| /* |
| * skl-topology.c - Implements Platform component ALSA controls/widget |
| * handlers. |
| * |
| * Copyright (C) 2014-2015 Intel Corp |
| * Author: Jeeja KP <jeeja.kp@intel.com> |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/firmware.h> |
| #include <sound/soc.h> |
| #include <sound/soc-topology.h> |
| #include "skl-sst-dsp.h" |
| #include "skl-sst-ipc.h" |
| #include "skl-topology.h" |
| #include "skl.h" |
| #include "skl-tplg-interface.h" |
| |
| #define SKL_CH_FIXUP_MASK (1 << 0) |
| #define SKL_RATE_FIXUP_MASK (1 << 1) |
| #define SKL_FMT_FIXUP_MASK (1 << 2) |
| |
| /* |
| * SKL DSP driver modelling uses only few DAPM widgets so for rest we will |
| * ignore. This helpers checks if the SKL driver handles this widget type |
| */ |
| static int is_skl_dsp_widget_type(struct snd_soc_dapm_widget *w) |
| { |
| switch (w->id) { |
| case snd_soc_dapm_dai_link: |
| case snd_soc_dapm_dai_in: |
| case snd_soc_dapm_aif_in: |
| case snd_soc_dapm_aif_out: |
| case snd_soc_dapm_dai_out: |
| case snd_soc_dapm_switch: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /* |
| * Each pipelines needs memory to be allocated. Check if we have free memory |
| * from available pool. Then only add this to pool |
| * This is freed when pipe is deleted |
| * Note: DSP does actual memory management we only keep track for complete |
| * pool |
| */ |
| static bool skl_tplg_alloc_pipe_mem(struct skl *skl, |
| struct skl_module_cfg *mconfig) |
| { |
| struct skl_sst *ctx = skl->skl_sst; |
| |
| if (skl->resource.mem + mconfig->pipe->memory_pages > |
| skl->resource.max_mem) { |
| dev_err(ctx->dev, |
| "%s: module_id %d instance %d\n", __func__, |
| mconfig->id.module_id, |
| mconfig->id.instance_id); |
| dev_err(ctx->dev, |
| "exceeds ppl memory available %d mem %d\n", |
| skl->resource.max_mem, skl->resource.mem); |
| return false; |
| } |
| |
| skl->resource.mem += mconfig->pipe->memory_pages; |
| return true; |
| } |
| |
| /* |
| * Pipeline needs needs DSP CPU resources for computation, this is |
| * quantified in MCPS (Million Clocks Per Second) required for module/pipe |
| * |
| * Each pipelines needs mcps to be allocated. Check if we have mcps for this |
| * pipe. This adds the mcps to driver counter |
| * This is removed on pipeline delete |
| */ |
| static bool skl_tplg_alloc_pipe_mcps(struct skl *skl, |
| struct skl_module_cfg *mconfig) |
| { |
| struct skl_sst *ctx = skl->skl_sst; |
| |
| if (skl->resource.mcps + mconfig->mcps > skl->resource.max_mcps) { |
| dev_err(ctx->dev, |
| "%s: module_id %d instance %d\n", __func__, |
| mconfig->id.module_id, mconfig->id.instance_id); |
| dev_err(ctx->dev, |
| "exceeds ppl memory available %d > mem %d\n", |
| skl->resource.max_mcps, skl->resource.mcps); |
| return false; |
| } |
| |
| skl->resource.mcps += mconfig->mcps; |
| return true; |
| } |
| |
| /* |
| * Free the mcps when tearing down |
| */ |
| static void |
| skl_tplg_free_pipe_mcps(struct skl *skl, struct skl_module_cfg *mconfig) |
| { |
| skl->resource.mcps -= mconfig->mcps; |
| } |
| |
| /* |
| * Free the memory when tearing down |
| */ |
| static void |
| skl_tplg_free_pipe_mem(struct skl *skl, struct skl_module_cfg *mconfig) |
| { |
| skl->resource.mem -= mconfig->pipe->memory_pages; |
| } |
| |
| |
| static void skl_dump_mconfig(struct skl_sst *ctx, |
| struct skl_module_cfg *mcfg) |
| { |
| dev_dbg(ctx->dev, "Dumping config\n"); |
| dev_dbg(ctx->dev, "Input Format:\n"); |
| dev_dbg(ctx->dev, "channels = %d\n", mcfg->in_fmt.channels); |
| dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->in_fmt.s_freq); |
| dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->in_fmt.ch_cfg); |
| dev_dbg(ctx->dev, "valid bit depth = %d\n", |
| mcfg->in_fmt.valid_bit_depth); |
| dev_dbg(ctx->dev, "Output Format:\n"); |
| dev_dbg(ctx->dev, "channels = %d\n", mcfg->out_fmt.channels); |
| dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->out_fmt.s_freq); |
| dev_dbg(ctx->dev, "valid bit depth = %d\n", |
| mcfg->out_fmt.valid_bit_depth); |
| dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->out_fmt.ch_cfg); |
| } |
| |
| static void skl_tplg_update_params(struct skl_module_fmt *fmt, |
| struct skl_pipe_params *params, int fixup) |
| { |
| if (fixup & SKL_RATE_FIXUP_MASK) |
| fmt->s_freq = params->s_freq; |
| if (fixup & SKL_CH_FIXUP_MASK) |
| fmt->channels = params->ch; |
| if (fixup & SKL_FMT_FIXUP_MASK) |
| fmt->valid_bit_depth = params->s_fmt; |
| } |
| |
| /* |
| * A pipeline may have modules which impact the pcm parameters, like SRC, |
| * channel converter, format converter. |
| * We need to calculate the output params by applying the 'fixup' |
| * Topology will tell driver which type of fixup is to be applied by |
| * supplying the fixup mask, so based on that we calculate the output |
| * |
| * Now In FE the pcm hw_params is source/target format. Same is applicable |
| * for BE with its hw_params invoked. |
| * here based on FE, BE pipeline and direction we calculate the input and |
| * outfix and then apply that for a module |
| */ |
| static void skl_tplg_update_params_fixup(struct skl_module_cfg *m_cfg, |
| struct skl_pipe_params *params, bool is_fe) |
| { |
| int in_fixup, out_fixup; |
| struct skl_module_fmt *in_fmt, *out_fmt; |
| |
| in_fmt = &m_cfg->in_fmt; |
| out_fmt = &m_cfg->out_fmt; |
| |
| if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| if (is_fe) { |
| in_fixup = m_cfg->params_fixup; |
| out_fixup = (~m_cfg->converter) & |
| m_cfg->params_fixup; |
| } else { |
| out_fixup = m_cfg->params_fixup; |
| in_fixup = (~m_cfg->converter) & |
| m_cfg->params_fixup; |
| } |
| } else { |
| if (is_fe) { |
| out_fixup = m_cfg->params_fixup; |
| in_fixup = (~m_cfg->converter) & |
| m_cfg->params_fixup; |
| } else { |
| in_fixup = m_cfg->params_fixup; |
| out_fixup = (~m_cfg->converter) & |
| m_cfg->params_fixup; |
| } |
| } |
| |
| skl_tplg_update_params(in_fmt, params, in_fixup); |
| skl_tplg_update_params(out_fmt, params, out_fixup); |
| } |
| |
| /* |
| * A module needs input and output buffers, which are dependent upon pcm |
| * params, so once we have calculate params, we need buffer calculation as |
| * well. |
| */ |
| static void skl_tplg_update_buffer_size(struct skl_sst *ctx, |
| struct skl_module_cfg *mcfg) |
| { |
| int multiplier = 1; |
| |
| if (mcfg->m_type == SKL_MODULE_TYPE_SRCINT) |
| multiplier = 5; |
| |
| mcfg->ibs = (mcfg->in_fmt.s_freq / 1000) * |
| (mcfg->in_fmt.channels) * |
| (mcfg->in_fmt.bit_depth >> 3) * |
| multiplier; |
| |
| mcfg->obs = (mcfg->out_fmt.s_freq / 1000) * |
| (mcfg->out_fmt.channels) * |
| (mcfg->out_fmt.bit_depth >> 3) * |
| multiplier; |
| } |
| |
| static void skl_tplg_update_module_params(struct snd_soc_dapm_widget *w, |
| struct skl_sst *ctx) |
| { |
| struct skl_module_cfg *m_cfg = w->priv; |
| struct skl_pipe_params *params = m_cfg->pipe->p_params; |
| int p_conn_type = m_cfg->pipe->conn_type; |
| bool is_fe; |
| |
| if (!m_cfg->params_fixup) |
| return; |
| |
| dev_dbg(ctx->dev, "Mconfig for widget=%s BEFORE updation\n", |
| w->name); |
| |
| skl_dump_mconfig(ctx, m_cfg); |
| |
| if (p_conn_type == SKL_PIPE_CONN_TYPE_FE) |
| is_fe = true; |
| else |
| is_fe = false; |
| |
| skl_tplg_update_params_fixup(m_cfg, params, is_fe); |
| skl_tplg_update_buffer_size(ctx, m_cfg); |
| |
| dev_dbg(ctx->dev, "Mconfig for widget=%s AFTER updation\n", |
| w->name); |
| |
| skl_dump_mconfig(ctx, m_cfg); |
| } |
| |
| /* |
| * A pipe can have multiple modules, each of them will be a DAPM widget as |
| * well. While managing a pipeline we need to get the list of all the |
| * widgets in a pipelines, so this helper - skl_tplg_get_pipe_widget() helps |
| * to get the SKL type widgets in that pipeline |
| */ |
| static int skl_tplg_alloc_pipe_widget(struct device *dev, |
| struct snd_soc_dapm_widget *w, struct skl_pipe *pipe) |
| { |
| struct skl_module_cfg *src_module = NULL; |
| struct snd_soc_dapm_path *p = NULL; |
| struct skl_pipe_module *p_module = NULL; |
| |
| p_module = devm_kzalloc(dev, sizeof(*p_module), GFP_KERNEL); |
| if (!p_module) |
| return -ENOMEM; |
| |
| p_module->w = w; |
| list_add_tail(&p_module->node, &pipe->w_list); |
| |
| snd_soc_dapm_widget_for_each_sink_path(w, p) { |
| if ((p->sink->priv == NULL) |
| && (!is_skl_dsp_widget_type(w))) |
| continue; |
| |
| if ((p->sink->priv != NULL) && p->connect |
| && is_skl_dsp_widget_type(p->sink)) { |
| |
| src_module = p->sink->priv; |
| if (pipe->ppl_id == src_module->pipe->ppl_id) |
| skl_tplg_alloc_pipe_widget(dev, |
| p->sink, pipe); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Inside a pipe instance, we can have various modules. These modules need |
| * to instantiated in DSP by invoking INIT_MODULE IPC, which is achieved by |
| * skl_init_module() routine, so invoke that for all modules in a pipeline |
| */ |
| static int |
| skl_tplg_init_pipe_modules(struct skl *skl, struct skl_pipe *pipe) |
| { |
| struct skl_pipe_module *w_module; |
| struct snd_soc_dapm_widget *w; |
| struct skl_module_cfg *mconfig; |
| struct skl_sst *ctx = skl->skl_sst; |
| int ret = 0; |
| |
| list_for_each_entry(w_module, &pipe->w_list, node) { |
| w = w_module->w; |
| mconfig = w->priv; |
| |
| /* check resource available */ |
| if (!skl_tplg_alloc_pipe_mcps(skl, mconfig)) |
| return -ENOMEM; |
| |
| /* |
| * apply fix/conversion to module params based on |
| * FE/BE params |
| */ |
| skl_tplg_update_module_params(w, ctx); |
| ret = skl_init_module(ctx, mconfig, NULL); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Mixer module represents a pipeline. So in the Pre-PMU event of mixer we |
| * need create the pipeline. So we do following: |
| * - check the resources |
| * - Create the pipeline |
| * - Initialize the modules in pipeline |
| * - finally bind all modules together |
| */ |
| static int skl_tplg_mixer_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| int ret; |
| struct skl_module_cfg *mconfig = w->priv; |
| struct skl_pipe_module *w_module; |
| struct skl_pipe *s_pipe = mconfig->pipe; |
| struct skl_module_cfg *src_module = NULL, *dst_module; |
| struct skl_sst *ctx = skl->skl_sst; |
| |
| /* check resource available */ |
| if (!skl_tplg_alloc_pipe_mcps(skl, mconfig)) |
| return -EBUSY; |
| |
| if (!skl_tplg_alloc_pipe_mem(skl, mconfig)) |
| return -ENOMEM; |
| |
| /* |
| * Create a list of modules for pipe. |
| * This list contains modules from source to sink |
| */ |
| ret = skl_create_pipeline(ctx, mconfig->pipe); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * we create a w_list of all widgets in that pipe. This list is not |
| * freed on PMD event as widgets within a pipe are static. This |
| * saves us cycles to get widgets in pipe every time. |
| * |
| * So if we have already initialized all the widgets of a pipeline |
| * we skip, so check for list_empty and create the list if empty |
| */ |
| if (list_empty(&s_pipe->w_list)) { |
| ret = skl_tplg_alloc_pipe_widget(ctx->dev, w, s_pipe); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Init all pipe modules from source to sink */ |
| ret = skl_tplg_init_pipe_modules(skl, s_pipe); |
| if (ret < 0) |
| return ret; |
| |
| /* Bind modules from source to sink */ |
| list_for_each_entry(w_module, &s_pipe->w_list, node) { |
| dst_module = w_module->w->priv; |
| |
| if (src_module == NULL) { |
| src_module = dst_module; |
| continue; |
| } |
| |
| ret = skl_bind_modules(ctx, src_module, dst_module); |
| if (ret < 0) |
| return ret; |
| |
| src_module = dst_module; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * A PGA represents a module in a pipeline. So in the Pre-PMU event of PGA |
| * we need to do following: |
| * - Bind to sink pipeline |
| * Since the sink pipes can be running and we don't get mixer event on |
| * connect for already running mixer, we need to find the sink pipes |
| * here and bind to them. This way dynamic connect works. |
| * - Start sink pipeline, if not running |
| * - Then run current pipe |
| */ |
| static int skl_tplg_pga_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| struct snd_soc_dapm_path *p; |
| struct skl_dapm_path_list *path_list; |
| struct snd_soc_dapm_widget *source, *sink; |
| struct skl_module_cfg *src_mconfig, *sink_mconfig; |
| struct skl_sst *ctx = skl->skl_sst; |
| int ret = 0; |
| |
| source = w; |
| src_mconfig = source->priv; |
| |
| /* |
| * find which sink it is connected to, bind with the sink, |
| * if sink is not started, start sink pipe first, then start |
| * this pipe |
| */ |
| snd_soc_dapm_widget_for_each_source_path(w, p) { |
| if (!p->connect) |
| continue; |
| |
| dev_dbg(ctx->dev, "%s: src widget=%s\n", __func__, w->name); |
| dev_dbg(ctx->dev, "%s: sink widget=%s\n", __func__, p->sink->name); |
| |
| /* |
| * here we will check widgets in sink pipelines, so that |
| * can be any widgets type and we are only interested if |
| * they are ones used for SKL so check that first |
| */ |
| if ((p->sink->priv != NULL) && |
| is_skl_dsp_widget_type(p->sink)) { |
| |
| sink = p->sink; |
| src_mconfig = source->priv; |
| sink_mconfig = sink->priv; |
| |
| /* Bind source to sink, mixin is always source */ |
| ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig); |
| if (ret) |
| return ret; |
| |
| /* Start sinks pipe first */ |
| if (sink_mconfig->pipe->state != SKL_PIPE_STARTED) { |
| ret = skl_run_pipe(ctx, sink_mconfig->pipe); |
| if (ret) |
| return ret; |
| } |
| |
| path_list = kzalloc( |
| sizeof(struct skl_dapm_path_list), |
| GFP_KERNEL); |
| if (path_list == NULL) |
| return -ENOMEM; |
| |
| /* Add connected path to one global list */ |
| path_list->dapm_path = p; |
| list_add_tail(&path_list->node, &skl->dapm_path_list); |
| break; |
| } |
| } |
| |
| /* Start source pipe last after starting all sinks */ |
| ret = skl_run_pipe(ctx, src_mconfig->pipe); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* |
| * in the Post-PMU event of mixer we need to do following: |
| * - Check if this pipe is running |
| * - if not, then |
| * - bind this pipeline to its source pipeline |
| * if source pipe is already running, this means it is a dynamic |
| * connection and we need to bind only to that pipe |
| * - start this pipeline |
| */ |
| static int skl_tplg_mixer_dapm_post_pmu_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| int ret = 0; |
| struct snd_soc_dapm_path *p; |
| struct snd_soc_dapm_widget *source, *sink; |
| struct skl_module_cfg *src_mconfig, *sink_mconfig; |
| struct skl_sst *ctx = skl->skl_sst; |
| int src_pipe_started = 0; |
| |
| sink = w; |
| sink_mconfig = sink->priv; |
| |
| /* |
| * If source pipe is already started, that means source is driving |
| * one more sink before this sink got connected, Since source is |
| * started, bind this sink to source and start this pipe. |
| */ |
| snd_soc_dapm_widget_for_each_sink_path(w, p) { |
| if (!p->connect) |
| continue; |
| |
| dev_dbg(ctx->dev, "sink widget=%s\n", w->name); |
| dev_dbg(ctx->dev, "src widget=%s\n", p->source->name); |
| |
| /* |
| * here we will check widgets in sink pipelines, so that |
| * can be any widgets type and we are only interested if |
| * they are ones used for SKL so check that first |
| */ |
| if ((p->source->priv != NULL) && |
| is_skl_dsp_widget_type(p->source)) { |
| source = p->source; |
| src_mconfig = source->priv; |
| sink_mconfig = sink->priv; |
| src_pipe_started = 1; |
| |
| /* |
| * check pipe state, then no need to bind or start |
| * the pipe |
| */ |
| if (src_mconfig->pipe->state != SKL_PIPE_STARTED) |
| src_pipe_started = 0; |
| } |
| } |
| |
| if (src_pipe_started) { |
| ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig); |
| if (ret) |
| return ret; |
| |
| ret = skl_run_pipe(ctx, sink_mconfig->pipe); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * in the Pre-PMD event of mixer we need to do following: |
| * - Stop the pipe |
| * - find the source connections and remove that from dapm_path_list |
| * - unbind with source pipelines if still connected |
| */ |
| static int skl_tplg_mixer_dapm_pre_pmd_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| struct snd_soc_dapm_widget *source, *sink; |
| struct skl_module_cfg *src_mconfig, *sink_mconfig; |
| int ret = 0, path_found = 0; |
| struct skl_dapm_path_list *path_list, *tmp_list; |
| struct skl_sst *ctx = skl->skl_sst; |
| |
| sink = w; |
| sink_mconfig = sink->priv; |
| |
| /* Stop the pipe */ |
| ret = skl_stop_pipe(ctx, sink_mconfig->pipe); |
| if (ret) |
| return ret; |
| |
| /* |
| * This list, dapm_path_list handling here does not need any locks |
| * as we are under dapm lock while handling widget events. |
| * List can be manipulated safely only under dapm widgets handler |
| * routines |
| */ |
| list_for_each_entry_safe(path_list, tmp_list, |
| &skl->dapm_path_list, node) { |
| if (path_list->dapm_path->sink == sink) { |
| dev_dbg(ctx->dev, "Path found = %s\n", |
| path_list->dapm_path->name); |
| source = path_list->dapm_path->source; |
| src_mconfig = source->priv; |
| path_found = 1; |
| |
| list_del(&path_list->node); |
| kfree(path_list); |
| break; |
| } |
| } |
| |
| /* |
| * If path_found == 1, that means pmd for source pipe has |
| * not occurred, source is connected to some other sink. |
| * so its responsibility of sink to unbind itself from source. |
| */ |
| if (path_found) { |
| ret = skl_stop_pipe(ctx, src_mconfig->pipe); |
| if (ret < 0) |
| return ret; |
| |
| ret = skl_unbind_modules(ctx, src_mconfig, sink_mconfig); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * in the Post-PMD event of mixer we need to do following: |
| * - Free the mcps used |
| * - Free the mem used |
| * - Unbind the modules within the pipeline |
| * - Delete the pipeline (modules are not required to be explicitly |
| * deleted, pipeline delete is enough here |
| */ |
| static int skl_tplg_mixer_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| struct skl_module_cfg *mconfig = w->priv; |
| struct skl_pipe_module *w_module; |
| struct skl_module_cfg *src_module = NULL, *dst_module; |
| struct skl_sst *ctx = skl->skl_sst; |
| struct skl_pipe *s_pipe = mconfig->pipe; |
| int ret = 0; |
| |
| skl_tplg_free_pipe_mcps(skl, mconfig); |
| |
| list_for_each_entry(w_module, &s_pipe->w_list, node) { |
| dst_module = w_module->w->priv; |
| |
| if (src_module == NULL) { |
| src_module = dst_module; |
| continue; |
| } |
| |
| ret = skl_unbind_modules(ctx, src_module, dst_module); |
| if (ret < 0) |
| return ret; |
| |
| src_module = dst_module; |
| } |
| |
| ret = skl_delete_pipe(ctx, mconfig->pipe); |
| skl_tplg_free_pipe_mem(skl, mconfig); |
| |
| return ret; |
| } |
| |
| /* |
| * in the Post-PMD event of PGA we need to do following: |
| * - Free the mcps used |
| * - Stop the pipeline |
| * - In source pipe is connected, unbind with source pipelines |
| */ |
| static int skl_tplg_pga_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, |
| struct skl *skl) |
| { |
| struct snd_soc_dapm_widget *source, *sink; |
| struct skl_module_cfg *src_mconfig, *sink_mconfig; |
| int ret = 0, path_found = 0; |
| struct skl_dapm_path_list *path_list, *tmp_path_list; |
| struct skl_sst *ctx = skl->skl_sst; |
| |
| source = w; |
| src_mconfig = source->priv; |
| |
| skl_tplg_free_pipe_mcps(skl, src_mconfig); |
| /* Stop the pipe since this is a mixin module */ |
| ret = skl_stop_pipe(ctx, src_mconfig->pipe); |
| if (ret) |
| return ret; |
| |
| list_for_each_entry_safe(path_list, tmp_path_list, &skl->dapm_path_list, node) { |
| if (path_list->dapm_path->source == source) { |
| dev_dbg(ctx->dev, "Path found = %s\n", |
| path_list->dapm_path->name); |
| sink = path_list->dapm_path->sink; |
| sink_mconfig = sink->priv; |
| path_found = 1; |
| |
| list_del(&path_list->node); |
| kfree(path_list); |
| break; |
| } |
| } |
| |
| /* |
| * This is a connector and if path is found that means |
| * unbind between source and sink has not happened yet |
| */ |
| if (path_found) { |
| ret = skl_stop_pipe(ctx, src_mconfig->pipe); |
| if (ret < 0) |
| return ret; |
| |
| ret = skl_unbind_modules(ctx, src_mconfig, sink_mconfig); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * In modelling, we assume there will be ONLY one mixer in a pipeline. If |
| * mixer is not required then it is treated as static mixer aka vmixer with |
| * a hard path to source module |
| * So we don't need to check if source is started or not as hard path puts |
| * dependency on each other |
| */ |
| static int skl_tplg_vmixer_event(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *k, int event) |
| { |
| struct snd_soc_dapm_context *dapm = w->dapm; |
| struct skl *skl = get_skl_ctx(dapm->dev); |
| |
| switch (event) { |
| case SND_SOC_DAPM_PRE_PMU: |
| return skl_tplg_mixer_dapm_pre_pmu_event(w, skl); |
| |
| case SND_SOC_DAPM_POST_PMD: |
| return skl_tplg_mixer_dapm_post_pmd_event(w, skl); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * In modelling, we assume there will be ONLY one mixer in a pipeline. If a |
| * second one is required that is created as another pipe entity. |
| * The mixer is responsible for pipe management and represent a pipeline |
| * instance |
| */ |
| static int skl_tplg_mixer_event(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *k, int event) |
| { |
| struct snd_soc_dapm_context *dapm = w->dapm; |
| struct skl *skl = get_skl_ctx(dapm->dev); |
| |
| switch (event) { |
| case SND_SOC_DAPM_PRE_PMU: |
| return skl_tplg_mixer_dapm_pre_pmu_event(w, skl); |
| |
| case SND_SOC_DAPM_POST_PMU: |
| return skl_tplg_mixer_dapm_post_pmu_event(w, skl); |
| |
| case SND_SOC_DAPM_PRE_PMD: |
| return skl_tplg_mixer_dapm_pre_pmd_event(w, skl); |
| |
| case SND_SOC_DAPM_POST_PMD: |
| return skl_tplg_mixer_dapm_post_pmd_event(w, skl); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * In modelling, we assumed rest of the modules in pipeline are PGA. But we |
| * are interested in last PGA (leaf PGA) in a pipeline to disconnect with |
| * the sink when it is running (two FE to one BE or one FE to two BE) |
| * scenarios |
| */ |
| static int skl_tplg_pga_event(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *k, int event) |
| |
| { |
| struct snd_soc_dapm_context *dapm = w->dapm; |
| struct skl *skl = get_skl_ctx(dapm->dev); |
| |
| switch (event) { |
| case SND_SOC_DAPM_PRE_PMU: |
| return skl_tplg_pga_dapm_pre_pmu_event(w, skl); |
| |
| case SND_SOC_DAPM_POST_PMD: |
| return skl_tplg_pga_dapm_post_pmd_event(w, skl); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The FE params are passed by hw_params of the DAI. |
| * On hw_params, the params are stored in Gateway module of the FE and we |
| * need to calculate the format in DSP module configuration, that |
| * conversion is done here |
| */ |
| int skl_tplg_update_pipe_params(struct device *dev, |
| struct skl_module_cfg *mconfig, |
| struct skl_pipe_params *params) |
| { |
| struct skl_pipe *pipe = mconfig->pipe; |
| struct skl_module_fmt *format = NULL; |
| |
| memcpy(pipe->p_params, params, sizeof(*params)); |
| |
| if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| format = &mconfig->in_fmt; |
| else |
| format = &mconfig->out_fmt; |
| |
| /* set the hw_params */ |
| format->s_freq = params->s_freq; |
| format->channels = params->ch; |
| format->valid_bit_depth = skl_get_bit_depth(params->s_fmt); |
| |
| /* |
| * 16 bit is 16 bit container whereas 24 bit is in 32 bit |
| * container so update bit depth accordingly |
| */ |
| switch (format->valid_bit_depth) { |
| case SKL_DEPTH_16BIT: |
| format->bit_depth = format->valid_bit_depth; |
| break; |
| |
| case SKL_DEPTH_24BIT: |
| format->bit_depth = SKL_DEPTH_32BIT; |
| break; |
| |
| default: |
| dev_err(dev, "Invalid bit depth %x for pipe\n", |
| format->valid_bit_depth); |
| return -EINVAL; |
| } |
| |
| if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| mconfig->ibs = (format->s_freq / 1000) * |
| (format->channels) * |
| (format->bit_depth >> 3); |
| } else { |
| mconfig->obs = (format->s_freq / 1000) * |
| (format->channels) * |
| (format->bit_depth >> 3); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Query the module config for the FE DAI |
| * This is used to find the hw_params set for that DAI and apply to FE |
| * pipeline |
| */ |
| struct skl_module_cfg * |
| skl_tplg_fe_get_cpr_module(struct snd_soc_dai *dai, int stream) |
| { |
| struct snd_soc_dapm_widget *w; |
| struct snd_soc_dapm_path *p = NULL; |
| |
| if (stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| w = dai->playback_widget; |
| snd_soc_dapm_widget_for_each_sink_path(w, p) { |
| if (p->connect && p->sink->power && |
| is_skl_dsp_widget_type(p->sink)) |
| continue; |
| |
| if (p->sink->priv) { |
| dev_dbg(dai->dev, "set params for %s\n", |
| p->sink->name); |
| return p->sink->priv; |
| } |
| } |
| } else { |
| w = dai->capture_widget; |
| snd_soc_dapm_widget_for_each_source_path(w, p) { |
| if (p->connect && p->source->power && |
| is_skl_dsp_widget_type(p->source)) |
| continue; |
| |
| if (p->source->priv) { |
| dev_dbg(dai->dev, "set params for %s\n", |
| p->source->name); |
| return p->source->priv; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static u8 skl_tplg_be_link_type(int dev_type) |
| { |
| int ret; |
| |
| switch (dev_type) { |
| case SKL_DEVICE_BT: |
| ret = NHLT_LINK_SSP; |
| break; |
| |
| case SKL_DEVICE_DMIC: |
| ret = NHLT_LINK_DMIC; |
| break; |
| |
| case SKL_DEVICE_I2S: |
| ret = NHLT_LINK_SSP; |
| break; |
| |
| case SKL_DEVICE_HDALINK: |
| ret = NHLT_LINK_HDA; |
| break; |
| |
| default: |
| ret = NHLT_LINK_INVALID; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Fill the BE gateway parameters |
| * The BE gateway expects a blob of parameters which are kept in the ACPI |
| * NHLT blob, so query the blob for interface type (i2s/pdm) and instance. |
| * The port can have multiple settings so pick based on the PCM |
| * parameters |
| */ |
| static int skl_tplg_be_fill_pipe_params(struct snd_soc_dai *dai, |
| struct skl_module_cfg *mconfig, |
| struct skl_pipe_params *params) |
| { |
| struct skl_pipe *pipe = mconfig->pipe; |
| struct nhlt_specific_cfg *cfg; |
| struct skl *skl = get_skl_ctx(dai->dev); |
| int link_type = skl_tplg_be_link_type(mconfig->dev_type); |
| |
| memcpy(pipe->p_params, params, sizeof(*params)); |
| |
| /* update the blob based on virtual bus_id*/ |
| cfg = skl_get_ep_blob(skl, mconfig->vbus_id, link_type, |
| params->s_fmt, params->ch, |
| params->s_freq, params->stream); |
| if (cfg) { |
| mconfig->formats_config.caps_size = cfg->size; |
| mconfig->formats_config.caps = (u32 *) &cfg->caps; |
| } else { |
| dev_err(dai->dev, "Blob NULL for id %x type %d dirn %d\n", |
| mconfig->vbus_id, link_type, |
| params->stream); |
| dev_err(dai->dev, "PCM: ch %d, freq %d, fmt %d\n", |
| params->ch, params->s_freq, params->s_fmt); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int skl_tplg_be_set_src_pipe_params(struct snd_soc_dai *dai, |
| struct snd_soc_dapm_widget *w, |
| struct skl_pipe_params *params) |
| { |
| struct snd_soc_dapm_path *p; |
| int ret = -EIO; |
| |
| snd_soc_dapm_widget_for_each_source_path(w, p) { |
| if (p->connect && is_skl_dsp_widget_type(p->source) && |
| p->source->priv) { |
| |
| if (!p->source->power) { |
| ret = skl_tplg_be_fill_pipe_params( |
| dai, p->source->priv, |
| params); |
| if (ret < 0) |
| return ret; |
| } else { |
| return -EBUSY; |
| } |
| } else { |
| ret = skl_tplg_be_set_src_pipe_params( |
| dai, p->source, params); |
| if (ret < 0) |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int skl_tplg_be_set_sink_pipe_params(struct snd_soc_dai *dai, |
| struct snd_soc_dapm_widget *w, struct skl_pipe_params *params) |
| { |
| struct snd_soc_dapm_path *p = NULL; |
| int ret = -EIO; |
| |
| snd_soc_dapm_widget_for_each_sink_path(w, p) { |
| if (p->connect && is_skl_dsp_widget_type(p->sink) && |
| p->sink->priv) { |
| |
| if (!p->sink->power) { |
| ret = skl_tplg_be_fill_pipe_params( |
| dai, p->sink->priv, params); |
| if (ret < 0) |
| return ret; |
| } else { |
| return -EBUSY; |
| } |
| |
| } else { |
| ret = skl_tplg_be_set_sink_pipe_params( |
| dai, p->sink, params); |
| if (ret < 0) |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * BE hw_params can be a source parameters (capture) or sink parameters |
| * (playback). Based on sink and source we need to either find the source |
| * list or the sink list and set the pipeline parameters |
| */ |
| int skl_tplg_be_update_params(struct snd_soc_dai *dai, |
| struct skl_pipe_params *params) |
| { |
| struct snd_soc_dapm_widget *w; |
| |
| if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| w = dai->playback_widget; |
| |
| return skl_tplg_be_set_src_pipe_params(dai, w, params); |
| |
| } else { |
| w = dai->capture_widget; |
| |
| return skl_tplg_be_set_sink_pipe_params(dai, w, params); |
| } |
| |
| return 0; |
| } |
| |
| static const struct snd_soc_tplg_widget_events skl_tplg_widget_ops[] = { |
| {SKL_MIXER_EVENT, skl_tplg_mixer_event}, |
| {SKL_VMIXER_EVENT, skl_tplg_vmixer_event}, |
| {SKL_PGA_EVENT, skl_tplg_pga_event}, |
| }; |
| |
| /* |
| * The topology binary passes the pin info for a module so initialize the pin |
| * info passed into module instance |
| */ |
| static void skl_fill_module_pin_info(struct skl_dfw_module_pin *dfw_pin, |
| struct skl_module_pin *m_pin, |
| bool is_dynamic, int max_pin) |
| { |
| int i; |
| |
| for (i = 0; i < max_pin; i++) { |
| m_pin[i].id.module_id = dfw_pin[i].module_id; |
| m_pin[i].id.instance_id = dfw_pin[i].instance_id; |
| m_pin[i].in_use = false; |
| m_pin[i].is_dynamic = is_dynamic; |
| } |
| } |
| |
| /* |
| * Add pipeline from topology binary into driver pipeline list |
| * |
| * If already added we return that instance |
| * Otherwise we create a new instance and add into driver list |
| */ |
| static struct skl_pipe *skl_tplg_add_pipe(struct device *dev, |
| struct skl *skl, struct skl_dfw_pipe *dfw_pipe) |
| { |
| struct skl_pipeline *ppl; |
| struct skl_pipe *pipe; |
| struct skl_pipe_params *params; |
| |
| list_for_each_entry(ppl, &skl->ppl_list, node) { |
| if (ppl->pipe->ppl_id == dfw_pipe->pipe_id) |
| return ppl->pipe; |
| } |
| |
| ppl = devm_kzalloc(dev, sizeof(*ppl), GFP_KERNEL); |
| if (!ppl) |
| return NULL; |
| |
| pipe = devm_kzalloc(dev, sizeof(*pipe), GFP_KERNEL); |
| if (!pipe) |
| return NULL; |
| |
| params = devm_kzalloc(dev, sizeof(*params), GFP_KERNEL); |
| if (!params) |
| return NULL; |
| |
| pipe->ppl_id = dfw_pipe->pipe_id; |
| pipe->memory_pages = dfw_pipe->memory_pages; |
| pipe->pipe_priority = dfw_pipe->pipe_priority; |
| pipe->conn_type = dfw_pipe->conn_type; |
| pipe->state = SKL_PIPE_INVALID; |
| pipe->p_params = params; |
| INIT_LIST_HEAD(&pipe->w_list); |
| |
| ppl->pipe = pipe; |
| list_add(&ppl->node, &skl->ppl_list); |
| |
| return ppl->pipe; |
| } |
| |
| /* |
| * Topology core widget load callback |
| * |
| * This is used to save the private data for each widget which gives |
| * information to the driver about module and pipeline parameters which DSP |
| * FW expects like ids, resource values, formats etc |
| */ |
| static int skl_tplg_widget_load(struct snd_soc_component *cmpnt, |
| struct snd_soc_dapm_widget *w, |
| struct snd_soc_tplg_dapm_widget *tplg_w) |
| { |
| int ret; |
| struct hdac_ext_bus *ebus = snd_soc_component_get_drvdata(cmpnt); |
| struct skl *skl = ebus_to_skl(ebus); |
| struct hdac_bus *bus = ebus_to_hbus(ebus); |
| struct skl_module_cfg *mconfig; |
| struct skl_pipe *pipe; |
| struct skl_dfw_module *dfw_config = |
| (struct skl_dfw_module *)tplg_w->priv.data; |
| |
| if (!tplg_w->priv.size) |
| goto bind_event; |
| |
| mconfig = devm_kzalloc(bus->dev, sizeof(*mconfig), GFP_KERNEL); |
| |
| if (!mconfig) |
| return -ENOMEM; |
| |
| w->priv = mconfig; |
| mconfig->id.module_id = dfw_config->module_id; |
| mconfig->id.instance_id = dfw_config->instance_id; |
| mconfig->mcps = dfw_config->max_mcps; |
| mconfig->ibs = dfw_config->ibs; |
| mconfig->obs = dfw_config->obs; |
| mconfig->core_id = dfw_config->core_id; |
| mconfig->max_in_queue = dfw_config->max_in_queue; |
| mconfig->max_out_queue = dfw_config->max_out_queue; |
| mconfig->is_loadable = dfw_config->is_loadable; |
| mconfig->in_fmt.channels = dfw_config->in_fmt.channels; |
| mconfig->in_fmt.s_freq = dfw_config->in_fmt.freq; |
| mconfig->in_fmt.bit_depth = dfw_config->in_fmt.bit_depth; |
| mconfig->in_fmt.valid_bit_depth = |
| dfw_config->in_fmt.valid_bit_depth; |
| mconfig->in_fmt.ch_cfg = dfw_config->in_fmt.ch_cfg; |
| mconfig->out_fmt.channels = dfw_config->out_fmt.channels; |
| mconfig->out_fmt.s_freq = dfw_config->out_fmt.freq; |
| mconfig->out_fmt.bit_depth = dfw_config->out_fmt.bit_depth; |
| mconfig->out_fmt.valid_bit_depth = |
| dfw_config->out_fmt.valid_bit_depth; |
| mconfig->out_fmt.ch_cfg = dfw_config->out_fmt.ch_cfg; |
| mconfig->params_fixup = dfw_config->params_fixup; |
| mconfig->converter = dfw_config->converter; |
| mconfig->m_type = dfw_config->module_type; |
| mconfig->vbus_id = dfw_config->vbus_id; |
| |
| pipe = skl_tplg_add_pipe(bus->dev, skl, &dfw_config->pipe); |
| if (pipe) |
| mconfig->pipe = pipe; |
| |
| mconfig->dev_type = dfw_config->dev_type; |
| mconfig->hw_conn_type = dfw_config->hw_conn_type; |
| mconfig->time_slot = dfw_config->time_slot; |
| mconfig->formats_config.caps_size = dfw_config->caps.caps_size; |
| |
| mconfig->m_in_pin = devm_kzalloc(bus->dev, |
| (mconfig->max_in_queue) * |
| sizeof(*mconfig->m_in_pin), |
| GFP_KERNEL); |
| if (!mconfig->m_in_pin) |
| return -ENOMEM; |
| |
| mconfig->m_out_pin = devm_kzalloc(bus->dev, (mconfig->max_out_queue) * |
| sizeof(*mconfig->m_out_pin), |
| GFP_KERNEL); |
| if (!mconfig->m_out_pin) |
| return -ENOMEM; |
| |
| skl_fill_module_pin_info(dfw_config->in_pin, mconfig->m_in_pin, |
| dfw_config->is_dynamic_in_pin, |
| mconfig->max_in_queue); |
| |
| skl_fill_module_pin_info(dfw_config->out_pin, mconfig->m_out_pin, |
| dfw_config->is_dynamic_out_pin, |
| mconfig->max_out_queue); |
| |
| |
| if (mconfig->formats_config.caps_size == 0) |
| goto bind_event; |
| |
| mconfig->formats_config.caps = (u32 *)devm_kzalloc(bus->dev, |
| mconfig->formats_config.caps_size, GFP_KERNEL); |
| |
| if (mconfig->formats_config.caps == NULL) |
| return -ENOMEM; |
| |
| memcpy(mconfig->formats_config.caps, dfw_config->caps.caps, |
| dfw_config->caps.caps_size); |
| |
| bind_event: |
| if (tplg_w->event_type == 0) { |
| dev_dbg(bus->dev, "ASoC: No event handler required\n"); |
| return 0; |
| } |
| |
| ret = snd_soc_tplg_widget_bind_event(w, skl_tplg_widget_ops, |
| ARRAY_SIZE(skl_tplg_widget_ops), |
| tplg_w->event_type); |
| |
| if (ret) { |
| dev_err(bus->dev, "%s: No matching event handlers found for %d\n", |
| __func__, tplg_w->event_type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static struct snd_soc_tplg_ops skl_tplg_ops = { |
| .widget_load = skl_tplg_widget_load, |
| }; |
| |
| /* This will be read from topology manifest, currently defined here */ |
| #define SKL_MAX_MCPS 30000000 |
| #define SKL_FW_MAX_MEM 1000000 |
| |
| /* |
| * SKL topology init routine |
| */ |
| int skl_tplg_init(struct snd_soc_platform *platform, struct hdac_ext_bus *ebus) |
| { |
| int ret; |
| const struct firmware *fw; |
| struct hdac_bus *bus = ebus_to_hbus(ebus); |
| struct skl *skl = ebus_to_skl(ebus); |
| |
| ret = request_firmware(&fw, "dfw_sst.bin", bus->dev); |
| if (ret < 0) { |
| dev_err(bus->dev, "tplg fw %s load failed with %d\n", |
| "dfw_sst.bin", ret); |
| return ret; |
| } |
| |
| /* |
| * The complete tplg for SKL is loaded as index 0, we don't use |
| * any other index |
| */ |
| ret = snd_soc_tplg_component_load(&platform->component, |
| &skl_tplg_ops, fw, 0); |
| if (ret < 0) { |
| dev_err(bus->dev, "tplg component load failed%d\n", ret); |
| return -EINVAL; |
| } |
| |
| skl->resource.max_mcps = SKL_MAX_MCPS; |
| skl->resource.max_mem = SKL_FW_MAX_MEM; |
| |
| skl->tplg = fw; |
| |
| return 0; |
| } |