| /* |
| * intel_pstate.c: Native P state management for Intel processors |
| * |
| * (C) Copyright 2012 Intel Corporation |
| * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/module.h> |
| #include <linux/ktime.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/list.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/debugfs.h> |
| #include <trace/events/power.h> |
| |
| #include <asm/div64.h> |
| #include <asm/msr.h> |
| #include <asm/cpu_device_id.h> |
| |
| #define SAMPLE_COUNT 3 |
| |
| #define FRAC_BITS 8 |
| #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) |
| #define fp_toint(X) ((X) >> FRAC_BITS) |
| |
| static inline int32_t mul_fp(int32_t x, int32_t y) |
| { |
| return ((int64_t)x * (int64_t)y) >> FRAC_BITS; |
| } |
| |
| static inline int32_t div_fp(int32_t x, int32_t y) |
| { |
| return div_s64((int64_t)x << FRAC_BITS, (int64_t)y); |
| } |
| |
| struct sample { |
| int core_pct_busy; |
| u64 aperf; |
| u64 mperf; |
| int freq; |
| }; |
| |
| struct pstate_data { |
| int current_pstate; |
| int min_pstate; |
| int max_pstate; |
| int turbo_pstate; |
| }; |
| |
| struct _pid { |
| int setpoint; |
| int32_t integral; |
| int32_t p_gain; |
| int32_t i_gain; |
| int32_t d_gain; |
| int deadband; |
| int last_err; |
| }; |
| |
| struct cpudata { |
| int cpu; |
| |
| char name[64]; |
| |
| struct timer_list timer; |
| |
| struct pstate_adjust_policy *pstate_policy; |
| struct pstate_data pstate; |
| struct _pid pid; |
| |
| int min_pstate_count; |
| |
| u64 prev_aperf; |
| u64 prev_mperf; |
| int sample_ptr; |
| struct sample samples[SAMPLE_COUNT]; |
| }; |
| |
| static struct cpudata **all_cpu_data; |
| struct pstate_adjust_policy { |
| int sample_rate_ms; |
| int deadband; |
| int setpoint; |
| int p_gain_pct; |
| int d_gain_pct; |
| int i_gain_pct; |
| }; |
| |
| static struct pstate_adjust_policy default_policy = { |
| .sample_rate_ms = 10, |
| .deadband = 0, |
| .setpoint = 109, |
| .p_gain_pct = 17, |
| .d_gain_pct = 0, |
| .i_gain_pct = 4, |
| }; |
| |
| struct perf_limits { |
| int no_turbo; |
| int max_perf_pct; |
| int min_perf_pct; |
| int32_t max_perf; |
| int32_t min_perf; |
| int max_policy_pct; |
| int max_sysfs_pct; |
| }; |
| |
| static struct perf_limits limits = { |
| .no_turbo = 0, |
| .max_perf_pct = 100, |
| .max_perf = int_tofp(1), |
| .min_perf_pct = 0, |
| .min_perf = 0, |
| .max_policy_pct = 100, |
| .max_sysfs_pct = 100, |
| }; |
| |
| static inline void pid_reset(struct _pid *pid, int setpoint, int busy, |
| int deadband, int integral) { |
| pid->setpoint = setpoint; |
| pid->deadband = deadband; |
| pid->integral = int_tofp(integral); |
| pid->last_err = setpoint - busy; |
| } |
| |
| static inline void pid_p_gain_set(struct _pid *pid, int percent) |
| { |
| pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| } |
| |
| static inline void pid_i_gain_set(struct _pid *pid, int percent) |
| { |
| pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| } |
| |
| static inline void pid_d_gain_set(struct _pid *pid, int percent) |
| { |
| |
| pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| } |
| |
| static signed int pid_calc(struct _pid *pid, int busy) |
| { |
| signed int err, result; |
| int32_t pterm, dterm, fp_error; |
| int32_t integral_limit; |
| |
| err = pid->setpoint - busy; |
| fp_error = int_tofp(err); |
| |
| if (abs(err) <= pid->deadband) |
| return 0; |
| |
| pterm = mul_fp(pid->p_gain, fp_error); |
| |
| pid->integral += fp_error; |
| |
| /* limit the integral term */ |
| integral_limit = int_tofp(30); |
| if (pid->integral > integral_limit) |
| pid->integral = integral_limit; |
| if (pid->integral < -integral_limit) |
| pid->integral = -integral_limit; |
| |
| dterm = mul_fp(pid->d_gain, (err - pid->last_err)); |
| pid->last_err = err; |
| |
| result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; |
| |
| return (signed int)fp_toint(result); |
| } |
| |
| static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) |
| { |
| pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct); |
| pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct); |
| pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct); |
| |
| pid_reset(&cpu->pid, |
| cpu->pstate_policy->setpoint, |
| 100, |
| cpu->pstate_policy->deadband, |
| 0); |
| } |
| |
| static inline void intel_pstate_reset_all_pid(void) |
| { |
| unsigned int cpu; |
| for_each_online_cpu(cpu) { |
| if (all_cpu_data[cpu]) |
| intel_pstate_busy_pid_reset(all_cpu_data[cpu]); |
| } |
| } |
| |
| /************************** debugfs begin ************************/ |
| static int pid_param_set(void *data, u64 val) |
| { |
| *(u32 *)data = val; |
| intel_pstate_reset_all_pid(); |
| return 0; |
| } |
| static int pid_param_get(void *data, u64 *val) |
| { |
| *val = *(u32 *)data; |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, |
| pid_param_set, "%llu\n"); |
| |
| struct pid_param { |
| char *name; |
| void *value; |
| }; |
| |
| static struct pid_param pid_files[] = { |
| {"sample_rate_ms", &default_policy.sample_rate_ms}, |
| {"d_gain_pct", &default_policy.d_gain_pct}, |
| {"i_gain_pct", &default_policy.i_gain_pct}, |
| {"deadband", &default_policy.deadband}, |
| {"setpoint", &default_policy.setpoint}, |
| {"p_gain_pct", &default_policy.p_gain_pct}, |
| {NULL, NULL} |
| }; |
| |
| static struct dentry *debugfs_parent; |
| static void intel_pstate_debug_expose_params(void) |
| { |
| int i = 0; |
| |
| debugfs_parent = debugfs_create_dir("pstate_snb", NULL); |
| if (IS_ERR_OR_NULL(debugfs_parent)) |
| return; |
| while (pid_files[i].name) { |
| debugfs_create_file(pid_files[i].name, 0660, |
| debugfs_parent, pid_files[i].value, |
| &fops_pid_param); |
| i++; |
| } |
| } |
| |
| /************************** debugfs end ************************/ |
| |
| /************************** sysfs begin ************************/ |
| #define show_one(file_name, object) \ |
| static ssize_t show_##file_name \ |
| (struct kobject *kobj, struct attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "%u\n", limits.object); \ |
| } |
| |
| static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| limits.no_turbo = clamp_t(int, input, 0 , 1); |
| |
| return count; |
| } |
| |
| static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| limits.max_sysfs_pct = clamp_t(int, input, 0 , 100); |
| limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); |
| limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); |
| return count; |
| } |
| |
| static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| limits.min_perf_pct = clamp_t(int, input, 0 , 100); |
| limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); |
| |
| return count; |
| } |
| |
| show_one(no_turbo, no_turbo); |
| show_one(max_perf_pct, max_perf_pct); |
| show_one(min_perf_pct, min_perf_pct); |
| |
| define_one_global_rw(no_turbo); |
| define_one_global_rw(max_perf_pct); |
| define_one_global_rw(min_perf_pct); |
| |
| static struct attribute *intel_pstate_attributes[] = { |
| &no_turbo.attr, |
| &max_perf_pct.attr, |
| &min_perf_pct.attr, |
| NULL |
| }; |
| |
| static struct attribute_group intel_pstate_attr_group = { |
| .attrs = intel_pstate_attributes, |
| }; |
| static struct kobject *intel_pstate_kobject; |
| |
| static void intel_pstate_sysfs_expose_params(void) |
| { |
| int rc; |
| |
| intel_pstate_kobject = kobject_create_and_add("intel_pstate", |
| &cpu_subsys.dev_root->kobj); |
| BUG_ON(!intel_pstate_kobject); |
| rc = sysfs_create_group(intel_pstate_kobject, |
| &intel_pstate_attr_group); |
| BUG_ON(rc); |
| } |
| |
| /************************** sysfs end ************************/ |
| |
| static int intel_pstate_min_pstate(void) |
| { |
| u64 value; |
| rdmsrl(MSR_PLATFORM_INFO, value); |
| return (value >> 40) & 0xFF; |
| } |
| |
| static int intel_pstate_max_pstate(void) |
| { |
| u64 value; |
| rdmsrl(MSR_PLATFORM_INFO, value); |
| return (value >> 8) & 0xFF; |
| } |
| |
| static int intel_pstate_turbo_pstate(void) |
| { |
| u64 value; |
| int nont, ret; |
| rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); |
| nont = intel_pstate_max_pstate(); |
| ret = ((value) & 255); |
| if (ret <= nont) |
| ret = nont; |
| return ret; |
| } |
| |
| static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) |
| { |
| int max_perf = cpu->pstate.turbo_pstate; |
| int min_perf; |
| if (limits.no_turbo) |
| max_perf = cpu->pstate.max_pstate; |
| |
| max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); |
| *max = clamp_t(int, max_perf, |
| cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); |
| |
| min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); |
| *min = clamp_t(int, min_perf, |
| cpu->pstate.min_pstate, max_perf); |
| } |
| |
| static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) |
| { |
| int max_perf, min_perf; |
| |
| intel_pstate_get_min_max(cpu, &min_perf, &max_perf); |
| |
| pstate = clamp_t(int, pstate, min_perf, max_perf); |
| |
| if (pstate == cpu->pstate.current_pstate) |
| return; |
| |
| trace_cpu_frequency(pstate * 100000, cpu->cpu); |
| |
| cpu->pstate.current_pstate = pstate; |
| wrmsrl(MSR_IA32_PERF_CTL, pstate << 8); |
| |
| } |
| |
| static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps) |
| { |
| int target; |
| target = cpu->pstate.current_pstate + steps; |
| |
| intel_pstate_set_pstate(cpu, target); |
| } |
| |
| static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps) |
| { |
| int target; |
| target = cpu->pstate.current_pstate - steps; |
| intel_pstate_set_pstate(cpu, target); |
| } |
| |
| static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) |
| { |
| sprintf(cpu->name, "Intel 2nd generation core"); |
| |
| cpu->pstate.min_pstate = intel_pstate_min_pstate(); |
| cpu->pstate.max_pstate = intel_pstate_max_pstate(); |
| cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate(); |
| |
| /* |
| * goto max pstate so we don't slow up boot if we are built-in if we are |
| * a module we will take care of it during normal operation |
| */ |
| intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); |
| } |
| |
| static inline void intel_pstate_calc_busy(struct cpudata *cpu, |
| struct sample *sample) |
| { |
| u64 core_pct; |
| core_pct = div64_u64(sample->aperf * 100, sample->mperf); |
| sample->freq = cpu->pstate.max_pstate * core_pct * 1000; |
| |
| sample->core_pct_busy = core_pct; |
| } |
| |
| static inline void intel_pstate_sample(struct cpudata *cpu) |
| { |
| u64 aperf, mperf; |
| |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT; |
| cpu->samples[cpu->sample_ptr].aperf = aperf; |
| cpu->samples[cpu->sample_ptr].mperf = mperf; |
| cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf; |
| cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf; |
| |
| intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]); |
| |
| cpu->prev_aperf = aperf; |
| cpu->prev_mperf = mperf; |
| } |
| |
| static inline void intel_pstate_set_sample_time(struct cpudata *cpu) |
| { |
| int sample_time, delay; |
| |
| sample_time = cpu->pstate_policy->sample_rate_ms; |
| delay = msecs_to_jiffies(sample_time); |
| mod_timer_pinned(&cpu->timer, jiffies + delay); |
| } |
| |
| static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu) |
| { |
| int32_t busy_scaled; |
| int32_t core_busy, turbo_pstate, current_pstate; |
| |
| core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy); |
| turbo_pstate = int_tofp(cpu->pstate.turbo_pstate); |
| current_pstate = int_tofp(cpu->pstate.current_pstate); |
| busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate)); |
| |
| return fp_toint(busy_scaled); |
| } |
| |
| static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) |
| { |
| int busy_scaled; |
| struct _pid *pid; |
| signed int ctl = 0; |
| int steps; |
| |
| pid = &cpu->pid; |
| busy_scaled = intel_pstate_get_scaled_busy(cpu); |
| |
| ctl = pid_calc(pid, busy_scaled); |
| |
| steps = abs(ctl); |
| if (ctl < 0) |
| intel_pstate_pstate_increase(cpu, steps); |
| else |
| intel_pstate_pstate_decrease(cpu, steps); |
| } |
| |
| static void intel_pstate_timer_func(unsigned long __data) |
| { |
| struct cpudata *cpu = (struct cpudata *) __data; |
| |
| intel_pstate_sample(cpu); |
| intel_pstate_adjust_busy_pstate(cpu); |
| |
| if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) { |
| cpu->min_pstate_count++; |
| if (!(cpu->min_pstate_count % 5)) { |
| intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); |
| } |
| } else |
| cpu->min_pstate_count = 0; |
| |
| intel_pstate_set_sample_time(cpu); |
| } |
| |
| #define ICPU(model, policy) \ |
| { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy } |
| |
| static const struct x86_cpu_id intel_pstate_cpu_ids[] = { |
| ICPU(0x2a, default_policy), |
| ICPU(0x2d, default_policy), |
| ICPU(0x3a, default_policy), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); |
| |
| static int intel_pstate_init_cpu(unsigned int cpunum) |
| { |
| |
| const struct x86_cpu_id *id; |
| struct cpudata *cpu; |
| |
| id = x86_match_cpu(intel_pstate_cpu_ids); |
| if (!id) |
| return -ENODEV; |
| |
| all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); |
| if (!all_cpu_data[cpunum]) |
| return -ENOMEM; |
| |
| cpu = all_cpu_data[cpunum]; |
| |
| intel_pstate_get_cpu_pstates(cpu); |
| |
| cpu->cpu = cpunum; |
| cpu->pstate_policy = |
| (struct pstate_adjust_policy *)id->driver_data; |
| init_timer_deferrable(&cpu->timer); |
| cpu->timer.function = intel_pstate_timer_func; |
| cpu->timer.data = |
| (unsigned long)cpu; |
| cpu->timer.expires = jiffies + HZ/100; |
| intel_pstate_busy_pid_reset(cpu); |
| intel_pstate_sample(cpu); |
| intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); |
| |
| add_timer_on(&cpu->timer, cpunum); |
| |
| pr_info("Intel pstate controlling: cpu %d\n", cpunum); |
| |
| return 0; |
| } |
| |
| static unsigned int intel_pstate_get(unsigned int cpu_num) |
| { |
| struct sample *sample; |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[cpu_num]; |
| if (!cpu) |
| return 0; |
| sample = &cpu->samples[cpu->sample_ptr]; |
| return sample->freq; |
| } |
| |
| static int intel_pstate_set_policy(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| if (!policy->cpuinfo.max_freq) |
| return -ENODEV; |
| |
| if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { |
| limits.min_perf_pct = 100; |
| limits.min_perf = int_tofp(1); |
| limits.max_perf_pct = 100; |
| limits.max_perf = int_tofp(1); |
| limits.no_turbo = 0; |
| return 0; |
| } |
| limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq; |
| limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100); |
| limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); |
| |
| limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq; |
| limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100); |
| limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); |
| limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); |
| |
| return 0; |
| } |
| |
| static int intel_pstate_verify_policy(struct cpufreq_policy *policy) |
| { |
| cpufreq_verify_within_limits(policy, |
| policy->cpuinfo.min_freq, |
| policy->cpuinfo.max_freq); |
| |
| if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && |
| (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy) |
| { |
| int cpu = policy->cpu; |
| |
| del_timer(&all_cpu_data[cpu]->timer); |
| kfree(all_cpu_data[cpu]); |
| all_cpu_data[cpu] = NULL; |
| return 0; |
| } |
| |
| static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| int rc, min_pstate, max_pstate; |
| struct cpudata *cpu; |
| |
| rc = intel_pstate_init_cpu(policy->cpu); |
| if (rc) |
| return rc; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| if (!limits.no_turbo && |
| limits.min_perf_pct == 100 && limits.max_perf_pct == 100) |
| policy->policy = CPUFREQ_POLICY_PERFORMANCE; |
| else |
| policy->policy = CPUFREQ_POLICY_POWERSAVE; |
| |
| intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate); |
| policy->min = min_pstate * 100000; |
| policy->max = max_pstate * 100000; |
| |
| /* cpuinfo and default policy values */ |
| policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000; |
| policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000; |
| policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; |
| cpumask_set_cpu(policy->cpu, policy->cpus); |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver intel_pstate_driver = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = intel_pstate_verify_policy, |
| .setpolicy = intel_pstate_set_policy, |
| .get = intel_pstate_get, |
| .init = intel_pstate_cpu_init, |
| .exit = intel_pstate_cpu_exit, |
| .name = "intel_pstate", |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __initdata no_load; |
| |
| static int intel_pstate_msrs_not_valid(void) |
| { |
| /* Check that all the msr's we are using are valid. */ |
| u64 aperf, mperf, tmp; |
| |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| |
| if (!intel_pstate_min_pstate() || |
| !intel_pstate_max_pstate() || |
| !intel_pstate_turbo_pstate()) |
| return -ENODEV; |
| |
| rdmsrl(MSR_IA32_APERF, tmp); |
| if (!(tmp - aperf)) |
| return -ENODEV; |
| |
| rdmsrl(MSR_IA32_MPERF, tmp); |
| if (!(tmp - mperf)) |
| return -ENODEV; |
| |
| return 0; |
| } |
| static int __init intel_pstate_init(void) |
| { |
| int cpu, rc = 0; |
| const struct x86_cpu_id *id; |
| |
| if (no_load) |
| return -ENODEV; |
| |
| id = x86_match_cpu(intel_pstate_cpu_ids); |
| if (!id) |
| return -ENODEV; |
| |
| if (intel_pstate_msrs_not_valid()) |
| return -ENODEV; |
| |
| pr_info("Intel P-state driver initializing.\n"); |
| |
| all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); |
| if (!all_cpu_data) |
| return -ENOMEM; |
| |
| rc = cpufreq_register_driver(&intel_pstate_driver); |
| if (rc) |
| goto out; |
| |
| intel_pstate_debug_expose_params(); |
| intel_pstate_sysfs_expose_params(); |
| return rc; |
| out: |
| get_online_cpus(); |
| for_each_online_cpu(cpu) { |
| if (all_cpu_data[cpu]) { |
| del_timer_sync(&all_cpu_data[cpu]->timer); |
| kfree(all_cpu_data[cpu]); |
| } |
| } |
| |
| put_online_cpus(); |
| vfree(all_cpu_data); |
| return -ENODEV; |
| } |
| device_initcall(intel_pstate_init); |
| |
| static int __init intel_pstate_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "disable")) |
| no_load = 1; |
| return 0; |
| } |
| early_param("intel_pstate", intel_pstate_setup); |
| |
| MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); |
| MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); |
| MODULE_LICENSE("GPL"); |