blob: 8d110fd9eba1c95d4b1537c26dff1853c7407a42 [file] [log] [blame]
/**
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/etherdevice.h>
#include "rsi_mgmt.h"
#include "rsi_common.h"
static struct bootup_params boot_params_20 = {
.magic_number = cpu_to_le16(0x5aa5),
.crystal_good_time = 0x0,
.valid = cpu_to_le32(VALID_20),
.reserved_for_valids = 0x0,
.bootup_mode_info = 0x0,
.digital_loop_back_params = 0x0,
.rtls_timestamp_en = 0x0,
.host_spi_intr_cfg = 0x0,
.device_clk_info = {{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = cpu_to_le16(BIT(3)),
.bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
} },
.buckboost_wakeup_cnt = 0x0,
.pmu_wakeup_wait = 0x0,
.shutdown_wait_time = 0x0,
.pmu_slp_clkout_sel = 0x0,
.wdt_prog_value = 0x0,
.wdt_soc_rst_delay = 0x0,
.dcdc_operation_mode = 0x0,
.soc_reset_wait_cnt = 0x0
};
static struct bootup_params boot_params_40 = {
.magic_number = cpu_to_le16(0x5aa5),
.crystal_good_time = 0x0,
.valid = cpu_to_le32(VALID_40),
.reserved_for_valids = 0x0,
.bootup_mode_info = 0x0,
.digital_loop_back_params = 0x0,
.rtls_timestamp_en = 0x0,
.host_spi_intr_cfg = 0x0,
.device_clk_info = {{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = cpu_to_le16(0x09),
.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
.umac_clock_reg_config = cpu_to_le16(0x48),
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
} },
.buckboost_wakeup_cnt = 0x0,
.pmu_wakeup_wait = 0x0,
.shutdown_wait_time = 0x0,
.pmu_slp_clkout_sel = 0x0,
.wdt_prog_value = 0x0,
.wdt_soc_rst_delay = 0x0,
.dcdc_operation_mode = 0x0,
.soc_reset_wait_cnt = 0x0
};
static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
/**
* rsi_set_default_parameters() - This function sets default parameters.
* @common: Pointer to the driver private structure.
*
* Return: none
*/
static void rsi_set_default_parameters(struct rsi_common *common)
{
common->band = IEEE80211_BAND_2GHZ;
common->channel_width = BW_20MHZ;
common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
common->channel = 1;
common->min_rate = 0xffff;
common->fsm_state = FSM_CARD_NOT_READY;
common->iface_down = true;
common->endpoint = EP_2GHZ_20MHZ;
}
/**
* rsi_set_contention_vals() - This function sets the contention values for the
* backoff procedure.
* @common: Pointer to the driver private structure.
*
* Return: None.
*/
static void rsi_set_contention_vals(struct rsi_common *common)
{
u8 ii = 0;
for (; ii < NUM_EDCA_QUEUES; ii++) {
common->tx_qinfo[ii].wme_params =
(((common->edca_params[ii].cw_min / 2) +
(common->edca_params[ii].aifs)) *
WMM_SHORT_SLOT_TIME + SIFS_DURATION);
common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
common->tx_qinfo[ii].pkt_contended = 0;
}
}
/**
* rsi_send_internal_mgmt_frame() - This function sends management frames to
* firmware.Also schedules packet to queue
* for transmission.
* @common: Pointer to the driver private structure.
* @skb: Pointer to the socket buffer structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
struct sk_buff *skb)
{
struct skb_info *tx_params;
if (skb == NULL) {
rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
return -ENOMEM;
}
tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
tx_params->flags |= INTERNAL_MGMT_PKT;
skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
rsi_set_event(&common->tx_thread.event);
return 0;
}
/**
* rsi_load_radio_caps() - This function is used to send radio capabilities
* values to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
static int rsi_load_radio_caps(struct rsi_common *common)
{
struct rsi_radio_caps *radio_caps;
struct rsi_hw *adapter = common->priv;
u16 inx = 0;
u8 ii;
u8 radio_id = 0;
u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0};
struct sk_buff *skb;
rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_radio_caps));
radio_caps = (struct rsi_radio_caps *)skb->data;
radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
if (common->channel_width == BW_40MHZ) {
radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
if (common->fsm_state == FSM_MAC_INIT_DONE) {
struct ieee80211_hw *hw = adapter->hw;
struct ieee80211_conf *conf = &hw->conf;
if (conf_is_ht40_plus(conf)) {
radio_caps->desc_word[5] =
cpu_to_le16(LOWER_20_ENABLE);
radio_caps->desc_word[5] |=
cpu_to_le16(LOWER_20_ENABLE >> 12);
} else if (conf_is_ht40_minus(conf)) {
radio_caps->desc_word[5] =
cpu_to_le16(UPPER_20_ENABLE);
radio_caps->desc_word[5] |=
cpu_to_le16(UPPER_20_ENABLE >> 12);
} else {
radio_caps->desc_word[5] =
cpu_to_le16(BW_40MHZ << 12);
radio_caps->desc_word[5] |=
cpu_to_le16(FULL40M_ENABLE);
}
}
}
radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
radio_caps->qos_params[ii].txop_q = 0;
}
for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
radio_caps->qos_params[ii].cont_win_min_q =
cpu_to_le16(common->edca_params[ii].cw_min);
radio_caps->qos_params[ii].cont_win_max_q =
cpu_to_le16(common->edca_params[ii].cw_max);
radio_caps->qos_params[ii].aifsn_val_q =
cpu_to_le16((common->edca_params[ii].aifs) << 8);
radio_caps->qos_params[ii].txop_q =
cpu_to_le16(common->edca_params[ii].txop);
}
memcpy(&common->rate_pwr[0], &gc[0], 40);
for (ii = 0; ii < 20; ii++)
radio_caps->gcpd_per_rate[inx++] =
cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
FRAME_DESC_SZ) |
(RSI_WIFI_MGMT_Q << 12));
skb_put(skb, (sizeof(struct rsi_radio_caps)));
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
* @common: Pointer to the driver private structure.
* @msg: Pointer to received packet.
* @msg_len: Length of the recieved packet.
* @type: Type of recieved packet.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
u8 *msg,
s32 msg_len,
u8 type)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_tx_info *info;
struct skb_info *rx_params;
u8 pad_bytes = msg[4];
u8 pkt_recv;
struct sk_buff *skb;
char *buffer;
if (type == RX_DOT11_MGMT) {
if (!adapter->sc_nvifs)
return -ENOLINK;
msg_len -= pad_bytes;
if ((msg_len <= 0) || (!msg)) {
rsi_dbg(MGMT_RX_ZONE,
"%s: Invalid rx msg of len = %d\n",
__func__, msg_len);
return -EINVAL;
}
skb = dev_alloc_skb(msg_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
__func__);
return -ENOMEM;
}
buffer = skb_put(skb, msg_len);
memcpy(buffer,
(u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
msg_len);
pkt_recv = buffer[0];
info = IEEE80211_SKB_CB(skb);
rx_params = (struct skb_info *)info->driver_data;
rx_params->rssi = rsi_get_rssi(msg);
rx_params->channel = rsi_get_channel(msg);
rsi_indicate_pkt_to_os(common, skb);
} else {
rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
}
return 0;
}
/**
* rsi_hal_send_sta_notify_frame() - This function sends the station notify
* frame to firmware.
* @common: Pointer to the driver private structure.
* @opmode: Operating mode of device.
* @notify_event: Notification about station connection.
* @bssid: bssid.
* @qos_enable: Qos is enabled.
* @aid: Aid (unique for all STA).
*
* Return: status: 0 on success, corresponding negative error code on failure.
*/
static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
u8 opmode,
u8 notify_event,
const unsigned char *bssid,
u8 qos_enable,
u16 aid)
{
struct sk_buff *skb = NULL;
struct rsi_peer_notify *peer_notify;
u16 vap_id = 0;
int status;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_peer_notify));
peer_notify = (struct rsi_peer_notify *)skb->data;
peer_notify->command = cpu_to_le16(opmode << 1);
switch (notify_event) {
case STA_CONNECTED:
peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
break;
case STA_DISCONNECTED:
peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
break;
default:
break;
}
peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
ether_addr_copy(peer_notify->mac_addr, bssid);
peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
peer_notify->desc_word[0] =
cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
(RSI_WIFI_MGMT_Q << 12));
peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
skb_put(skb, sizeof(struct rsi_peer_notify));
status = rsi_send_internal_mgmt_frame(common, skb);
if (!status && qos_enable) {
rsi_set_contention_vals(common);
status = rsi_load_radio_caps(common);
}
return status;
}
/**
* rsi_send_aggregation_params_frame() - This function sends the ampdu
* indication frame to firmware.
* @common: Pointer to the driver private structure.
* @tid: traffic identifier.
* @ssn: ssn.
* @buf_size: buffer size.
* @event: notification about station connection.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
int rsi_send_aggregation_params_frame(struct rsi_common *common,
u16 tid,
u16 ssn,
u8 buf_size,
u8 event)
{
struct sk_buff *skb = NULL;
struct rsi_mac_frame *mgmt_frame;
u8 peer_id = 0;
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
if (event == STA_TX_ADDBA_DONE) {
mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
mgmt_frame->desc_word[7] =
cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
} else if (event == STA_RX_ADDBA_DONE) {
mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
mgmt_frame->desc_word[7] = cpu_to_le16(tid |
(START_AMPDU_AGGR << 4) |
(RX_BA_INDICATION << 5) |
(peer_id << 8));
} else if (event == STA_TX_DELBA) {
mgmt_frame->desc_word[7] = cpu_to_le16(tid |
(STOP_AMPDU_AGGR << 4) |
(peer_id << 8));
} else if (event == STA_RX_DELBA) {
mgmt_frame->desc_word[7] = cpu_to_le16(tid |
(STOP_AMPDU_AGGR << 4) |
(RX_BA_INDICATION << 5) |
(peer_id << 8));
}
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_program_bb_rf() - This function starts base band and RF programming.
* This is called after initial configurations are done.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
static int rsi_program_bb_rf(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_mac_frame *mgmt_frame;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
if (common->rf_reset) {
mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
__func__);
common->rf_reset = 0;
}
common->bb_rf_prog_count = 1;
mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
BBP_REG_WRITE | (RSI_RF_TYPE << 4));
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_set_vap_capabilities() - This function send vap capability to firmware.
* @common: Pointer to the driver private structure.
* @opmode: Operating mode of device.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
{
struct sk_buff *skb = NULL;
struct rsi_vap_caps *vap_caps;
struct rsi_hw *adapter = common->priv;
struct ieee80211_hw *hw = adapter->hw;
struct ieee80211_conf *conf = &hw->conf;
u16 vap_id = 0;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_vap_caps));
vap_caps = (struct rsi_vap_caps *)skb->data;
vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
FRAME_DESC_SZ) |
(RSI_WIFI_MGMT_Q << 12));
vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
vap_caps->desc_word[4] = cpu_to_le16(mode |
(common->channel_width << 8));
vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
(common->mac_id << 4) |
common->radio_id);
memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
vap_caps->keep_alive_period = cpu_to_le16(90);
vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
if (common->band == IEEE80211_BAND_5GHZ) {
vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
if (conf_is_ht40(&common->priv->hw->conf)) {
vap_caps->default_ctrl_rate |=
cpu_to_le32(FULL40M_ENABLE << 16);
}
} else {
vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
if (conf_is_ht40_minus(conf))
vap_caps->default_ctrl_rate |=
cpu_to_le32(UPPER_20_ENABLE << 16);
else if (conf_is_ht40_plus(conf))
vap_caps->default_ctrl_rate |=
cpu_to_le32(LOWER_20_ENABLE << 16);
}
vap_caps->default_data_rate = 0;
vap_caps->beacon_interval = cpu_to_le16(200);
vap_caps->dtim_period = cpu_to_le16(4);
skb_put(skb, sizeof(*vap_caps));
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_hal_load_key() - This function is used to load keys within the firmware.
* @common: Pointer to the driver private structure.
* @data: Pointer to the key data.
* @key_len: Key length to be loaded.
* @key_type: Type of key: GROUP/PAIRWISE.
* @key_id: Key index.
* @cipher: Type of cipher used.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_hal_load_key(struct rsi_common *common,
u8 *data,
u16 key_len,
u8 key_type,
u8 key_id,
u32 cipher)
{
struct sk_buff *skb = NULL;
struct rsi_set_key *set_key;
u16 key_descriptor = 0;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_set_key));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_set_key));
set_key = (struct rsi_set_key *)skb->data;
if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
(cipher == WLAN_CIPHER_SUITE_WEP104)) {
key_len += 1;
key_descriptor |= BIT(2);
if (key_len >= 13)
key_descriptor |= BIT(3);
} else if (cipher != KEY_TYPE_CLEAR) {
key_descriptor |= BIT(4);
if (key_type == RSI_PAIRWISE_KEY)
key_id = 0;
if (cipher == WLAN_CIPHER_SUITE_TKIP)
key_descriptor |= BIT(5);
}
key_descriptor |= (key_type | BIT(13) | (key_id << 14));
set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
FRAME_DESC_SZ) |
(RSI_WIFI_MGMT_Q << 12));
set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
set_key->desc_word[4] = cpu_to_le16(key_descriptor);
if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
(cipher == WLAN_CIPHER_SUITE_WEP104)) {
memcpy(&set_key->key[key_id][1],
data,
key_len * 2);
} else {
memcpy(&set_key->key[0][0], data, key_len);
}
memcpy(set_key->tx_mic_key, &data[16], 8);
memcpy(set_key->rx_mic_key, &data[24], 8);
skb_put(skb, sizeof(struct rsi_set_key));
return rsi_send_internal_mgmt_frame(common, skb);
}
/*
* rsi_load_bootup_params() - This function send bootup params to the firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_load_bootup_params(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_boot_params *boot_params;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_boot_params));
boot_params = (struct rsi_boot_params *)skb->data;
rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
if (common->channel_width == BW_40MHZ) {
memcpy(&boot_params->bootup_params,
&boot_params_40,
sizeof(struct bootup_params));
rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
UMAC_CLK_40BW);
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
} else {
memcpy(&boot_params->bootup_params,
&boot_params_20,
sizeof(struct bootup_params));
if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
rsi_dbg(MGMT_TX_ZONE,
"%s: Packet 20MHZ <=== %d\n", __func__,
UMAC_CLK_20BW);
} else {
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
rsi_dbg(MGMT_TX_ZONE,
"%s: Packet 20MHZ <=== %d\n", __func__,
UMAC_CLK_40MHZ);
}
}
/**
* Bit{0:11} indicates length of the Packet
* Bit{12:15} indicates host queue number
*/
boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
(RSI_WIFI_MGMT_Q << 12));
boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
skb_put(skb, sizeof(struct rsi_boot_params));
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_send_reset_mac() - This function prepares reset MAC request and sends an
* internal management frame to indicate it to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_send_reset_mac(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_mac_frame *mgmt_frame;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_band_check() - This function programs the band
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
int rsi_band_check(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_hw *hw = adapter->hw;
u8 prev_bw = common->channel_width;
u8 prev_ep = common->endpoint;
struct ieee80211_channel *curchan = hw->conf.chandef.chan;
int status = 0;
if (common->band != curchan->band) {
common->rf_reset = 1;
common->band = curchan->band;
}
if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
(hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
common->channel_width = BW_20MHZ;
else
common->channel_width = BW_40MHZ;
if (common->band == IEEE80211_BAND_2GHZ) {
if (common->channel_width)
common->endpoint = EP_2GHZ_40MHZ;
else
common->endpoint = EP_2GHZ_20MHZ;
} else {
if (common->channel_width)
common->endpoint = EP_5GHZ_40MHZ;
else
common->endpoint = EP_5GHZ_20MHZ;
}
if (common->endpoint != prev_ep) {
status = rsi_program_bb_rf(common);
if (status)
return status;
}
if (common->channel_width != prev_bw) {
status = rsi_load_bootup_params(common);
if (status)
return status;
status = rsi_load_radio_caps(common);
if (status)
return status;
}
return status;
}
/**
* rsi_set_channel() - This function programs the channel.
* @common: Pointer to the driver private structure.
* @channel: Channel value to be set.
*
* Return: 0 on success, corresponding error code on failure.
*/
int rsi_set_channel(struct rsi_common *common, u16 channel)
{
struct sk_buff *skb = NULL;
struct rsi_mac_frame *mgmt_frame;
rsi_dbg(MGMT_TX_ZONE,
"%s: Sending scan req frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
mgmt_frame->desc_word[4] = cpu_to_le16(channel);
mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
BBP_REG_WRITE |
(RSI_RF_TYPE << 4));
mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
if (common->channel_width == BW_40MHZ)
mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
common->channel = channel;
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_compare() - This function is used to compare two integers
* @a: pointer to the first integer
* @b: pointer to the second integer
*
* Return: 0 if both are equal, -1 if the first is smaller, else 1
*/
static int rsi_compare(const void *a, const void *b)
{
u16 _a = *(const u16 *)(a);
u16 _b = *(const u16 *)(b);
if (_a > _b)
return -1;
if (_a < _b)
return 1;
return 0;
}
/**
* rsi_map_rates() - This function is used to map selected rates to hw rates.
* @rate: The standard rate to be mapped.
* @offset: Offset that will be returned.
*
* Return: 0 if it is a mcs rate, else 1
*/
static bool rsi_map_rates(u16 rate, int *offset)
{
int kk;
for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
if (rate == mcs[kk]) {
*offset = kk;
return false;
}
}
for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
if (rate == rsi_rates[kk].bitrate / 5) {
*offset = kk;
break;
}
}
return true;
}
/**
* rsi_send_auto_rate_request() - This function is to set rates for connection
* and send autorate request to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_send_auto_rate_request(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_auto_rate *auto_rate;
int ii = 0, jj = 0, kk = 0;
struct ieee80211_hw *hw = common->priv->hw;
u8 band = hw->conf.chandef.chan->band;
u8 num_supported_rates = 0;
u8 rate_table_offset, rate_offset = 0;
u32 rate_bitmap = common->bitrate_mask[band];
u16 *selected_rates, min_rate;
skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
if (!selected_rates) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
__func__);
dev_kfree_skb(skb);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_auto_rate));
memset(selected_rates, 0, 2 * RSI_TBL_SZ);
auto_rate = (struct rsi_auto_rate *)skb->data;
auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
auto_rate->collision_tolerance = cpu_to_le16(3);
auto_rate->failure_limit = cpu_to_le16(3);
auto_rate->initial_boundary = cpu_to_le16(3);
auto_rate->max_threshold_limt = cpu_to_le16(27);
auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
if (common->channel_width == BW_40MHZ)
auto_rate->desc_word[7] |= cpu_to_le16(1);
if (band == IEEE80211_BAND_2GHZ) {
min_rate = RSI_RATE_1;
rate_table_offset = 0;
} else {
min_rate = RSI_RATE_6;
rate_table_offset = 4;
}
for (ii = 0, jj = 0;
ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
if (rate_bitmap & BIT(ii)) {
selected_rates[jj++] =
(rsi_rates[ii + rate_table_offset].bitrate / 5);
rate_offset++;
}
}
num_supported_rates = jj;
if (common->vif_info[0].is_ht) {
for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
selected_rates[jj++] = mcs[ii];
num_supported_rates += ARRAY_SIZE(mcs);
rate_offset += ARRAY_SIZE(mcs);
}
sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
/* mapping the rates to RSI rates */
for (ii = 0; ii < jj; ii++) {
if (rsi_map_rates(selected_rates[ii], &kk)) {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_rates[kk].hw_value);
} else {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[kk]);
}
}
/* loading HT rates in the bottom half of the auto rate table */
if (common->vif_info[0].is_ht) {
for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
if (common->vif_info[0].sgi ||
conf_is_ht40(&common->priv->hw->conf))
auto_rate->supported_rates[ii++] =
cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[kk--]);
}
for (; ii < (RSI_TBL_SZ - 1); ii++) {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[0]);
}
}
for (; ii < RSI_TBL_SZ; ii++)
auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
num_supported_rates *= 2;
auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
FRAME_DESC_SZ) |
(RSI_WIFI_MGMT_Q << 12));
skb_put(skb,
sizeof(struct rsi_auto_rate));
kfree(selected_rates);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_inform_bss_status() - This function informs about bss status with the
* help of sta notify params by sending an internal
* management frame to firmware.
* @common: Pointer to the driver private structure.
* @status: Bss status type.
* @bssid: Bssid.
* @qos_enable: Qos is enabled.
* @aid: Aid (unique for all STAs).
*
* Return: None.
*/
void rsi_inform_bss_status(struct rsi_common *common,
u8 status,
const unsigned char *bssid,
u8 qos_enable,
u16 aid)
{
if (status) {
rsi_hal_send_sta_notify_frame(common,
RSI_IFTYPE_STATION,
STA_CONNECTED,
bssid,
qos_enable,
aid);
if (common->min_rate == 0xffff)
rsi_send_auto_rate_request(common);
} else {
rsi_hal_send_sta_notify_frame(common,
RSI_IFTYPE_STATION,
STA_DISCONNECTED,
bssid,
qos_enable,
aid);
}
}
/**
* rsi_eeprom_read() - This function sends a frame to read the mac address
* from the eeprom.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_eeprom_read(struct rsi_common *common)
{
struct rsi_mac_frame *mgmt_frame;
struct sk_buff *skb;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
/* FrameType */
mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
/* Number of bytes to read */
mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
WLAN_MAC_MAGIC_WORD_LEN +
WLAN_HOST_MODE_LEN +
WLAN_FW_VERSION_LEN);
/* Address to read */
mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* This function sends a frame to block/unblock
* data queues in the firmware
*
* @param common Pointer to the driver private structure.
* @param block event - block if true, unblock if false
* @return 0 on success, -1 on failure.
*/
int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
{
struct rsi_mac_frame *mgmt_frame;
struct sk_buff *skb;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
if (block_event == true) {
rsi_dbg(INFO_ZONE, "blocking the data qs\n");
mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
} else {
rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
}
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_handle_ta_confirm_type() - This function handles the confirm frames.
* @common: Pointer to the driver private structure.
* @msg: Pointer to received packet.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_handle_ta_confirm_type(struct rsi_common *common,
u8 *msg)
{
u8 sub_type = (msg[15] & 0xff);
switch (sub_type) {
case BOOTUP_PARAMS_REQUEST:
rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
__func__);
if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
if (rsi_eeprom_read(common)) {
common->fsm_state = FSM_CARD_NOT_READY;
goto out;
} else {
common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
}
} else {
rsi_dbg(INFO_ZONE,
"%s: Received bootup params cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case EEPROM_READ_TYPE:
if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
if (msg[16] == MAGIC_WORD) {
u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
+ WLAN_MAC_MAGIC_WORD_LEN);
memcpy(common->mac_addr,
&msg[offset],
ETH_ALEN);
memcpy(&common->fw_ver,
&msg[offset + ETH_ALEN],
sizeof(struct version_info));
} else {
common->fsm_state = FSM_CARD_NOT_READY;
break;
}
if (rsi_send_reset_mac(common))
goto out;
else
common->fsm_state = FSM_RESET_MAC_SENT;
} else {
rsi_dbg(ERR_ZONE,
"%s: Received eeprom mac addr in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case RESET_MAC_REQ:
if (common->fsm_state == FSM_RESET_MAC_SENT) {
rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
__func__);
if (rsi_load_radio_caps(common))
goto out;
else
common->fsm_state = FSM_RADIO_CAPS_SENT;
} else {
rsi_dbg(ERR_ZONE,
"%s: Received reset mac cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case RADIO_CAPABILITIES:
if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
common->rf_reset = 1;
if (rsi_program_bb_rf(common)) {
goto out;
} else {
common->fsm_state = FSM_BB_RF_PROG_SENT;
rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
__func__);
}
} else {
rsi_dbg(INFO_ZONE,
"%s: Received radio caps cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case BB_PROG_VALUES_REQUEST:
case RF_PROG_VALUES_REQUEST:
case BBP_PROG_IN_TA:
rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
common->bb_rf_prog_count--;
if (!common->bb_rf_prog_count) {
common->fsm_state = FSM_MAC_INIT_DONE;
return rsi_mac80211_attach(common);
}
} else {
rsi_dbg(INFO_ZONE,
"%s: Received bbb_rf cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
default:
rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
__func__);
break;
}
return 0;
out:
rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
__func__);
return -EINVAL;
}
/**
* rsi_mgmt_pkt_recv() - This function processes the management packets
* recieved from the hardware.
* @common: Pointer to the driver private structure.
* @msg: Pointer to the received packet.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
{
s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
u16 msg_type = (msg[2]);
int ret;
rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
__func__, msg_len, msg_type);
if (msg_type == TA_CONFIRM_TYPE) {
return rsi_handle_ta_confirm_type(common, msg);
} else if (msg_type == CARD_READY_IND) {
rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
__func__);
if (common->fsm_state == FSM_CARD_NOT_READY) {
rsi_set_default_parameters(common);
ret = rsi_load_bootup_params(common);
if (ret)
return ret;
else
common->fsm_state = FSM_BOOT_PARAMS_SENT;
} else {
return -EINVAL;
}
} else if (msg_type == TX_STATUS_IND) {
if (msg[15] == PROBEREQ_CONFIRM) {
common->mgmt_q_block = false;
rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
__func__);
}
} else {
return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
}
return 0;
}