| /* -*- mode: c; c-basic-offset: 8; -*- |
| * vim: noexpandtab sw=8 ts=8 sts=0: |
| * |
| * uptodate.c |
| * |
| * Tracking the up-to-date-ness of a local buffer_head with respect to |
| * the cluster. |
| * |
| * Copyright (C) 2002, 2004, 2005 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| * |
| * Standard buffer head caching flags (uptodate, etc) are insufficient |
| * in a clustered environment - a buffer may be marked up to date on |
| * our local node but could have been modified by another cluster |
| * member. As a result an additional (and performant) caching scheme |
| * is required. A further requirement is that we consume as little |
| * memory as possible - we never pin buffer_head structures in order |
| * to cache them. |
| * |
| * We track the existence of up to date buffers on the inodes which |
| * are associated with them. Because we don't want to pin |
| * buffer_heads, this is only a (strong) hint and several other checks |
| * are made in the I/O path to ensure that we don't use a stale or |
| * invalid buffer without going to disk: |
| * - buffer_jbd is used liberally - if a bh is in the journal on |
| * this node then it *must* be up to date. |
| * - the standard buffer_uptodate() macro is used to detect buffers |
| * which may be invalid (even if we have an up to date tracking |
| * item for them) |
| * |
| * For a full understanding of how this code works together, one |
| * should read the callers in dlmglue.c, the I/O functions in |
| * buffer_head_io.c and ocfs2_journal_access in journal.c |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> |
| #include <linux/buffer_head.h> |
| #include <linux/rbtree.h> |
| #include <linux/jbd.h> |
| |
| #define MLOG_MASK_PREFIX ML_UPTODATE |
| |
| #include <cluster/masklog.h> |
| |
| #include "ocfs2.h" |
| |
| #include "inode.h" |
| #include "uptodate.h" |
| |
| struct ocfs2_meta_cache_item { |
| struct rb_node c_node; |
| sector_t c_block; |
| }; |
| |
| static struct kmem_cache *ocfs2_uptodate_cachep = NULL; |
| |
| void ocfs2_metadata_cache_init(struct inode *inode) |
| { |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| |
| oi->ip_flags |= OCFS2_INODE_CACHE_INLINE; |
| ci->ci_num_cached = 0; |
| } |
| |
| /* No lock taken here as 'root' is not expected to be visible to other |
| * processes. */ |
| static unsigned int ocfs2_purge_copied_metadata_tree(struct rb_root *root) |
| { |
| unsigned int purged = 0; |
| struct rb_node *node; |
| struct ocfs2_meta_cache_item *item; |
| |
| while ((node = rb_last(root)) != NULL) { |
| item = rb_entry(node, struct ocfs2_meta_cache_item, c_node); |
| |
| mlog(0, "Purge item %llu\n", |
| (unsigned long long) item->c_block); |
| |
| rb_erase(&item->c_node, root); |
| kmem_cache_free(ocfs2_uptodate_cachep, item); |
| |
| purged++; |
| } |
| return purged; |
| } |
| |
| /* Called from locking and called from ocfs2_clear_inode. Dump the |
| * cache for a given inode. |
| * |
| * This function is a few more lines longer than necessary due to some |
| * accounting done here, but I think it's worth tracking down those |
| * bugs sooner -- Mark */ |
| void ocfs2_metadata_cache_purge(struct inode *inode) |
| { |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| unsigned int tree, to_purge, purged; |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| struct rb_root root = RB_ROOT; |
| |
| spin_lock(&oi->ip_lock); |
| tree = !(oi->ip_flags & OCFS2_INODE_CACHE_INLINE); |
| to_purge = ci->ci_num_cached; |
| |
| mlog(0, "Purge %u %s items from Inode %llu\n", to_purge, |
| tree ? "array" : "tree", (unsigned long long)oi->ip_blkno); |
| |
| /* If we're a tree, save off the root so that we can safely |
| * initialize the cache. We do the work to free tree members |
| * without the spinlock. */ |
| if (tree) |
| root = ci->ci_cache.ci_tree; |
| |
| ocfs2_metadata_cache_init(inode); |
| spin_unlock(&oi->ip_lock); |
| |
| purged = ocfs2_purge_copied_metadata_tree(&root); |
| /* If possible, track the number wiped so that we can more |
| * easily detect counting errors. Unfortunately, this is only |
| * meaningful for trees. */ |
| if (tree && purged != to_purge) |
| mlog(ML_ERROR, "Inode %llu, count = %u, purged = %u\n", |
| (unsigned long long)oi->ip_blkno, to_purge, purged); |
| } |
| |
| /* Returns the index in the cache array, -1 if not found. |
| * Requires ip_lock. */ |
| static int ocfs2_search_cache_array(struct ocfs2_caching_info *ci, |
| sector_t item) |
| { |
| int i; |
| |
| for (i = 0; i < ci->ci_num_cached; i++) { |
| if (item == ci->ci_cache.ci_array[i]) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /* Returns the cache item if found, otherwise NULL. |
| * Requires ip_lock. */ |
| static struct ocfs2_meta_cache_item * |
| ocfs2_search_cache_tree(struct ocfs2_caching_info *ci, |
| sector_t block) |
| { |
| struct rb_node * n = ci->ci_cache.ci_tree.rb_node; |
| struct ocfs2_meta_cache_item *item = NULL; |
| |
| while (n) { |
| item = rb_entry(n, struct ocfs2_meta_cache_item, c_node); |
| |
| if (block < item->c_block) |
| n = n->rb_left; |
| else if (block > item->c_block) |
| n = n->rb_right; |
| else |
| return item; |
| } |
| |
| return NULL; |
| } |
| |
| static int ocfs2_buffer_cached(struct ocfs2_inode_info *oi, |
| struct buffer_head *bh) |
| { |
| int index = -1; |
| struct ocfs2_meta_cache_item *item = NULL; |
| |
| spin_lock(&oi->ip_lock); |
| |
| mlog(0, "Inode %llu, query block %llu (inline = %u)\n", |
| (unsigned long long)oi->ip_blkno, |
| (unsigned long long) bh->b_blocknr, |
| !!(oi->ip_flags & OCFS2_INODE_CACHE_INLINE)); |
| |
| if (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) |
| index = ocfs2_search_cache_array(&oi->ip_metadata_cache, |
| bh->b_blocknr); |
| else |
| item = ocfs2_search_cache_tree(&oi->ip_metadata_cache, |
| bh->b_blocknr); |
| |
| spin_unlock(&oi->ip_lock); |
| |
| mlog(0, "index = %d, item = %p\n", index, item); |
| |
| return (index != -1) || (item != NULL); |
| } |
| |
| /* Warning: even if it returns true, this does *not* guarantee that |
| * the block is stored in our inode metadata cache. |
| * |
| * This can be called under lock_buffer() |
| */ |
| int ocfs2_buffer_uptodate(struct inode *inode, |
| struct buffer_head *bh) |
| { |
| /* Doesn't matter if the bh is in our cache or not -- if it's |
| * not marked uptodate then we know it can't have correct |
| * data. */ |
| if (!buffer_uptodate(bh)) |
| return 0; |
| |
| /* OCFS2 does not allow multiple nodes to be changing the same |
| * block at the same time. */ |
| if (buffer_jbd(bh)) |
| return 1; |
| |
| /* Ok, locally the buffer is marked as up to date, now search |
| * our cache to see if we can trust that. */ |
| return ocfs2_buffer_cached(OCFS2_I(inode), bh); |
| } |
| |
| /* |
| * Determine whether a buffer is currently out on a read-ahead request. |
| * ip_io_sem should be held to serialize submitters with the logic here. |
| */ |
| int ocfs2_buffer_read_ahead(struct inode *inode, |
| struct buffer_head *bh) |
| { |
| return buffer_locked(bh) && ocfs2_buffer_cached(OCFS2_I(inode), bh); |
| } |
| |
| /* Requires ip_lock */ |
| static void ocfs2_append_cache_array(struct ocfs2_caching_info *ci, |
| sector_t block) |
| { |
| BUG_ON(ci->ci_num_cached >= OCFS2_INODE_MAX_CACHE_ARRAY); |
| |
| mlog(0, "block %llu takes position %u\n", (unsigned long long) block, |
| ci->ci_num_cached); |
| |
| ci->ci_cache.ci_array[ci->ci_num_cached] = block; |
| ci->ci_num_cached++; |
| } |
| |
| /* By now the caller should have checked that the item does *not* |
| * exist in the tree. |
| * Requires ip_lock. */ |
| static void __ocfs2_insert_cache_tree(struct ocfs2_caching_info *ci, |
| struct ocfs2_meta_cache_item *new) |
| { |
| sector_t block = new->c_block; |
| struct rb_node *parent = NULL; |
| struct rb_node **p = &ci->ci_cache.ci_tree.rb_node; |
| struct ocfs2_meta_cache_item *tmp; |
| |
| mlog(0, "Insert block %llu num = %u\n", (unsigned long long) block, |
| ci->ci_num_cached); |
| |
| while(*p) { |
| parent = *p; |
| |
| tmp = rb_entry(parent, struct ocfs2_meta_cache_item, c_node); |
| |
| if (block < tmp->c_block) |
| p = &(*p)->rb_left; |
| else if (block > tmp->c_block) |
| p = &(*p)->rb_right; |
| else { |
| /* This should never happen! */ |
| mlog(ML_ERROR, "Duplicate block %llu cached!\n", |
| (unsigned long long) block); |
| BUG(); |
| } |
| } |
| |
| rb_link_node(&new->c_node, parent, p); |
| rb_insert_color(&new->c_node, &ci->ci_cache.ci_tree); |
| ci->ci_num_cached++; |
| } |
| |
| static inline int ocfs2_insert_can_use_array(struct ocfs2_inode_info *oi, |
| struct ocfs2_caching_info *ci) |
| { |
| assert_spin_locked(&oi->ip_lock); |
| |
| return (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) && |
| (ci->ci_num_cached < OCFS2_INODE_MAX_CACHE_ARRAY); |
| } |
| |
| /* tree should be exactly OCFS2_INODE_MAX_CACHE_ARRAY wide. NULL the |
| * pointers in tree after we use them - this allows caller to detect |
| * when to free in case of error. */ |
| static void ocfs2_expand_cache(struct ocfs2_inode_info *oi, |
| struct ocfs2_meta_cache_item **tree) |
| { |
| int i; |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| |
| mlog_bug_on_msg(ci->ci_num_cached != OCFS2_INODE_MAX_CACHE_ARRAY, |
| "Inode %llu, num cached = %u, should be %u\n", |
| (unsigned long long)oi->ip_blkno, ci->ci_num_cached, |
| OCFS2_INODE_MAX_CACHE_ARRAY); |
| mlog_bug_on_msg(!(oi->ip_flags & OCFS2_INODE_CACHE_INLINE), |
| "Inode %llu not marked as inline anymore!\n", |
| (unsigned long long)oi->ip_blkno); |
| assert_spin_locked(&oi->ip_lock); |
| |
| /* Be careful to initialize the tree members *first* because |
| * once the ci_tree is used, the array is junk... */ |
| for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) |
| tree[i]->c_block = ci->ci_cache.ci_array[i]; |
| |
| oi->ip_flags &= ~OCFS2_INODE_CACHE_INLINE; |
| ci->ci_cache.ci_tree = RB_ROOT; |
| /* this will be set again by __ocfs2_insert_cache_tree */ |
| ci->ci_num_cached = 0; |
| |
| for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) { |
| __ocfs2_insert_cache_tree(ci, tree[i]); |
| tree[i] = NULL; |
| } |
| |
| mlog(0, "Expanded %llu to a tree cache: flags 0x%x, num = %u\n", |
| (unsigned long long)oi->ip_blkno, oi->ip_flags, ci->ci_num_cached); |
| } |
| |
| /* Slow path function - memory allocation is necessary. See the |
| * comment above ocfs2_set_buffer_uptodate for more information. */ |
| static void __ocfs2_set_buffer_uptodate(struct ocfs2_inode_info *oi, |
| sector_t block, |
| int expand_tree) |
| { |
| int i; |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| struct ocfs2_meta_cache_item *new = NULL; |
| struct ocfs2_meta_cache_item *tree[OCFS2_INODE_MAX_CACHE_ARRAY] = |
| { NULL, }; |
| |
| mlog(0, "Inode %llu, block %llu, expand = %d\n", |
| (unsigned long long)oi->ip_blkno, |
| (unsigned long long)block, expand_tree); |
| |
| new = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS); |
| if (!new) { |
| mlog_errno(-ENOMEM); |
| return; |
| } |
| new->c_block = block; |
| |
| if (expand_tree) { |
| /* Do *not* allocate an array here - the removal code |
| * has no way of tracking that. */ |
| for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) { |
| tree[i] = kmem_cache_alloc(ocfs2_uptodate_cachep, |
| GFP_NOFS); |
| if (!tree[i]) { |
| mlog_errno(-ENOMEM); |
| goto out_free; |
| } |
| |
| /* These are initialized in ocfs2_expand_cache! */ |
| } |
| } |
| |
| spin_lock(&oi->ip_lock); |
| if (ocfs2_insert_can_use_array(oi, ci)) { |
| mlog(0, "Someone cleared the tree underneath us\n"); |
| /* Ok, items were removed from the cache in between |
| * locks. Detect this and revert back to the fast path */ |
| ocfs2_append_cache_array(ci, block); |
| spin_unlock(&oi->ip_lock); |
| goto out_free; |
| } |
| |
| if (expand_tree) |
| ocfs2_expand_cache(oi, tree); |
| |
| __ocfs2_insert_cache_tree(ci, new); |
| spin_unlock(&oi->ip_lock); |
| |
| new = NULL; |
| out_free: |
| if (new) |
| kmem_cache_free(ocfs2_uptodate_cachep, new); |
| |
| /* If these were used, then ocfs2_expand_cache re-set them to |
| * NULL for us. */ |
| if (tree[0]) { |
| for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) |
| if (tree[i]) |
| kmem_cache_free(ocfs2_uptodate_cachep, |
| tree[i]); |
| } |
| } |
| |
| /* Item insertion is guarded by ip_io_mutex, so the insertion path takes |
| * advantage of this by not rechecking for a duplicate insert during |
| * the slow case. Additionally, if the cache needs to be bumped up to |
| * a tree, the code will not recheck after acquiring the lock -- |
| * multiple paths cannot be expanding to a tree at the same time. |
| * |
| * The slow path takes into account that items can be removed |
| * (including the whole tree wiped and reset) when this process it out |
| * allocating memory. In those cases, it reverts back to the fast |
| * path. |
| * |
| * Note that this function may actually fail to insert the block if |
| * memory cannot be allocated. This is not fatal however (but may |
| * result in a performance penalty) |
| * |
| * Readahead buffers can be passed in here before the I/O request is |
| * completed. |
| */ |
| void ocfs2_set_buffer_uptodate(struct inode *inode, |
| struct buffer_head *bh) |
| { |
| int expand; |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| |
| /* The block may very well exist in our cache already, so avoid |
| * doing any more work in that case. */ |
| if (ocfs2_buffer_cached(oi, bh)) |
| return; |
| |
| mlog(0, "Inode %llu, inserting block %llu\n", |
| (unsigned long long)oi->ip_blkno, |
| (unsigned long long)bh->b_blocknr); |
| |
| /* No need to recheck under spinlock - insertion is guarded by |
| * ip_io_mutex */ |
| spin_lock(&oi->ip_lock); |
| if (ocfs2_insert_can_use_array(oi, ci)) { |
| /* Fast case - it's an array and there's a free |
| * spot. */ |
| ocfs2_append_cache_array(ci, bh->b_blocknr); |
| spin_unlock(&oi->ip_lock); |
| return; |
| } |
| |
| expand = 0; |
| if (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) { |
| /* We need to bump things up to a tree. */ |
| expand = 1; |
| } |
| spin_unlock(&oi->ip_lock); |
| |
| __ocfs2_set_buffer_uptodate(oi, bh->b_blocknr, expand); |
| } |
| |
| /* Called against a newly allocated buffer. Most likely nobody should |
| * be able to read this sort of metadata while it's still being |
| * allocated, but this is careful to take ip_io_mutex anyway. */ |
| void ocfs2_set_new_buffer_uptodate(struct inode *inode, |
| struct buffer_head *bh) |
| { |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| |
| /* This should definitely *not* exist in our cache */ |
| BUG_ON(ocfs2_buffer_cached(oi, bh)); |
| |
| set_buffer_uptodate(bh); |
| |
| mutex_lock(&oi->ip_io_mutex); |
| ocfs2_set_buffer_uptodate(inode, bh); |
| mutex_unlock(&oi->ip_io_mutex); |
| } |
| |
| /* Requires ip_lock. */ |
| static void ocfs2_remove_metadata_array(struct ocfs2_caching_info *ci, |
| int index) |
| { |
| sector_t *array = ci->ci_cache.ci_array; |
| int bytes; |
| |
| BUG_ON(index < 0 || index >= OCFS2_INODE_MAX_CACHE_ARRAY); |
| BUG_ON(index >= ci->ci_num_cached); |
| BUG_ON(!ci->ci_num_cached); |
| |
| mlog(0, "remove index %d (num_cached = %u\n", index, |
| ci->ci_num_cached); |
| |
| ci->ci_num_cached--; |
| |
| /* don't need to copy if the array is now empty, or if we |
| * removed at the tail */ |
| if (ci->ci_num_cached && index < ci->ci_num_cached) { |
| bytes = sizeof(sector_t) * (ci->ci_num_cached - index); |
| memmove(&array[index], &array[index + 1], bytes); |
| } |
| } |
| |
| /* Requires ip_lock. */ |
| static void ocfs2_remove_metadata_tree(struct ocfs2_caching_info *ci, |
| struct ocfs2_meta_cache_item *item) |
| { |
| mlog(0, "remove block %llu from tree\n", |
| (unsigned long long) item->c_block); |
| |
| rb_erase(&item->c_node, &ci->ci_cache.ci_tree); |
| ci->ci_num_cached--; |
| } |
| |
| /* Called when we remove a chunk of metadata from an inode. We don't |
| * bother reverting things to an inlined array in the case of a remove |
| * which moves us back under the limit. */ |
| void ocfs2_remove_from_cache(struct inode *inode, |
| struct buffer_head *bh) |
| { |
| int index; |
| sector_t block = bh->b_blocknr; |
| struct ocfs2_meta_cache_item *item = NULL; |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; |
| |
| spin_lock(&oi->ip_lock); |
| mlog(0, "Inode %llu, remove %llu, items = %u, array = %u\n", |
| (unsigned long long)oi->ip_blkno, |
| (unsigned long long) block, ci->ci_num_cached, |
| oi->ip_flags & OCFS2_INODE_CACHE_INLINE); |
| |
| if (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) { |
| index = ocfs2_search_cache_array(ci, block); |
| if (index != -1) |
| ocfs2_remove_metadata_array(ci, index); |
| } else { |
| item = ocfs2_search_cache_tree(ci, block); |
| if (item) |
| ocfs2_remove_metadata_tree(ci, item); |
| } |
| spin_unlock(&oi->ip_lock); |
| |
| if (item) |
| kmem_cache_free(ocfs2_uptodate_cachep, item); |
| } |
| |
| int __init init_ocfs2_uptodate_cache(void) |
| { |
| ocfs2_uptodate_cachep = kmem_cache_create("ocfs2_uptodate", |
| sizeof(struct ocfs2_meta_cache_item), |
| 0, SLAB_HWCACHE_ALIGN, NULL, NULL); |
| if (!ocfs2_uptodate_cachep) |
| return -ENOMEM; |
| |
| mlog(0, "%u inlined cache items per inode.\n", |
| OCFS2_INODE_MAX_CACHE_ARRAY); |
| |
| return 0; |
| } |
| |
| void exit_ocfs2_uptodate_cache(void) |
| { |
| if (ocfs2_uptodate_cachep) |
| kmem_cache_destroy(ocfs2_uptodate_cachep); |
| } |