blob: 5c6a8e8a9580a11f1b5c16586b647da22eb094b4 [file] [log] [blame]
/*
* FDT related Helper functions used by the EFI stub on multiple
* architectures. This should be #included by the EFI stub
* implementation files.
*
* Copyright 2013 Linaro Limited; author Roy Franz
*
* This file is part of the Linux kernel, and is made available
* under the terms of the GNU General Public License version 2.
*
*/
static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
unsigned long orig_fdt_size,
void *fdt, int new_fdt_size, char *cmdline_ptr,
u64 initrd_addr, u64 initrd_size,
efi_memory_desc_t *memory_map,
unsigned long map_size, unsigned long desc_size,
u32 desc_ver)
{
int node, prev;
int status;
u32 fdt_val32;
u64 fdt_val64;
/*
* Copy definition of linux_banner here. Since this code is
* built as part of the decompressor for ARM v7, pulling
* in version.c where linux_banner is defined for the
* kernel brings other kernel dependencies with it.
*/
const char linux_banner[] =
"Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n";
/* Do some checks on provided FDT, if it exists*/
if (orig_fdt) {
if (fdt_check_header(orig_fdt)) {
pr_efi_err(sys_table, "Device Tree header not valid!\n");
return EFI_LOAD_ERROR;
}
/*
* We don't get the size of the FDT if we get if from a
* configuration table.
*/
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
pr_efi_err(sys_table, "Truncated device tree! foo!\n");
return EFI_LOAD_ERROR;
}
}
if (orig_fdt)
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
else
status = fdt_create_empty_tree(fdt, new_fdt_size);
if (status != 0)
goto fdt_set_fail;
/*
* Delete any memory nodes present. We must delete nodes which
* early_init_dt_scan_memory may try to use.
*/
prev = 0;
for (;;) {
const char *type, *name;
int len;
node = fdt_next_node(fdt, prev, NULL);
if (node < 0)
break;
type = fdt_getprop(fdt, node, "device_type", &len);
if (type && strncmp(type, "memory", len) == 0) {
fdt_del_node(fdt, node);
continue;
}
prev = node;
}
node = fdt_subnode_offset(fdt, 0, "chosen");
if (node < 0) {
node = fdt_add_subnode(fdt, 0, "chosen");
if (node < 0) {
status = node; /* node is error code when negative */
goto fdt_set_fail;
}
}
if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
strlen(cmdline_ptr) + 1);
if (status)
goto fdt_set_fail;
}
/* Set initrd address/end in device tree, if present */
if (initrd_size != 0) {
u64 initrd_image_end;
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
status = fdt_setprop(fdt, node, "linux,initrd-start",
&initrd_image_start, sizeof(u64));
if (status)
goto fdt_set_fail;
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
status = fdt_setprop(fdt, node, "linux,initrd-end",
&initrd_image_end, sizeof(u64));
if (status)
goto fdt_set_fail;
}
/* Add FDT entries for EFI runtime services in chosen node. */
node = fdt_subnode_offset(fdt, 0, "chosen");
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
status = fdt_setprop(fdt, node, "linux,uefi-system-table",
&fdt_val64, sizeof(fdt_val64));
if (status)
goto fdt_set_fail;
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
&fdt_val64, sizeof(fdt_val64));
if (status)
goto fdt_set_fail;
fdt_val32 = cpu_to_fdt32(map_size);
status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
&fdt_val32, sizeof(fdt_val32));
if (status)
goto fdt_set_fail;
fdt_val32 = cpu_to_fdt32(desc_size);
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
&fdt_val32, sizeof(fdt_val32));
if (status)
goto fdt_set_fail;
fdt_val32 = cpu_to_fdt32(desc_ver);
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
&fdt_val32, sizeof(fdt_val32));
if (status)
goto fdt_set_fail;
/*
* Add kernel version banner so stub/kernel match can be
* verified.
*/
status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver",
linux_banner);
if (status)
goto fdt_set_fail;
return EFI_SUCCESS;
fdt_set_fail:
if (status == -FDT_ERR_NOSPACE)
return EFI_BUFFER_TOO_SMALL;
return EFI_LOAD_ERROR;
}
#ifndef EFI_FDT_ALIGN
#define EFI_FDT_ALIGN EFI_PAGE_SIZE
#endif
/*
* Allocate memory for a new FDT, then add EFI, commandline, and
* initrd related fields to the FDT. This routine increases the
* FDT allocation size until the allocated memory is large
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
* which are fixed at 4K bytes, so in most cases the first
* allocation should succeed.
* EFI boot services are exited at the end of this function.
* There must be no allocations between the get_memory_map()
* call and the exit_boot_services() call, so the exiting of
* boot services is very tightly tied to the creation of the FDT
* with the final memory map in it.
*/
efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
void *handle,
unsigned long *new_fdt_addr,
unsigned long max_addr,
u64 initrd_addr, u64 initrd_size,
char *cmdline_ptr,
unsigned long fdt_addr,
unsigned long fdt_size)
{
unsigned long map_size, desc_size;
u32 desc_ver;
unsigned long mmap_key;
efi_memory_desc_t *memory_map;
unsigned long new_fdt_size;
efi_status_t status;
/*
* Estimate size of new FDT, and allocate memory for it. We
* will allocate a bigger buffer if this ends up being too
* small, so a rough guess is OK here.
*/
new_fdt_size = fdt_size + EFI_PAGE_SIZE;
while (1) {
status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
new_fdt_addr, max_addr);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
goto fail;
}
/*
* Now that we have done our final memory allocation (and free)
* we can get the memory map key needed for
* exit_boot_services().
*/
status = efi_get_memory_map(sys_table, &memory_map, &map_size,
&desc_size, &desc_ver, &mmap_key);
if (status != EFI_SUCCESS)
goto fail_free_new_fdt;
status = update_fdt(sys_table,
(void *)fdt_addr, fdt_size,
(void *)*new_fdt_addr, new_fdt_size,
cmdline_ptr, initrd_addr, initrd_size,
memory_map, map_size, desc_size, desc_ver);
/* Succeeding the first time is the expected case. */
if (status == EFI_SUCCESS)
break;
if (status == EFI_BUFFER_TOO_SMALL) {
/*
* We need to allocate more space for the new
* device tree, so free existing buffer that is
* too small. Also free memory map, as we will need
* to get new one that reflects the free/alloc we do
* on the device tree buffer.
*/
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
sys_table->boottime->free_pool(memory_map);
new_fdt_size += EFI_PAGE_SIZE;
} else {
pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
goto fail_free_mmap;
}
}
/* Now we are ready to exit_boot_services.*/
status = sys_table->boottime->exit_boot_services(handle, mmap_key);
if (status == EFI_SUCCESS)
return status;
pr_efi_err(sys_table, "Exit boot services failed.\n");
fail_free_mmap:
sys_table->boottime->free_pool(memory_map);
fail_free_new_fdt:
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
fail:
return EFI_LOAD_ERROR;
}
static void *get_fdt(efi_system_table_t *sys_table)
{
efi_guid_t fdt_guid = DEVICE_TREE_GUID;
efi_config_table_t *tables;
void *fdt;
int i;
tables = (efi_config_table_t *) sys_table->tables;
fdt = NULL;
for (i = 0; i < sys_table->nr_tables; i++)
if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
fdt = (void *) tables[i].table;
break;
}
return fdt;
}