ATAPI DMA can be supported
* @qc: Metadata associated with taskfile to check
*
* Allow low-level driver to filter ATA PACKET commands, returning
* a status indicating whether or not it is OK to use DMA for the
* supplied PACKET command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS: 0 when ATAPI DMA can be used
* nonzero otherwise
*/
int atapi_check_dma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
* few ATAPI devices choke on such DMA requests.
*/
if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
unlikely(qc->nbytes & 15))
return 1;
if (ap->ops->check_atapi_dma)
return ap->ops->check_atapi_dma(qc);
return 0;
}
/**
* ata_std_qc_defer - Check whether a qc needs to be deferred
* @qc: ATA command in question
*
* Non-NCQ commands cannot run with any other command, NCQ or
* not. As upper layer only knows the queue depth, we are
* responsible for maintaining exclusion. This function checks
* whether a new command @qc can be issued.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* ATA_DEFER_* if deferring is needed, 0 otherwise.
*/
int ata_std_qc_defer(struct ata_queued_cmd *qc)
{
struct ata_link *link = qc->dev->link;
if (qc->tf.protocol == ATA_PROT_NCQ) {
if (!ata_tag_valid(link->active_tag))
return 0;
} else {
if (!ata_tag_valid(link->active_tag) && !link->sactive)
return 0;
}
return ATA_DEFER_LINK;
}
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
/**
* ata_sg_init - Associate command with scatter-gather table.
* @qc: Command to be associated
* @sg: Scatter-gather table.
* @n_elem: Number of elements in s/g table.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a scatter-gather table @sg, containing @n_elem
* elements.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
unsigned int n_elem)
{
qc->sg = sg;
qc->n_elem = n_elem;
qc->cursg = qc->sg;
}
/**
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
* @qc: Command with scatter-gather table to be mapped.
*
* DMA-map the scatter-gather table associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, negative on error.
*
*/
static int ata_sg_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int n_elem;
VPRINTK("ENTER, ata%u\n", ap->print_id);
n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
if (n_elem < 1)
return -1;
DPRINTK("%d sg elements mapped\n", n_elem);
qc->orig_n_elem = qc->n_elem;
qc->n_elem = n_elem;
qc->flags |= ATA_QCFLAG_DMAMAP;
return 0;
}
/**
* swap_buf_le16 - swap halves of 16-bit words in place
* @buf: Buffer to swap
* @buf_words: Number of 16-bit words in buffer.
*
* Swap halves of 16-bit words if needed to convert from
* little-endian byte order to native cpu byte order, or
* vice-versa.
*
* LOCKING:
* Inherited from caller.
*/
void swap_buf_le16(u16 *buf, unsigned int buf_words)
{
#ifdef __BIG_ENDIAN
unsigned int i;
for (i = 0; i < buf_words; i++)
buf[i] = le16_to_cpu(buf[i]);
#endif /* __BIG_ENDIAN */
}
/**
* ata_qc_new - Request an available ATA command, for queueing
* @ap: target port
*
* LOCKING:
* None.
*/
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
{
struct ata_queued_cmd *qc = NULL;
unsigned int i;
/* no command while frozen */
if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
return NULL;
/* the last tag is reserved for internal command. */
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
if (!test_and_set_bit(i, &ap->qc_allocated)) {
qc = __ata_qc_from_tag(ap, i);
break;
}
if (qc)
qc->tag = i;
return qc;
}
/**
* ata_qc_new_init - Request an available ATA command, and initialize it
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
{
struct ata_port *ap = dev->link->ap;
struct ata_queued_cmd *qc;
qc = ata_qc_new(ap);
if (qc) {
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
}
return qc;
}
/**
* ata_qc_free - free unused ata_queued_cmd
* @qc: Command to complete
*
* Designed to free unused ata_queued_cmd object
* in case something prevents using it.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_free(struct ata_queued_cmd *qc)
{
struct ata_port *ap;
unsigned int tag;
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
ap = qc->ap;
qc->flags = 0;
tag = qc->tag;
if (likely(ata_tag_valid(tag))) {
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qc_allocated);
}
}
void __ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap;
struct ata_link *link;
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
ap = qc->ap;
link = qc->dev->link;
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
ata_sg_clean(qc);
/* command should be marked inactive atomically with qc completion */
if (qc->tf.protocol == ATA_PROT_NCQ) {
link->sactive &= ~(1 << qc->tag);
if (!link->sactive)
ap->nr_active_links--;
} else {
link->active_tag = ATA_TAG_POISON;
ap->nr_active_links--;
}
/* clear exclusive status */
if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
ap->excl_link == link))
ap->excl_link = NULL;
/* atapi: mark qc as inactive to prevent the interrupt handler
* from completing the command twice later, before the error handler
* is called. (when rc != 0 and atapi request sense is needed)
*/
qc->flags &= ~ATA_QCFLAG_ACTIVE;
ap->qc_active &= ~(1 << qc->tag);
/* call completion callback */
qc->complete_fn(qc);
}
static void fill_result_tf(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
qc->result_tf.flags = qc->tf.flags;
ap->ops->qc_fill_rtf(qc);
}
static void ata_verify_xfer(struct ata_queued_cmd *qc)
{
struct ata_device *dev = qc->dev;
if (ata_is_nodata(qc->tf.protocol))
return;
if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
return;
dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
}
/**
* ata_qc_complete - Complete an active ATA command
* @qc: Command to complete
*
* Indicate to the mid and upper layers that an ATA command has
* completed, with either an ok or not-ok status.
*
* Refrain from calling this function multiple times when
* successfully completing multiple NCQ commands.
* ata_qc_complete_multiple() should be used instead, which will
* properly update IRQ expect state.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* XXX: New EH and old EH use different mechanisms to
* synchronize EH with regular execution path.
*
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
* Normal execution path is responsible for not accessing a
* failed qc. libata core enforces the rule by returning NULL
* from ata_qc_from_tag() for failed qcs.
*
* Old EH depends on ata_qc_complete() nullifying completion
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
* not synchronize with interrupt handler. Only PIO task is
* taken care of.
*/
if (ap->ops->error_handler) {
struct ata_device *dev = qc->dev;
struct ata_eh_info *ehi = &dev->link->eh_info;
if (unlikely(qc->err_mask))
qc->flags |= ATA_QCFLAG_FAILED;
/*
* Finish internal commands without any further processing
* and always with the result TF filled.
*/
if (unlikely(ata_tag_internal(qc->tag))) {
fill_result_tf(qc);
__ata_qc_complete(qc);
return;
}
/*
* Non-internal qc has failed. Fill the result TF and
* summon EH.
*/
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
fill_result_tf(qc);
ata_qc_schedule_eh(qc);
return;
}
WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
/* read result TF if requested */
if (qc->flags & ATA_QCFLAG_RESULT_TF)
fill_result_tf(qc);
/* Some commands need post-processing after successful
* completion.
*/
switch (qc->tf.command) {
case ATA_CMD_SET_FEATURES:
if (qc->tf.feature != SETFEATURES_WC_ON &&
qc->tf.feature != SETFEATURES_WC_OFF)
break;
/* fall through */
case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
case ATA_CMD_SET_MULTI: /* multi_count changed */
/* revalidate device */
ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
ata_port_schedule_eh(ap);
break;
case ATA_CMD_SLEEP:
dev->flags |= ATA_DFLAG_SLEEPING;
break;
}
if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
ata_verify_xfer(qc);
__ata_qc_complete(qc);
} else {
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
return;
/* read result TF if failed or requested */
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
fill_result_tf(qc);
__ata_qc_complete(qc);
}
}
/**
* ata_qc_complete_multiple - Complete multiple qcs successfully
* @ap: port in question
* @qc_active: new qc_active mask
*
* Complete in-flight commands. This functions is meant to be
* called from low-level driver's interrupt routine to complete
* requests normally. ap->qc_active and @qc_active is compared
* and commands are completed accordingly.
*
* Always use this function when completing multiple NCQ commands
* from IRQ handlers instead of calling ata_qc_complete()
* multiple times to keep IRQ expect status properly in sync.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of completed commands on success, -errno otherwise.
*/
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
{
int nr_done = 0;
u32 done_mask;
done_mask = ap->qc_active ^ qc_active;
if (unlikely(done_mask & qc_active)) {
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
"(%08x->%08x)\n", ap->qc_active, qc_active);
return -EINVAL;
}
while (done_mask) {
struct ata_queued_cmd *qc;
unsigned int tag = __ffs(done_mask);
qc = ata_qc_from_tag(ap, tag);
if (qc) {
ata_qc_complete(qc);
nr_done++;
}
done_mask &= ~(1 << tag);
}
return nr_done;
}
/**
* ata_qc_issue - issue taskfile to device
* @qc: command to issue to device
*
* Prepare an ATA command to submission to device.
* This includes mapping the data into a DMA-able
* area, filling in the S/G table, and finally
* writing the taskfile to hardware, starting the command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_link *link = qc->dev->link;
u8 prot = qc->tf.protocol;
/* Make sure only one non-NCQ command is outstanding. The
* check is skipped for old EH because it reuses active qc to
* request ATAPI sense.
*/
WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
if (ata_is_ncq(prot)) {
WARN_ON_ONCE(link->sactive & (1 << qc->tag));
if (!link->sactive)
ap->nr_active_links++;
link->sactive |= 1 << qc->tag;
} else {
WARN_ON_ONCE(link->sactive);
ap->nr_active_links++;
link->active_tag = qc->tag;
}
qc->flags |= ATA_QCFLAG_ACTIVE;
ap->qc_active |= 1 << qc->tag;
/*
* We guarantee to LLDs that they will have at least one
* non-zero sg if the command is a data command.
*/
if (WARN_ON_ONCE(ata_is_data(prot) &&
(!qc->sg || !qc->n_elem || !qc->nbytes)))
goto sys_err;
if (ata_is_dma(prot) || (ata_is_pio(prot) &&
(ap->flags & ATA_FLAG_PIO_DMA)))
if (ata_sg_setup(qc))
goto sys_err;
/* if device is sleeping, schedule reset and abort the link */
if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
link->eh_info.action |= ATA_EH_RESET;
ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
ata_link_abort(link);
return;
}
ap->ops->qc_prep(qc);
qc->err_mask |= ap->ops->qc_issue(qc);
if (unlikely(qc->err_mask))
goto err;
return;
sys_err:
qc->err_mask |= AC_ERR_SYSTEM;
err:
ata_qc_complete(qc);
}
/**
* sata_scr_valid - test whether SCRs are accessible
* @link: ATA link to test SCR accessibility for
*
* Test whether SCRs are accessible for @link.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if SCRs are accessible, 0 otherwise.
*/
int sata_scr_valid(struct ata_link *link)
{
struct ata_port *ap = link->ap;
return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
}
/**
* sata_scr_read - read SCR register of the specified port
* @link: ATA link to read SCR for
* @reg: SCR to read
* @val: Place to store read value
*
* Read SCR register @reg of @link into *@val. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_read(struct ata_link *link, int reg, u32 *val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_read(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_read(link, reg, val);
}
/**
* sata_scr_write - write SCR register of the specified port
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* Write @val to SCR register @reg of @link. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_write(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
/**
* sata_scr_write_flush - write SCR register of the specified port and flush
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* This function is identical to sata_scr_write() except that this
* function performs flush after writing to the register.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
int rc;
if (sata_scr_valid(link)) {
rc = link->ap->ops->scr_write(link, reg, val);
if (rc == 0)
rc = link->ap->ops->scr_read(link, reg, &val);
return rc;
}
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
/**
* ata_phys_link_online - test whether the given link is online
* @link: ATA link to test
*
* Test whether @link is online. Note that this function returns
* 0 if online status of @link cannot be obtained, so
* ata_link_online(link) != !ata_link_offline(link).
*
* LOCKING:
* None.
*
* RETURNS:
* True if the port online status is available and online.
*/
bool ata_phys_link_online(struct ata_link *link)
{
u32 sstatus;
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
ata_sstatus_online(sstatus))
return true;
return false;
}
/**
* ata_phys_link_offline - test whether the given link is offline
* @link: ATA link to test
*
* Test whether @link is offline. Note that this function
* returns 0 if offline status of @link cannot be obtained, so
* ata_link_online(link) != !ata_link_offline(link).
*
* LOCKING:
* None.
*
* RETURNS:
* True if the port offline status is available and offline.
*/
bool ata_phys_link_offline(struct ata_link *link)
{
u32 sstatus;
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
!ata_sstatus_online(sstatus))
return true;
return false;
}
/**
* ata_link_online - test whether the given link is online
* @link: ATA link to test
*
* Test whether @link is online. This is identical to
* ata_phys_link_online() when there's no slave link. When
* there's a slave link, this function should only be called on
* the master link and will return true if any of M/S links is
* online.
*
* LOCKING:
* None.
*
* RETURNS:
* True if the port online status is available and online.
*/
bool ata_link_online(struct ata_link *link)
{
struct ata_link *slave = link->ap->slave_link;
WARN_ON(link == slave); /* shouldn't be called on slave link */
return ata_phys_link_online(link) ||
(slave && ata_phys_link_online(slave));
}
/**
* ata_link_offline - test whether the given link is offline
* @link: ATA link to test
*
* Test whether @link is offline. This is identical to
* ata_phys_link_offline() when there's no slave link. When
* there's a slave link, this function should only be called on
* the master link and will return true if both M/S links are
* offline.
*
* LOCKING:
* None.
*
* RETURNS:
* True if the port offline status is available and offline.
*/
bool ata_link_offline(struct ata_link *link)
{
struct ata_link *slave = link->ap->slave_link;
WARN_ON(link == slave); /* shouldn't be called on slave link */
return ata_phys_link_offline(link) &&
(!slave || ata_phys_link_offline(slave));
}
#ifdef CONFIG_PM
static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
unsigned int action, unsigned int ehi_flags,
int wait)
{
unsigned long flags;
int i, rc;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
struct ata_link *link;
/* Previous resume operation might still be in
* progress. Wait for PM_PENDING to clear.
*/
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
ata_port_wait_eh(ap);
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
}
/* request PM ops to EH */
spin_lock_irqsave(ap->lock, flags);
ap->pm_mesg = mesg;
if (wait) {
rc = 0;
ap->pm_result = &rc;
}
ap->pflags |= ATA_PFLAG_PM_PENDING;
ata_for_each_link(link, ap, HOST_FIRST) {
link->eh_info.action |= action;
link->eh_info.flags |= ehi_flags;
}
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait and check result */
if (wait) {
ata_port_wait_eh(ap);
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
if (rc)
return rc;
}
}
return 0;
}
/**
* ata_host_suspend - suspend host
* @host: host to suspend
* @mesg: PM message
*
* Suspend @host. Actual operation is performed by EH. This
* function requests EH to perform PM operations and waits for EH
* to finish.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
{
unsigned int ehi_flags = ATA_EHI_QUIET;
int rc;
/*
* On some hardware, device fails to respond after spun down
* for suspend. As the device won't be used before being
* resumed, we don't need to touch the device. Ask EH to skip
* the usual stuff and proceed directly to suspend.
*
* http://thread.gmane.org/gmane.linux.ide/46764
*/
if (mesg.event == PM_EVENT_SUSPEND)
ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
if (rc == 0)
host->dev->power.power_state = mesg;
return rc;
}
/**
* ata_host_resume - resume host
* @host: host to resume
*
* Resume @host. Actual operation is performed by EH. This
* function requests EH to perform PM operations and returns.
* Note that all resume operations are performed parallely.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_host_resume(struct ata_host *host)
{
ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
host->dev->power.power_state = PMSG_ON;
}
#endif
/**
* ata_dev_init - Initialize an ata_device structure
* @dev: Device structure to initialize
*
* Initialize @dev in preparation for probing.
*
* LOCKING:
* Inherited from caller.
*/
void ata_dev_init(struct ata_device *dev)
{
struct ata_link *link = ata_dev_phys_link(dev);
struct ata_port *ap = link->ap;
unsigned long flags;
/* SATA spd limit is bound to the attached device, reset together */
link->sata_spd_limit = link->hw_sata_spd_limit;
link->sata_spd = 0;
/* High bits of dev->flags are used to record warm plug
* requests which occur asynchronously. Synchronize using
* host lock.
*/
spin_lock_irqsave(ap->lock, flags);
dev->flags &= ~ATA_DFLAG_INIT_MASK;
dev->horkage = 0;
spin_unlock_irqrestore(ap->lock, flags);
memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
dev->pio_mask = UINT_MAX;
dev->mwdma_mask = UINT_MAX;
dev->udma_mask = UINT_MAX;
}
/**
* ata_link_init - Initialize an ata_link structure
* @ap: ATA port link is attached to
* @link: Link structure to initialize
* @pmp: Port multiplier port number
*
* Initialize @link.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
{
int i;
/* clear everything except for devices */
memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
link->ap = ap;
link->pmp = pmp;
link->active_tag = ATA_TAG_POISON;
link->hw_sata_spd_limit = UINT_MAX;
/* can't use iterator, ap isn't initialized yet */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &link->device[i];
dev->link = link;
dev->devno = dev - link->device;
#ifdef CONFIG_ATA_ACPI
dev->gtf_filter = ata_acpi_gtf_filter;
#endif
ata_dev_init(dev);
}
}
/**
* sata_link_init_spd - Initialize link->sata_spd_limit
* @link: Link to configure sata_spd_limit for
*
* Initialize @link->[hw_]sata_spd_limit to the currently
* configured value.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_init_spd(struct ata_link *link)
{
u8 spd;
int rc;
rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
if (rc)
return rc;
spd = (link->saved_scontrol >> 4) & 0xf;
if (spd)
link->hw_sata_spd_limit &= (1 << spd) - 1;
ata_force_link_limits(link);
link->sata_spd_limit = link->hw_sata_spd_limit;
return 0;
}
/**
* ata_port_alloc - allocate and initialize basic ATA port resources
* @host: ATA host this allocated port belongs to
*
* Allocate and initialize basic ATA port resources.
*
* RETURNS:
* Allocate ATA port on success, NULL on failure.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
struct ata_port *ata_port_alloc(struct ata_host *host)
{
struct ata_port *ap;
DPRINTK("ENTER\n");
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
if (!ap)
return NULL;
ap->pflags |= ATA_PFLAG_INITIALIZING;
ap->lock = &host->lock;
ap->print_id = -1;
ap->host = host;
ap->dev = host->dev;
#if defined(ATA_VERBOSE_DEBUG)
/* turn on all debugging levels */
ap->msg_enable = 0x00FF;
#elif defined(ATA_DEBUG)
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
#else
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
#endif
mutex_init(&ap->scsi_scan_mutex);
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
INIT_LIST_HEAD(&ap->eh_done_q);
init_waitqueue_head(&ap->eh_wait_q);
init_completion(&ap->park_req_pending);
init_timer_deferrable(&ap->fastdrain_timer);
ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
ap->fastdrain_timer.data = (unsigned long)ap;
ap->cbl = ATA_CBL_NONE;
ata_link_init(ap, &ap->link, 0);
#ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1;
ap->stats.idle_irq = 1;
#endif
ata_sff_port_init(ap);
return ap;
}
static void ata_host_release(struct device *gendev, void *res)
{
struct ata_host *host = dev_get_drvdata(gendev);
int i;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (!ap)
continue;
if (ap->scsi_host)
scsi_host_put(ap->scsi_host);
kfree(ap->pmp_link);
kfree(ap->slave_link);
kfree(ap);
host->ports[i] = NULL;
}
dev_set_drvdata(gendev, NULL);
}
/**
* ata_host_alloc - allocate and init basic ATA host resources
* @dev: generic device this host is associated with
* @max_ports: maximum number of ATA ports associated with this host
*
* Allocate and initialize basic ATA host resources. LLD calls
* this function to allocate a host, initializes it fully and
* attaches it using ata_host_register().
*
* @max_ports ports are allocated and host->n_ports is
* initialized to @max_ports. The caller is allowed to decrease
* host->n_ports before calling ata_host_register(). The unused
* ports will be automatically freed on registration.
*
* RETURNS:
* Allocate ATA host on success, NULL on failure.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
{
struct ata_host *host;
size_t sz;
int i;
DPRINTK("ENTER\n");
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return NULL;
/* alloc a container for our list of ATA ports (buses) */
sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
/* alloc a container for our list of ATA ports (buses) */
host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
if (!host)
goto err_out;
devres_add(dev, host);
dev_set_drvdata(dev, host);
spin_lock_init(&host->lock);
mutex_init(&host->eh_mutex);
host->dev = dev;
host->n_ports = max_ports;
/* allocate ports bound to this host */
for (i = 0; i < max_ports; i++) {
struct ata_port *ap;
ap = ata_port_alloc(host);
if (!ap)
goto err_out;
ap->port_no = i;
host->ports[i] = ap;
}
devres_remove_group(dev, NULL);
return host;
err_out:
devres_release_group(dev, NULL);
return NULL;
}
/**
* ata_host_alloc_pinfo - alloc host and init with port_info array
* @dev: generic device this host is associated with
* @ppi: array of ATA port_info to initialize host with
* @n_ports: number of ATA ports attached to this host
*
* Allocate ATA host and initialize with info from @ppi. If NULL
* terminated, @ppi may contain fewer entries than @n_ports. The
* last entry will be used for the remaining ports.
*
* RETURNS:
* Allocate ATA host on success, NULL on failure.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
const struct ata_port_info * const * ppi,
int n_ports)
{
const struct ata_port_info *pi;
struct ata_host *host;
int i, j;
host = ata_host_alloc(dev, n_ports);
if (!host)
return NULL;
for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ppi[j])
pi = ppi[j++];
ap->pio_mask = pi->pio_mask;
ap->mwdma_mask = pi->mwdma_mask;
ap->udma_mask = pi->udma_mask;
ap->flags |= pi->flags;
ap->link.flags |= pi->link_flags;
ap->ops = pi->port_ops;
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
host->ops = pi->port_ops;
}
return host;
}
/**
* ata_slave_link_init - initialize slave link
* @ap: port to initialize slave link for
*
* Create and initialize slave link for @ap. This enables slave
* link handling on the port.
*
* In libata, a port contains links and a link contains devices.
* There is single host link but if a PMP is attached to it,
* there can be multiple fan-out links. On SATA, there's usually
* a single device connected to a link but PATA and SATA
* controllers emulating TF based interface can have two - master
* and slave.
*
* However, there are a few controllers which don't fit into this
* abstraction too well - SATA controllers which emulate TF
* interface with both master and slave devices but also have
* separate SCR register sets for each device. These controllers
* need separate links for physical link handling
* (e.g. onlineness, link speed) but should be treated like a
* traditional M/S controller for everything else (e.g. command
* issue, softreset).
*
* slave_link is libata's way of handling this class of
* controllers without impacting core layer too much. For
* anything other than physical link handling, the default host
* link is used for both master and slave. For physical link
* handling, separate @ap->slave_link is used. All dirty details
* are implemented inside libata core layer. From LLD's POV, the
* only difference is that prereset, hardreset and postreset are
* called once more for the slave link, so the reset sequence
* looks like the following.
*
* prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
* softreset(M) -> postreset(M) -> postreset(S)
*
* Note that softreset is called only for the master. Softreset
* resets both M/S by definition, so SRST on master should handle
* both (the standard method will work just fine).
*
* LOCKING:
* Should be called before host is registered.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int ata_slave_link_init(struct ata_port *ap)
{
struct ata_link *link;
WARN_ON(ap->slave_link);
WARN_ON(ap->flags & ATA_FLAG_PMP);
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return -ENOMEM;
ata_link_init(ap, link, 1);
ap->slave_link = link;
return 0;
}
static void ata_host_stop(struct device *gendev, void *res)
{
struct ata_host *host = dev_get_drvdata(gendev);
int i;
WARN_ON(!(host->flags & ATA_HOST_STARTED));
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap->ops->port_stop)
ap->ops->port_stop(ap);
}
if (host->ops->host_stop)
host->ops->host_stop(host);
}
/**
* ata_finalize_port_ops - finalize ata_port_operations
* @ops: ata_port_operations to finalize
*
* An ata_port_operations can inherit from another ops and that
* ops can again inherit from another. This can go on as many
* times as necessary as long as there is no loop in the
* inheritance chain.
*
* Ops tables are finalized when the host is started. NULL or
* unspecified entries are inherited from the closet ancestor
* which has the method and the entry is populated with it.
* After finalization, the ops table directly points to all the
* methods and ->inherits is no longer necessary and cleared.
*
* Using ATA_OP_NULL, inheriting ops can force a method to NULL.
*
* LOCKING:
* None.
*/
static void ata_finalize_port_ops(struct ata_port_operations *ops)
{
static DEFINE_SPINLOCK(lock);
const struct ata_port_operations *cur;
void **begin = (void **)ops;
void **end = (void **)&ops->inherits;
void **pp;
if (!ops || !ops->inherits)
return;
spin_lock(&lock);
for (cur = ops->inherits; cur; cur = cur->inherits) {
void **inherit = (void **)cur;
for (pp = begin; pp < end; pp++, inherit++)
if (!*pp)
*pp = *inherit;
}
for (pp = begin; pp < end; pp++)
if (IS_ERR(*pp))
*pp = NULL;
ops->inherits = NULL;
spin_unlock(&lock);
}
/**
* ata_host_start - start and freeze ports of an ATA host
* @host: ATA host to start ports for
*
* Start and then freeze ports of @host. Started status is
* recorded in host->flags, so this function can be called
* multiple times. Ports are guaranteed to get started only
* once. If host->ops isn't initialized yet, its set to the
* first non-dummy port ops.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 if all ports are started successfully, -errno otherwise.
*/
int ata_host_start(struct ata_host *host)
{
int have_stop = 0;
void *start_dr = NULL;
int i, rc;
if (host->flags & ATA_HOST_STARTED)
return 0;
ata_finalize_port_ops(host->ops);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
ata_finalize_port_ops(ap->ops);
if (!host->ops && !ata_port_is_dummy(ap))
host->ops = ap->ops;
if (ap->ops->port_stop)
have_stop = 1;
}
if (host->ops->host_stop)
have_stop = 1;
if (have_stop) {
start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
if (!start_dr)
return -ENOMEM;
}
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap->ops->port_start) {
rc = ap->ops->port_start(ap);
if (rc) {
if (rc != -ENODEV)
dev_printk(KERN_ERR, host->dev,
"failed to start port %d "
"(errno=%d)\n", i, rc);
goto err_out;
}
}
ata_eh_freeze_port(ap);
}
if (start_dr)
devres_add(host->dev, start_dr);
host->flags |= ATA_HOST_STARTED;
return 0;
err_out:
while (--i >= 0) {
struct ata_port *ap = host->ports[i];
if (ap->ops->port_stop)
ap->ops->port_stop(ap);
}
devres_free(start_dr);
return rc;
}
/**
* ata_sas_host_init - Initialize a host struct
* @host: host to initialize
* @dev: device host is attached to
* @flags: host flags
* @ops: port_ops
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
/* KILLME - the only user left is ipr */
void ata_host_init(struct ata_host *host, struct device *dev,
unsigned long flags, struct ata_port_operations *ops)
{
spin_lock_init(&host->lock);
mutex_init(&host->eh_mutex);
host->dev = dev;
host->flags = flags;
host->ops = ops;
}
static void async_port_probe(void *data, async_cookie_t cookie)
{
int rc;
struct ata_port *ap = data;
/*
* If we're not allowed to scan this host in parallel,
* we need to wait until all previous scans have completed
* before going further.
* Jeff Garzik says this is only within a controller, so we
* don't need to wait for port 0, only for later ports.
*/
if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
async_synchronize_cookie(cookie);
/* probe */
if (ap->ops->error_handler) {
struct ata_eh_info *ehi = &ap->link.eh_info;
unsigned long flags;
/* kick EH for boot probing */
spin_lock_irqsave(ap->lock, flags);
ehi->probe_mask |= ATA_ALL_DEVICES;
ehi->action |= ATA_EH_RESET;
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
ap->pflags &= ~ATA_PFLAG_INITIALIZING;
ap->pflags |= ATA_PFLAG_LOADING;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait for EH to finish */
ata_port_wait_eh(ap);
} else {
DPRINTK("ata%u: bus probe begin\n", ap->print_id);
rc = ata_bus_probe(ap);
DPRINTK("ata%u: bus probe end\n", ap->print_id);
if (rc) {
/* FIXME: do something useful here?
* Current libata behavior will
* tear down everything when
* the module is removed
* or the h/w is unplugged.
*/
}
}
/* in order to keep device order, we need to synchronize at this point */
async_synchronize_cookie(cookie);
ata_scsi_scan_host(ap, 1);
}
/**
* ata_host_register - register initialized ATA host
* @host: ATA host to register
* @sht: template for SCSI host
*
* Register initialized ATA host. @host is allocated using
* ata_host_alloc() and fully initialized by LLD. This function
* starts ports, registers @host with ATA and SCSI layers and
* probe registered devices.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
{
int i, rc;
/* host must have been started */
if (!(host->flags & ATA_HOST_STARTED)) {
dev_printk(KERN_ERR, host->dev,
"BUG: trying to register unstarted host\n");
WARN_ON(1);
return -EINVAL;
}
/* Blow away unused ports. This happens when LLD can't
* determine the exact number of ports to allocate at
* allocation time.
*/
for (i = host->n_ports; host->ports[i]; i++)
kfree(host->ports[i]);
/* give ports names and add SCSI hosts */
for (i = 0; i < host->n_ports; i++)
host->ports[i]->print_id = ata_print_id++;
/* Create associated sysfs transport objects */
for (i = 0; i < host->n_ports; i++) {
rc = ata_tport_add(host->dev,host->ports[i]);
if (rc) {
goto err_tadd;
}
}
rc = ata_scsi_add_hosts(host, sht);
if (rc)
goto err_tadd;
/* associate with ACPI nodes */
ata_acpi_associate(host);
/* set cable, sata_spd_limit and report */
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
unsigned long xfer_mask;
/* set SATA cable type if still unset */
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
ap->cbl = ATA_CBL_SATA;
/* init sata_spd_limit to the current value */
sata_link_init_spd(&ap->link);
if (ap->slave_link)
sata_link_init_spd(ap->slave_link);
/* print per-port info to dmesg */
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
ap->udma_mask);
if (!ata_port_is_dummy(ap)) {
ata_port_printk(ap, KERN_INFO,
"%cATA max %s %s\n",
(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
ata_mode_string(xfer_mask),
ap->link.eh_info.desc);
ata_ehi_clear_desc(&ap->link.eh_info);
} else
ata_port_printk(ap, KERN_INFO, "DUMMY\n");
}
/* perform each probe asynchronously */
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
async_schedule(async_port_probe, ap);
}
return 0;
err_tadd:
while (--i >= 0) {
ata_tport_delete(host->ports[i]);
}
return rc;
}
/**
* ata_host_activate - start host, request IRQ and register it
* @host: target ATA host
* @irq: IRQ to request
* @irq_handler: irq_handler used when requesting IRQ
* @irq_flags: irq_flags used when requesting IRQ
* @sht: scsi_host_template to use when registering the host
*
* After allocating an ATA host and initializing it, most libata
* LLDs perform three steps to activate the host - start host,
* request IRQ and register it. This helper takes necessasry
* arguments and performs the three steps in one go.
*
* An invalid IRQ skips the IRQ registration and expects the host to
* have set polling mode on the port. In this case, @irq_handler
* should be NULL.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_host_activate(struct ata_host *host, int irq,
irq_handler_t irq_handler, unsigned long irq_flags,
struct scsi_host_template *sht)
{
int i, rc;
rc = ata_host_start(host);
if (rc)
return rc;
/* Special case for polling mode */
if (!irq) {
WARN_ON(irq_handler);
return ata_host_register(host, sht);
}
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
dev_driver_string(host->dev), host);
if (rc)
return rc;
for (i = 0; i < host->n_ports; i++)
ata_port_desc(host->ports[i], "irq %d", irq);
rc = ata_host_register(host, sht);
/* if failed, just free the IRQ and leave ports alone */
if (rc)
devm_free_irq(host->dev, irq, host);
return rc;
}
/**
* ata_port_detach - Detach ATA port in prepration of device removal
* @ap: ATA port to be detached
*
* Detach all ATA devices and the associated SCSI devices of @ap;
* then, remove the associated SCSI host. @ap is guaranteed to
* be quiescent on return from this function.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
static void ata_port_detach(struct ata_port *ap)
{
unsigned long flags;
if (!ap->ops->error_handler)
goto skip_eh;
/* tell EH we're leaving & flush EH */
spin_lock_irqsave(ap->lock, flags);
ap->pflags |= ATA_PFLAG_UNLOADING;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait till EH commits suicide */
ata_port_wait_eh(ap);
/* it better be dead now */
WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
cancel_delayed_work_sync(&ap->hotplug_task);
skip_eh:
if (ap->pmp_link) {
int i;
for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
ata_tlink_delete(&ap->pmp_link[i]);
}
ata_tport_delete(ap);
/* remove the associated SCSI host */
scsi_remove_host(ap->scsi_host);
}
/**
* ata_host_detach - Detach all ports of an ATA host
* @host: Host to detach
*
* Detach all ports of @host.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_host_detach(struct ata_host *host)
{
int i;
for (i = 0; i < host->n_ports; i++)
ata_port_detach(host->ports[i]);
/* the host is dead now, dissociate ACPI */
ata_acpi_dissociate(host);
}
#ifdef CONFIG_PCI
/**
* ata_pci_remove_one - PCI layer callback for device removal
* @pdev: PCI device that was removed
*
* PCI layer indicates to libata via this hook that hot-unplug or
* module unload event has occurred. Detach all ports. Resource
* release is handled via devres.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*/
void ata_pci_remove_one(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct ata_host *host = dev_get_drvdata(dev);
ata_host_detach(host);
}
/* move to PCI subsystem */
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
{
unsigned long tmp = 0;
switch (bits->width) {
case 1: {
u8 tmp8 = 0;
pci_read_config_byte(pdev, bits->reg, &tmp8);
tmp = tmp8;
break;
}
case 2: {
u16 tmp16 = 0;
pci_read_config_word(pdev, bits->reg, &tmp16);
tmp = tmp16;
break;
}
case 4: {
u32 tmp32 = 0;
pci_read_config_dword(pdev, bits->reg, &tmp32);
tmp = tmp32;
break;
}
default:
return -EINVAL;
}
tmp &= bits->mask;
return (tmp == bits->val) ? 1 : 0;
}
#ifdef CONFIG_PM
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
pci_save_state(pdev);
pci_disable_device(pdev);
if (mesg.event & PM_EVENT_SLEEP)
pci_set_power_state(pdev, PCI_D3hot);
}
int ata_pci_device_do_resume(struct pci_dev *pdev)
{
int rc;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
rc = pcim_enable_device(pdev);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to enable device after resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
return 0;
}
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc = 0;
rc = ata_host_suspend(host, mesg);
if (rc)
return rc;
ata_pci_device_do_suspend(pdev, mesg);
return 0;
}
int ata_pci_device_resume(struct pci_dev *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc == 0)
ata_host_resume(host);
return rc;
}
#endif /* CONFIG_PM */
#endif /* CONFIG_PCI */
static int __init ata_parse_force_one(char **cur,
struct ata_force_ent *force_ent,
const char **reason)
{
/* FIXME: Currently, there's no way to tag init const data and
* using __initdata causes build failure on some versions of
* gcc. Once __initdataconst is implemented, add const to the
* following structure.
*/
static struct ata_force_param force_tbl[] __initdata = {
{ "40c", .cbl = ATA_CBL_PATA40 },
{ "80c", .cbl = ATA_CBL_PATA80 },
{ "short40c", .cbl = ATA_CBL_PATA40_SHORT },
{ "unk", .cbl = ATA_CBL_PATA_UNK },
{ "ign", .cbl = ATA_CBL_PATA_IGN },
{ "sata", .cbl = ATA_CBL_SATA },
{ "1.5Gbps", .spd_limit = 1 },
{ "3.0Gbps", .spd_limit = 2 },
{ "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
{ "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
{ "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
{ "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
{ "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
{ "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
{ "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
{ "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
{ "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
{ "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
{ "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
{ "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
{ "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
{ "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
{ "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
{ "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
{ "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
{ "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
{ "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
{ "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
{ "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
{ "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
{ "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
{ "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
{ "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
{ "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
{ "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
{ "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
{ "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
{ "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
{ "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
{ "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
{ "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
{ "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
{ "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
{ "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
{ "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
{ "nohrst", .lflags = ATA_LFLAG_NO_HRST },
{ "nosrst", .lflags = ATA_LFLAG_NO_SRST },
{ "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
};
char *start = *cur, *p = *cur;
char *id, *val, *endp;
const struct ata_force_param *match_fp = NULL;
int nr_matches = 0, i;
/* find where this param ends and update *cur */
while (*p != '\0' && *p != ',')
p++;
if (*p == '\0')
*cur = p;
else
*cur = p + 1;
*p = '\0';
/* parse */
p = strchr(start, ':');
if (!p) {
val = strstrip(start);
goto parse_val;
}
*p = '\0';
id = strstrip(start);
val = strstrip(p + 1);
/* parse id */
p = strchr(id, '.');
if (p) {
*p++ = '\0';
force_ent->device = simple_strtoul(p, &endp, 10);
if (p == endp || *endp != '\0') {
*reason = "invalid device";
return -EINVAL;
}
}
force_ent->port = simple_strtoul(id, &endp, 10);
if (p == endp || *endp != '\0') {
*reason = "invalid port/link";
return -EINVAL;
}
parse_val:
/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
const struct ata_force_param *fp = &force_tbl[i];
if (strncasecmp(val, fp->name, strlen(val)))
continue;
nr_matches++;
match_fp = fp;
if (strcasecmp(val, fp->name) == 0) {
nr_matches = 1;
break;
}
}
if (!nr_matches) {
*reason = "unknown value";
return -EINVAL;
}
if (nr_matches > 1) {
*reason = "ambigious value";
return -EINVAL;
}
force_ent->param = *match_fp;
return 0;
}
static void __init ata_parse_force_param(void)
{
int idx = 0, size = 1;
int last_port = -1, last_device = -1;
char *p, *cur, *next;
/* calculate maximum number of params and allocate force_tbl */
for (p = ata_force_param_buf; *p; p++)
if (*p == ',')
size++;
ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
if (!ata_force_tbl) {
printk(KERN_WARNING "ata: failed to extend force table, "
"libata.force ignored\n");
return;
}
/* parse and populate the table */
for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
const char *reason = "";
struct ata_force_ent te = { .port = -1, .device = -1 };
next = cur;
if (ata_parse_force_one(&next, &te, &reason)) {
printk(KERN_WARNING "ata: failed to parse force "
"parameter \"%s\" (%s)\n",
cur, reason);
continue;
}
if (te.port == -1) {
te.port = last_port;
te.device = last_device;
}
ata_force_tbl[idx++] = te;
last_port = te.port;
last_device = te.device;
}
ata_force_tbl_size = idx;
}
static int __init ata_init(void)
{
int rc;
ata_parse_force_param();
rc = ata_sff_init();
if (rc) {
kfree(ata_force_tbl);
return rc;
}
libata_transport_init();
ata_scsi_transport_template = ata_attach_transport();
if (!ata_scsi_transport_template) {
ata_sff_exit();
rc = -ENOMEM;
goto err_out;
}
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0;
err_out:
return rc;
}
static void __exit ata_exit(void)
{
ata_release_transport(ata_scsi_transport_template);
libata_transport_exit();
ata_sff_exit();
kfree(ata_force_tbl);
}
subsys_initcall(ata_init);
module_exit(ata_exit);
static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
int ata_ratelimit(void)
{
return __ratelimit(&ratelimit);
}
/**
* ata_msleep - ATA EH owner aware msleep
* @ap: ATA port to attribute the sleep to
* @msecs: duration to sleep in milliseconds
*
* Sleeps @msecs. If the current task is owner of @ap's EH, the
* ownership is released before going to sleep and reacquired
* after the sleep is complete. IOW, other ports sharing the
* @ap->host will be allowed to own the EH while this task is
* sleeping.
*
* LOCKING:
* Might sleep.
*/
void ata_msleep(struct ata_port *ap, unsigned int msecs)
{
bool owns_eh = ap && ap->host->eh_owner == current;
if (owns_eh)
ata_eh_release(ap);
msleep(msecs);
if (owns_eh)
ata_eh_acquire(ap);
}
/**
* ata_wait_register - wait until register value changes
* @ap: ATA port to wait register for, can be NULL
* @reg: IO-mapped register
* @mask: Mask to apply to read register value
* @val: Wait condition
* @interval: polling interval in milliseconds
* @timeout: timeout in milliseconds
*
* Waiting for some bits of register to change is a common
* operation for ATA controllers. This function reads 32bit LE
* IO-mapped register @reg and tests for the following condition.
*
* (*@reg & mask) != val
*
* If the condition is met, it returns; otherwise, the process is
* repeated after @interval_msec until timeout.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* The final register value.
*/
u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
unsigned long interval, unsigned long timeout)
{
unsigned long deadline;
u32 tmp;
tmp = ioread32(reg);
/* Calculate timeout _after_ the first read to make sure
* preceding writes reach the controller before starting to
* eat away the timeout.
*/
deadline = ata_deadline(jiffies, timeout);
while ((tmp & mask) == val && time_before(jiffies, deadline)) {
ata_msleep(ap, interval);
tmp = ioread32(reg);
}
return tmp;
}
/*
* Dummy port_ops
*/
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
{
return AC_ERR_SYSTEM;
}
static void ata_dummy_error_handler(struct ata_port *ap)
{
/* truly dummy */
}
struct ata_port_operations ata_dummy_port_ops = {
.qc_prep = ata_noop_qc_prep,
.qc_issue = ata_dummy_qc_issue,
.error_handler = ata_dummy_error_handler,
};
const struct ata_port_info ata_dummy_port_info = {
.port_ops = &ata_dummy_port_ops,
};
/*
* libata is essentially a library of internal helper functions for
* low-level ATA host controller drivers. As such, the API/ABI is
* likely to change as new drivers are added and updated.
* Do not depend on ABI/API stability.
*/
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
EXPORT_SYMBOL_GPL(ata_base_port_ops);
EXPORT_SYMBOL_GPL(sata_port_ops);
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
EXPORT_SYMBOL_GPL(ata_link_next);
EXPORT_SYMBOL_GPL(ata_dev_next);
EXPORT_SYMBOL_GPL(ata_std_bios_param);
EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
EXPORT_SYMBOL_GPL(ata_host_init);
EXPORT_SYMBOL_GPL(ata_host_alloc);
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
EXPORT_SYMBOL_GPL(ata_slave_link_init);
EXPORT_SYMBOL_GPL(ata_host_start);
EXPORT_SYMBOL_GPL(ata_host_register);
EXPORT_SYMBOL_GPL(ata_host_activate);
EXPORT_SYMBOL_GPL(ata_host_detach);
EXPORT_SYMBOL_GPL(ata_sg_init);
EXPORT_SYMBOL_GPL(ata_qc_complete);
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
EXPORT_SYMBOL_GPL(atapi_cmd_type);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_pack_xfermask);
EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
EXPORT_SYMBOL_GPL(ata_mode_string);
EXPORT_SYMBOL_GPL(ata_id_xfermask);
EXPORT_SYMBOL_GPL(ata_do_set_mode);
EXPORT_SYMBOL_GPL(ata_std_qc_defer);
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
EXPORT_SYMBOL_GPL(ata_dev_disable);
EXPORT_SYMBOL_GPL(sata_set_spd);
EXPORT_SYMBOL_GPL(ata_wait_after_reset);
EXPORT_SYMBOL_GPL(sata_link_debounce);
EXPORT_SYMBOL_GPL(sata_link_resume);
EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
EXPORT_SYMBOL_GPL(ata_std_prereset);
EXPORT_SYMBOL_GPL(sata_link_hardreset);
EXPORT_SYMBOL_GPL(sata_std_hardreset);
EXPORT_SYMBOL_GPL(ata_std_postreset);
EXPORT_SYMBOL_GPL(ata_dev_classify);
EXPORT_SYMBOL_GPL(ata_dev_pair);
EXPORT_SYMBOL_GPL(ata_ratelimit);
EXPORT_SYMBOL_GPL(ata_msleep);
EXPORT_SYMBOL_GPL(ata_wait_register);
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
EXPORT_SYMBOL_GPL(sata_scr_valid);
EXPORT_SYMBOL_GPL(sata_scr_read);
EXPORT_SYMBOL_GPL(sata_scr_write);
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
EXPORT_SYMBOL_GPL(ata_link_online);
EXPORT_SYMBOL_GPL(ata_link_offline);
#ifdef CONFIG_PM
EXPORT_SYMBOL_GPL(ata_host_suspend);
EXPORT_SYMBOL_GPL(ata_host_resume);
#endif /* CONFIG_PM */
EXPORT_SYMBOL_GPL(ata_id_string);
EXPORT_SYMBOL_GPL(ata_id_c_string);
EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
EXPORT_SYMBOL_GPL(ata_timing_find_mode);
EXPORT_SYMBOL_GPL(ata_timing_compute);
EXPORT_SYMBOL_GPL(ata_timing_merge);
EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(pci_test_config_bits);
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
#ifdef CONFIG_PM
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
#endif /* CONFIG_PM */
#endif /* CONFIG_PCI */
EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
EXPORT_SYMBOL_GPL(ata_port_desc);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
#endif /* CONFIG_PCI */
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
EXPORT_SYMBOL_GPL(ata_link_abort);
EXPORT_SYMBOL_GPL(ata_port_abort);
EXPORT_SYMBOL_GPL(ata_port_freeze);
EXPORT_SYMBOL_GPL(sata_async_notification);
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
EXPORT_SYMBOL_GPL(ata_do_eh);
EXPORT_SYMBOL_GPL(ata_std_error_handler);
EXPORT_SYMBOL_GPL(ata_cable_40wire);
EXPORT_SYMBOL_GPL(ata_cable_80wire);
EXPORT_SYMBOL_GPL(ata_cable_unknown);
EXPORT_SYMBOL_GPL(ata_cable_ignore);
EXPORT_SYMBOL_GPL(ata_cable_sata);