| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * |
| * Transmit and frame generation functions. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/skbuff.h> |
| #include <linux/etherdevice.h> |
| #include <linux/bitmap.h> |
| #include <linux/rcupdate.h> |
| #include <net/net_namespace.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <net/cfg80211.h> |
| #include <net/mac80211.h> |
| #include <asm/unaligned.h> |
| |
| #include "ieee80211_i.h" |
| #include "driver-ops.h" |
| #include "led.h" |
| #include "mesh.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "wme.h" |
| #include "rate.h" |
| |
| #define IEEE80211_TX_OK 0 |
| #define IEEE80211_TX_AGAIN 1 |
| #define IEEE80211_TX_PENDING 2 |
| |
| /* misc utils */ |
| |
| static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, |
| int next_frag_len) |
| { |
| int rate, mrate, erp, dur, i; |
| struct ieee80211_rate *txrate; |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| |
| /* assume HW handles this */ |
| if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) |
| return 0; |
| |
| /* uh huh? */ |
| if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) |
| return 0; |
| |
| sband = local->hw.wiphy->bands[tx->channel->band]; |
| txrate = &sband->bitrates[info->control.rates[0].idx]; |
| |
| erp = txrate->flags & IEEE80211_RATE_ERP_G; |
| |
| /* |
| * data and mgmt (except PS Poll): |
| * - during CFP: 32768 |
| * - during contention period: |
| * if addr1 is group address: 0 |
| * if more fragments = 0 and addr1 is individual address: time to |
| * transmit one ACK plus SIFS |
| * if more fragments = 1 and addr1 is individual address: time to |
| * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| * |
| * IEEE 802.11, 9.6: |
| * - control response frame (CTS or ACK) shall be transmitted using the |
| * same rate as the immediately previous frame in the frame exchange |
| * sequence, if this rate belongs to the PHY mandatory rates, or else |
| * at the highest possible rate belonging to the PHY rates in the |
| * BSSBasicRateSet |
| */ |
| hdr = (struct ieee80211_hdr *)tx->skb->data; |
| if (ieee80211_is_ctl(hdr->frame_control)) { |
| /* TODO: These control frames are not currently sent by |
| * mac80211, but should they be implemented, this function |
| * needs to be updated to support duration field calculation. |
| * |
| * RTS: time needed to transmit pending data/mgmt frame plus |
| * one CTS frame plus one ACK frame plus 3 x SIFS |
| * CTS: duration of immediately previous RTS minus time |
| * required to transmit CTS and its SIFS |
| * ACK: 0 if immediately previous directed data/mgmt had |
| * more=0, with more=1 duration in ACK frame is duration |
| * from previous frame minus time needed to transmit ACK |
| * and its SIFS |
| * PS Poll: BIT(15) | BIT(14) | aid |
| */ |
| return 0; |
| } |
| |
| /* data/mgmt */ |
| if (0 /* FIX: data/mgmt during CFP */) |
| return cpu_to_le16(32768); |
| |
| if (group_addr) /* Group address as the destination - no ACK */ |
| return 0; |
| |
| /* Individual destination address: |
| * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| * CTS and ACK frames shall be transmitted using the highest rate in |
| * basic rate set that is less than or equal to the rate of the |
| * immediately previous frame and that is using the same modulation |
| * (CCK or OFDM). If no basic rate set matches with these requirements, |
| * the highest mandatory rate of the PHY that is less than or equal to |
| * the rate of the previous frame is used. |
| * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| */ |
| rate = -1; |
| /* use lowest available if everything fails */ |
| mrate = sband->bitrates[0].bitrate; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| struct ieee80211_rate *r = &sband->bitrates[i]; |
| |
| if (r->bitrate > txrate->bitrate) |
| break; |
| |
| if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) |
| rate = r->bitrate; |
| |
| switch (sband->band) { |
| case IEEE80211_BAND_2GHZ: { |
| u32 flag; |
| if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) |
| flag = IEEE80211_RATE_MANDATORY_G; |
| else |
| flag = IEEE80211_RATE_MANDATORY_B; |
| if (r->flags & flag) |
| mrate = r->bitrate; |
| break; |
| } |
| case IEEE80211_BAND_5GHZ: |
| if (r->flags & IEEE80211_RATE_MANDATORY_A) |
| mrate = r->bitrate; |
| break; |
| case IEEE80211_NUM_BANDS: |
| WARN_ON(1); |
| break; |
| } |
| } |
| if (rate == -1) { |
| /* No matching basic rate found; use highest suitable mandatory |
| * PHY rate */ |
| rate = mrate; |
| } |
| |
| /* Time needed to transmit ACK |
| * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| * to closest integer */ |
| |
| dur = ieee80211_frame_duration(local, 10, rate, erp, |
| tx->sdata->vif.bss_conf.use_short_preamble); |
| |
| if (next_frag_len) { |
| /* Frame is fragmented: duration increases with time needed to |
| * transmit next fragment plus ACK and 2 x SIFS. */ |
| dur *= 2; /* ACK + SIFS */ |
| /* next fragment */ |
| dur += ieee80211_frame_duration(local, next_frag_len, |
| txrate->bitrate, erp, |
| tx->sdata->vif.bss_conf.use_short_preamble); |
| } |
| |
| return cpu_to_le16(dur); |
| } |
| |
| static int inline is_ieee80211_device(struct ieee80211_local *local, |
| struct net_device *dev) |
| { |
| return local == wdev_priv(dev->ieee80211_ptr); |
| } |
| |
| /* tx handlers */ |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_if_managed *ifmgd; |
| |
| /* driver doesn't support power save */ |
| if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) |
| return TX_CONTINUE; |
| |
| /* hardware does dynamic power save */ |
| if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) |
| return TX_CONTINUE; |
| |
| /* dynamic power save disabled */ |
| if (local->hw.conf.dynamic_ps_timeout <= 0) |
| return TX_CONTINUE; |
| |
| /* we are scanning, don't enable power save */ |
| if (local->scanning) |
| return TX_CONTINUE; |
| |
| if (!local->ps_sdata) |
| return TX_CONTINUE; |
| |
| /* No point if we're going to suspend */ |
| if (local->quiescing) |
| return TX_CONTINUE; |
| |
| /* dynamic ps is supported only in managed mode */ |
| if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) |
| return TX_CONTINUE; |
| |
| ifmgd = &tx->sdata->u.mgd; |
| |
| /* |
| * Don't wakeup from power save if u-apsd is enabled, voip ac has |
| * u-apsd enabled and the frame is in voip class. This effectively |
| * means that even if all access categories have u-apsd enabled, in |
| * practise u-apsd is only used with the voip ac. This is a |
| * workaround for the case when received voip class packets do not |
| * have correct qos tag for some reason, due the network or the |
| * peer application. |
| * |
| * Note: local->uapsd_queues access is racy here. If the value is |
| * changed via debugfs, user needs to reassociate manually to have |
| * everything in sync. |
| */ |
| if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) |
| && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) |
| && skb_get_queue_mapping(tx->skb) == 0) |
| return TX_CONTINUE; |
| |
| if (local->hw.conf.flags & IEEE80211_CONF_PS) { |
| ieee80211_stop_queues_by_reason(&local->hw, |
| IEEE80211_QUEUE_STOP_REASON_PS); |
| ieee80211_queue_work(&local->hw, |
| &local->dynamic_ps_disable_work); |
| } |
| |
| mod_timer(&local->dynamic_ps_timer, jiffies + |
| msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) |
| { |
| |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| u32 sta_flags; |
| |
| if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) |
| return TX_CONTINUE; |
| |
| if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) && |
| !ieee80211_is_probe_req(hdr->frame_control) && |
| !ieee80211_is_nullfunc(hdr->frame_control)) |
| /* |
| * When software scanning only nullfunc frames (to notify |
| * the sleep state to the AP) and probe requests (for the |
| * active scan) are allowed, all other frames should not be |
| * sent and we should not get here, but if we do |
| * nonetheless, drop them to avoid sending them |
| * off-channel. See the link below and |
| * ieee80211_start_scan() for more. |
| * |
| * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 |
| */ |
| return TX_DROP; |
| |
| if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) |
| return TX_CONTINUE; |
| |
| if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) |
| return TX_CONTINUE; |
| |
| if (tx->flags & IEEE80211_TX_PS_BUFFERED) |
| return TX_CONTINUE; |
| |
| sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; |
| |
| if (likely(tx->flags & IEEE80211_TX_UNICAST)) { |
| if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && |
| tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| ieee80211_is_data(hdr->frame_control))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: dropped data frame to not " |
| "associated station %pM\n", |
| tx->sdata->name, hdr->addr1); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| return TX_DROP; |
| } |
| } else { |
| if (unlikely(ieee80211_is_data(hdr->frame_control) && |
| tx->local->num_sta == 0 && |
| tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { |
| /* |
| * No associated STAs - no need to send multicast |
| * frames. |
| */ |
| return TX_DROP; |
| } |
| return TX_CONTINUE; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| /* This function is called whenever the AP is about to exceed the maximum limit |
| * of buffered frames for power saving STAs. This situation should not really |
| * happen often during normal operation, so dropping the oldest buffered packet |
| * from each queue should be OK to make some room for new frames. */ |
| static void purge_old_ps_buffers(struct ieee80211_local *local) |
| { |
| int total = 0, purged = 0; |
| struct sk_buff *skb; |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| |
| /* |
| * virtual interfaces are protected by RCU |
| */ |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| struct ieee80211_if_ap *ap; |
| if (sdata->vif.type != NL80211_IFTYPE_AP) |
| continue; |
| ap = &sdata->u.ap; |
| skb = skb_dequeue(&ap->ps_bc_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&ap->ps_bc_buf); |
| } |
| |
| list_for_each_entry_rcu(sta, &local->sta_list, list) { |
| skb = skb_dequeue(&sta->ps_tx_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&sta->ps_tx_buf); |
| } |
| |
| rcu_read_unlock(); |
| |
| local->total_ps_buffered = total; |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", |
| purged); |
| #endif |
| } |
| |
| static ieee80211_tx_result |
| ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| |
| /* |
| * broadcast/multicast frame |
| * |
| * If any of the associated stations is in power save mode, |
| * the frame is buffered to be sent after DTIM beacon frame. |
| * This is done either by the hardware or us. |
| */ |
| |
| /* powersaving STAs only in AP/VLAN mode */ |
| if (!tx->sdata->bss) |
| return TX_CONTINUE; |
| |
| /* no buffering for ordered frames */ |
| if (ieee80211_has_order(hdr->frame_control)) |
| return TX_CONTINUE; |
| |
| /* no stations in PS mode */ |
| if (!atomic_read(&tx->sdata->bss->num_sta_ps)) |
| return TX_CONTINUE; |
| |
| info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; |
| |
| /* device releases frame after DTIM beacon */ |
| if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) |
| return TX_CONTINUE; |
| |
| /* buffered in mac80211 */ |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| |
| if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", |
| tx->sdata->name); |
| #endif |
| dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); |
| } else |
| tx->local->total_ps_buffered++; |
| |
| skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); |
| |
| return TX_QUEUED; |
| } |
| |
| static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| if (!ieee80211_is_mgmt(fc)) |
| return 0; |
| |
| if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) |
| return 0; |
| |
| if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) |
| skb->data)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static ieee80211_tx_result |
| ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| struct sta_info *sta = tx->sta; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| struct ieee80211_local *local = tx->local; |
| u32 staflags; |
| |
| if (unlikely(!sta || |
| ieee80211_is_probe_resp(hdr->frame_control) || |
| ieee80211_is_auth(hdr->frame_control) || |
| ieee80211_is_assoc_resp(hdr->frame_control) || |
| ieee80211_is_reassoc_resp(hdr->frame_control))) |
| return TX_CONTINUE; |
| |
| staflags = get_sta_flags(sta); |
| |
| if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && |
| !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " |
| "before %d)\n", |
| sta->sta.addr, sta->sta.aid, |
| skb_queue_len(&sta->ps_tx_buf)); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { |
| struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: STA %pM TX " |
| "buffer full - dropping oldest frame\n", |
| tx->sdata->name, sta->sta.addr); |
| } |
| #endif |
| dev_kfree_skb(old); |
| } else |
| tx->local->total_ps_buffered++; |
| |
| /* |
| * Queue frame to be sent after STA wakes up/polls, |
| * but don't set the TIM bit if the driver is blocking |
| * wakeup or poll response transmissions anyway. |
| */ |
| if (skb_queue_empty(&sta->ps_tx_buf) && |
| !(staflags & WLAN_STA_PS_DRIVER)) |
| sta_info_set_tim_bit(sta); |
| |
| info->control.jiffies = jiffies; |
| info->control.vif = &tx->sdata->vif; |
| info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| skb_queue_tail(&sta->ps_tx_buf, tx->skb); |
| |
| if (!timer_pending(&local->sta_cleanup)) |
| mod_timer(&local->sta_cleanup, |
| round_jiffies(jiffies + |
| STA_INFO_CLEANUP_INTERVAL)); |
| |
| return TX_QUEUED; |
| } |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| else if (unlikely(staflags & WLAN_STA_PS_STA)) { |
| printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " |
| "set -> send frame\n", tx->sdata->name, |
| sta->sta.addr); |
| } |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) |
| return TX_CONTINUE; |
| |
| if (tx->flags & IEEE80211_TX_UNICAST) |
| return ieee80211_tx_h_unicast_ps_buf(tx); |
| else |
| return ieee80211_tx_h_multicast_ps_buf(tx); |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| |
| if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol && |
| tx->sdata->control_port_no_encrypt)) |
| info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_key *key = NULL; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| |
| if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) |
| tx->key = NULL; |
| else if (tx->sta && (key = rcu_dereference(tx->sta->ptk))) |
| tx->key = key; |
| else if (ieee80211_is_mgmt(hdr->frame_control) && |
| is_multicast_ether_addr(hdr->addr1) && |
| ieee80211_is_robust_mgmt_frame(hdr) && |
| (key = rcu_dereference(tx->sdata->default_mgmt_key))) |
| tx->key = key; |
| else if ((key = rcu_dereference(tx->sdata->default_key))) |
| tx->key = key; |
| else if (tx->sdata->drop_unencrypted && |
| (tx->skb->protocol != tx->sdata->control_port_protocol) && |
| !(info->flags & IEEE80211_TX_CTL_INJECTED) && |
| (!ieee80211_is_robust_mgmt_frame(hdr) || |
| (ieee80211_is_action(hdr->frame_control) && |
| tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); |
| return TX_DROP; |
| } else |
| tx->key = NULL; |
| |
| if (tx->key) { |
| bool skip_hw = false; |
| |
| tx->key->tx_rx_count++; |
| /* TODO: add threshold stuff again */ |
| |
| switch (tx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| if (ieee80211_is_auth(hdr->frame_control)) |
| break; |
| case WLAN_CIPHER_SUITE_TKIP: |
| if (!ieee80211_is_data_present(hdr->frame_control)) |
| tx->key = NULL; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| if (!ieee80211_is_data_present(hdr->frame_control) && |
| !ieee80211_use_mfp(hdr->frame_control, tx->sta, |
| tx->skb)) |
| tx->key = NULL; |
| else |
| skip_hw = (tx->key->conf.flags & |
| IEEE80211_KEY_FLAG_SW_MGMT) && |
| ieee80211_is_mgmt(hdr->frame_control); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| if (!ieee80211_is_mgmt(hdr->frame_control)) |
| tx->key = NULL; |
| break; |
| } |
| |
| if (!skip_hw && tx->key && |
| tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) |
| info->control.hw_key = &tx->key->conf; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (void *)tx->skb->data; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_rate *rate; |
| int i; |
| u32 len; |
| bool inval = false, rts = false, short_preamble = false; |
| struct ieee80211_tx_rate_control txrc; |
| u32 sta_flags; |
| |
| memset(&txrc, 0, sizeof(txrc)); |
| |
| sband = tx->local->hw.wiphy->bands[tx->channel->band]; |
| |
| len = min_t(u32, tx->skb->len + FCS_LEN, |
| tx->local->hw.wiphy->frag_threshold); |
| |
| /* set up the tx rate control struct we give the RC algo */ |
| txrc.hw = local_to_hw(tx->local); |
| txrc.sband = sband; |
| txrc.bss_conf = &tx->sdata->vif.bss_conf; |
| txrc.skb = tx->skb; |
| txrc.reported_rate.idx = -1; |
| txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; |
| if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) |
| txrc.max_rate_idx = -1; |
| else |
| txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; |
| txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || |
| tx->sdata->vif.type == NL80211_IFTYPE_ADHOC); |
| |
| /* set up RTS protection if desired */ |
| if (len > tx->local->hw.wiphy->rts_threshold) { |
| txrc.rts = rts = true; |
| } |
| |
| /* |
| * Use short preamble if the BSS can handle it, but not for |
| * management frames unless we know the receiver can handle |
| * that -- the management frame might be to a station that |
| * just wants a probe response. |
| */ |
| if (tx->sdata->vif.bss_conf.use_short_preamble && |
| (ieee80211_is_data(hdr->frame_control) || |
| (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) |
| txrc.short_preamble = short_preamble = true; |
| |
| sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; |
| |
| /* |
| * Lets not bother rate control if we're associated and cannot |
| * talk to the sta. This should not happen. |
| */ |
| if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && |
| (sta_flags & WLAN_STA_ASSOC) && |
| !rate_usable_index_exists(sband, &tx->sta->sta), |
| "%s: Dropped data frame as no usable bitrate found while " |
| "scanning and associated. Target station: " |
| "%pM on %d GHz band\n", |
| tx->sdata->name, hdr->addr1, |
| tx->channel->band ? 5 : 2)) |
| return TX_DROP; |
| |
| /* |
| * If we're associated with the sta at this point we know we can at |
| * least send the frame at the lowest bit rate. |
| */ |
| rate_control_get_rate(tx->sdata, tx->sta, &txrc); |
| |
| if (unlikely(info->control.rates[0].idx < 0)) |
| return TX_DROP; |
| |
| if (txrc.reported_rate.idx < 0) { |
| txrc.reported_rate = info->control.rates[0]; |
| if (tx->sta && ieee80211_is_data(hdr->frame_control)) |
| tx->sta->last_tx_rate = txrc.reported_rate; |
| } else if (tx->sta) |
| tx->sta->last_tx_rate = txrc.reported_rate; |
| |
| if (unlikely(!info->control.rates[0].count)) |
| info->control.rates[0].count = 1; |
| |
| if (WARN_ON_ONCE((info->control.rates[0].count > 1) && |
| (info->flags & IEEE80211_TX_CTL_NO_ACK))) |
| info->control.rates[0].count = 1; |
| |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| /* |
| * XXX: verify the rate is in the basic rateset |
| */ |
| return TX_CONTINUE; |
| } |
| |
| /* |
| * set up the RTS/CTS rate as the fastest basic rate |
| * that is not faster than the data rate |
| * |
| * XXX: Should this check all retry rates? |
| */ |
| if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { |
| s8 baserate = 0; |
| |
| rate = &sband->bitrates[info->control.rates[0].idx]; |
| |
| for (i = 0; i < sband->n_bitrates; i++) { |
| /* must be a basic rate */ |
| if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) |
| continue; |
| /* must not be faster than the data rate */ |
| if (sband->bitrates[i].bitrate > rate->bitrate) |
| continue; |
| /* maximum */ |
| if (sband->bitrates[baserate].bitrate < |
| sband->bitrates[i].bitrate) |
| baserate = i; |
| } |
| |
| info->control.rts_cts_rate_idx = baserate; |
| } |
| |
| for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { |
| /* |
| * make sure there's no valid rate following |
| * an invalid one, just in case drivers don't |
| * take the API seriously to stop at -1. |
| */ |
| if (inval) { |
| info->control.rates[i].idx = -1; |
| continue; |
| } |
| if (info->control.rates[i].idx < 0) { |
| inval = true; |
| continue; |
| } |
| |
| /* |
| * For now assume MCS is already set up correctly, this |
| * needs to be fixed. |
| */ |
| if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { |
| WARN_ON(info->control.rates[i].idx > 76); |
| continue; |
| } |
| |
| /* set up RTS protection if desired */ |
| if (rts) |
| info->control.rates[i].flags |= |
| IEEE80211_TX_RC_USE_RTS_CTS; |
| |
| /* RC is busted */ |
| if (WARN_ON_ONCE(info->control.rates[i].idx >= |
| sband->n_bitrates)) { |
| info->control.rates[i].idx = -1; |
| continue; |
| } |
| |
| rate = &sband->bitrates[info->control.rates[i].idx]; |
| |
| /* set up short preamble */ |
| if (short_preamble && |
| rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) |
| info->control.rates[i].flags |= |
| IEEE80211_TX_RC_USE_SHORT_PREAMBLE; |
| |
| /* set up G protection */ |
| if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && |
| rate->flags & IEEE80211_RATE_ERP_G) |
| info->control.rates[i].flags |= |
| IEEE80211_TX_RC_USE_CTS_PROTECT; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| u16 *seq; |
| u8 *qc; |
| int tid; |
| |
| /* |
| * Packet injection may want to control the sequence |
| * number, if we have no matching interface then we |
| * neither assign one ourselves nor ask the driver to. |
| */ |
| if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) |
| return TX_CONTINUE; |
| |
| if (unlikely(ieee80211_is_ctl(hdr->frame_control))) |
| return TX_CONTINUE; |
| |
| if (ieee80211_hdrlen(hdr->frame_control) < 24) |
| return TX_CONTINUE; |
| |
| /* |
| * Anything but QoS data that has a sequence number field |
| * (is long enough) gets a sequence number from the global |
| * counter. |
| */ |
| if (!ieee80211_is_data_qos(hdr->frame_control)) { |
| /* driver should assign sequence number */ |
| info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; |
| /* for pure STA mode without beacons, we can do it */ |
| hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); |
| tx->sdata->sequence_number += 0x10; |
| return TX_CONTINUE; |
| } |
| |
| /* |
| * This should be true for injected/management frames only, for |
| * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ |
| * above since they are not QoS-data frames. |
| */ |
| if (!tx->sta) |
| return TX_CONTINUE; |
| |
| /* include per-STA, per-TID sequence counter */ |
| |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| seq = &tx->sta->tid_seq[tid]; |
| |
| hdr->seq_ctrl = cpu_to_le16(*seq); |
| |
| /* Increase the sequence number. */ |
| *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; |
| |
| return TX_CONTINUE; |
| } |
| |
| static int ieee80211_fragment(struct ieee80211_local *local, |
| struct sk_buff *skb, int hdrlen, |
| int frag_threshold) |
| { |
| struct sk_buff *tail = skb, *tmp; |
| int per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| int pos = hdrlen + per_fragm; |
| int rem = skb->len - hdrlen - per_fragm; |
| |
| if (WARN_ON(rem < 0)) |
| return -EINVAL; |
| |
| while (rem) { |
| int fraglen = per_fragm; |
| |
| if (fraglen > rem) |
| fraglen = rem; |
| rem -= fraglen; |
| tmp = dev_alloc_skb(local->tx_headroom + |
| frag_threshold + |
| IEEE80211_ENCRYPT_HEADROOM + |
| IEEE80211_ENCRYPT_TAILROOM); |
| if (!tmp) |
| return -ENOMEM; |
| tail->next = tmp; |
| tail = tmp; |
| skb_reserve(tmp, local->tx_headroom + |
| IEEE80211_ENCRYPT_HEADROOM); |
| /* copy control information */ |
| memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); |
| skb_copy_queue_mapping(tmp, skb); |
| tmp->priority = skb->priority; |
| tmp->dev = skb->dev; |
| |
| /* copy header and data */ |
| memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); |
| memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); |
| |
| pos += fraglen; |
| } |
| |
| skb->len = hdrlen + per_fragm; |
| return 0; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (void *)skb->data; |
| int frag_threshold = tx->local->hw.wiphy->frag_threshold; |
| int hdrlen; |
| int fragnum; |
| |
| if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) |
| return TX_CONTINUE; |
| |
| /* |
| * Warn when submitting a fragmented A-MPDU frame and drop it. |
| * This scenario is handled in ieee80211_tx_prepare but extra |
| * caution taken here as fragmented ampdu may cause Tx stop. |
| */ |
| if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| return TX_DROP; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| /* internal error, why is TX_FRAGMENTED set? */ |
| if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) |
| return TX_DROP; |
| |
| /* |
| * Now fragment the frame. This will allocate all the fragments and |
| * chain them (using skb as the first fragment) to skb->next. |
| * During transmission, we will remove the successfully transmitted |
| * fragments from this list. When the low-level driver rejects one |
| * of the fragments then we will simply pretend to accept the skb |
| * but store it away as pending. |
| */ |
| if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) |
| return TX_DROP; |
| |
| /* update duration/seq/flags of fragments */ |
| fragnum = 0; |
| do { |
| int next_len; |
| const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| |
| hdr = (void *)skb->data; |
| info = IEEE80211_SKB_CB(skb); |
| |
| if (skb->next) { |
| hdr->frame_control |= morefrags; |
| next_len = skb->next->len; |
| /* |
| * No multi-rate retries for fragmented frames, that |
| * would completely throw off the NAV at other STAs. |
| */ |
| info->control.rates[1].idx = -1; |
| info->control.rates[2].idx = -1; |
| info->control.rates[3].idx = -1; |
| info->control.rates[4].idx = -1; |
| BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); |
| info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; |
| } else { |
| hdr->frame_control &= ~morefrags; |
| next_len = 0; |
| } |
| hdr->duration_id = ieee80211_duration(tx, 0, next_len); |
| hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); |
| fragnum++; |
| } while ((skb = skb->next)); |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb = tx->skb; |
| |
| if (!tx->sta) |
| return TX_CONTINUE; |
| |
| tx->sta->tx_packets++; |
| do { |
| tx->sta->tx_fragments++; |
| tx->sta->tx_bytes += skb->len; |
| } while ((skb = skb->next)); |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| |
| if (!tx->key) |
| return TX_CONTINUE; |
| |
| switch (tx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| return ieee80211_crypto_wep_encrypt(tx); |
| case WLAN_CIPHER_SUITE_TKIP: |
| return ieee80211_crypto_tkip_encrypt(tx); |
| case WLAN_CIPHER_SUITE_CCMP: |
| return ieee80211_crypto_ccmp_encrypt(tx); |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| return ieee80211_crypto_aes_cmac_encrypt(tx); |
| default: |
| /* handle hw-only algorithm */ |
| if (info->control.hw_key) { |
| ieee80211_tx_set_protected(tx); |
| return TX_CONTINUE; |
| } |
| break; |
| |
| } |
| |
| return TX_DROP; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_hdr *hdr; |
| int next_len; |
| bool group_addr; |
| |
| do { |
| hdr = (void *) skb->data; |
| if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) |
| break; /* must not overwrite AID */ |
| next_len = skb->next ? skb->next->len : 0; |
| group_addr = is_multicast_ether_addr(hdr->addr1); |
| |
| hdr->duration_id = |
| ieee80211_duration(tx, group_addr, next_len); |
| } while ((skb = skb->next)); |
| |
| return TX_CONTINUE; |
| } |
| |
| /* actual transmit path */ |
| |
| /* |
| * deal with packet injection down monitor interface |
| * with Radiotap Header -- only called for monitor mode interface |
| */ |
| static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, |
| struct sk_buff *skb) |
| { |
| /* |
| * this is the moment to interpret and discard the radiotap header that |
| * must be at the start of the packet injected in Monitor mode |
| * |
| * Need to take some care with endian-ness since radiotap |
| * args are little-endian |
| */ |
| |
| struct ieee80211_radiotap_iterator iterator; |
| struct ieee80211_radiotap_header *rthdr = |
| (struct ieee80211_radiotap_header *) skb->data; |
| struct ieee80211_supported_band *sband; |
| bool hw_frag; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, |
| NULL); |
| |
| sband = tx->local->hw.wiphy->bands[tx->channel->band]; |
| |
| info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| tx->flags &= ~IEEE80211_TX_FRAGMENTED; |
| |
| /* packet is fragmented in HW if we have a non-NULL driver callback */ |
| hw_frag = (tx->local->ops->set_frag_threshold != NULL); |
| |
| /* |
| * for every radiotap entry that is present |
| * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| * entries present, or -EINVAL on error) |
| */ |
| |
| while (!ret) { |
| ret = ieee80211_radiotap_iterator_next(&iterator); |
| |
| if (ret) |
| continue; |
| |
| /* see if this argument is something we can use */ |
| switch (iterator.this_arg_index) { |
| /* |
| * You must take care when dereferencing iterator.this_arg |
| * for multibyte types... the pointer is not aligned. Use |
| * get_unaligned((type *)iterator.this_arg) to dereference |
| * iterator.this_arg for type "type" safely on all arches. |
| */ |
| case IEEE80211_RADIOTAP_FLAGS: |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| /* |
| * this indicates that the skb we have been |
| * handed has the 32-bit FCS CRC at the end... |
| * we should react to that by snipping it off |
| * because it will be recomputed and added |
| * on transmission |
| */ |
| if (skb->len < (iterator._max_length + FCS_LEN)) |
| return false; |
| |
| skb_trim(skb, skb->len - FCS_LEN); |
| } |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) |
| info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) && |
| !hw_frag) |
| tx->flags |= IEEE80211_TX_FRAGMENTED; |
| break; |
| |
| /* |
| * Please update the file |
| * Documentation/networking/mac80211-injection.txt |
| * when parsing new fields here. |
| */ |
| |
| default: |
| break; |
| } |
| } |
| |
| if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| return false; |
| |
| /* |
| * remove the radiotap header |
| * iterator->_max_length was sanity-checked against |
| * skb->len by iterator init |
| */ |
| skb_pull(skb, iterator._max_length); |
| |
| return true; |
| } |
| |
| static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, |
| struct sk_buff *skb, |
| struct ieee80211_tx_info *info, |
| struct tid_ampdu_tx *tid_tx, |
| int tid) |
| { |
| bool queued = false; |
| |
| if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| info->flags |= IEEE80211_TX_CTL_AMPDU; |
| } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { |
| /* |
| * nothing -- this aggregation session is being started |
| * but that might still fail with the driver |
| */ |
| } else { |
| spin_lock(&tx->sta->lock); |
| /* |
| * Need to re-check now, because we may get here |
| * |
| * 1) in the window during which the setup is actually |
| * already done, but not marked yet because not all |
| * packets are spliced over to the driver pending |
| * queue yet -- if this happened we acquire the lock |
| * either before or after the splice happens, but |
| * need to recheck which of these cases happened. |
| * |
| * 2) during session teardown, if the OPERATIONAL bit |
| * was cleared due to the teardown but the pointer |
| * hasn't been assigned NULL yet (or we loaded it |
| * before it was assigned) -- in this case it may |
| * now be NULL which means we should just let the |
| * packet pass through because splicing the frames |
| * back is already done. |
| */ |
| tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; |
| |
| if (!tid_tx) { |
| /* do nothing, let packet pass through */ |
| } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| info->flags |= IEEE80211_TX_CTL_AMPDU; |
| } else { |
| queued = true; |
| info->control.vif = &tx->sdata->vif; |
| info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| __skb_queue_tail(&tid_tx->pending, skb); |
| } |
| spin_unlock(&tx->sta->lock); |
| } |
| |
| return queued; |
| } |
| |
| /* |
| * initialises @tx |
| */ |
| static ieee80211_tx_result |
| ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_tx_data *tx, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int hdrlen, tid; |
| u8 *qc; |
| |
| memset(tx, 0, sizeof(*tx)); |
| tx->skb = skb; |
| tx->local = local; |
| tx->sdata = sdata; |
| tx->channel = local->hw.conf.channel; |
| /* |
| * Set this flag (used below to indicate "automatic fragmentation"), |
| * it will be cleared/left by radiotap as desired. |
| * Only valid when fragmentation is done by the stack. |
| */ |
| if (!local->ops->set_frag_threshold) |
| tx->flags |= IEEE80211_TX_FRAGMENTED; |
| |
| /* process and remove the injection radiotap header */ |
| if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { |
| if (!__ieee80211_parse_tx_radiotap(tx, skb)) |
| return TX_DROP; |
| |
| /* |
| * __ieee80211_parse_tx_radiotap has now removed |
| * the radiotap header that was present and pre-filled |
| * 'tx' with tx control information. |
| */ |
| info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; |
| } |
| |
| /* |
| * If this flag is set to true anywhere, and we get here, |
| * we are doing the needed processing, so remove the flag |
| * now. |
| */ |
| info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| tx->sta = rcu_dereference(sdata->u.vlan.sta); |
| if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) |
| return TX_DROP; |
| } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { |
| tx->sta = sta_info_get_bss(sdata, hdr->addr1); |
| } |
| if (!tx->sta) |
| tx->sta = sta_info_get(sdata, hdr->addr1); |
| |
| if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && |
| (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { |
| struct tid_ampdu_tx *tid_tx; |
| |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| |
| tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); |
| if (tid_tx) { |
| bool queued; |
| |
| queued = ieee80211_tx_prep_agg(tx, skb, info, |
| tid_tx, tid); |
| |
| if (unlikely(queued)) |
| return TX_QUEUED; |
| } |
| } |
| |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| tx->flags &= ~IEEE80211_TX_UNICAST; |
| info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| } else { |
| tx->flags |= IEEE80211_TX_UNICAST; |
| if (unlikely(local->wifi_wme_noack_test)) |
| info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| else |
| info->flags &= ~IEEE80211_TX_CTL_NO_ACK; |
| } |
| |
| if (tx->flags & IEEE80211_TX_FRAGMENTED) { |
| if ((tx->flags & IEEE80211_TX_UNICAST) && |
| skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && |
| !(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| tx->flags |= IEEE80211_TX_FRAGMENTED; |
| else |
| tx->flags &= ~IEEE80211_TX_FRAGMENTED; |
| } |
| |
| if (!tx->sta) |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { |
| u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; |
| tx->ethertype = (pos[0] << 8) | pos[1]; |
| } |
| info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; |
| |
| return TX_CONTINUE; |
| } |
| |
| static int __ieee80211_tx(struct ieee80211_local *local, |
| struct sk_buff **skbp, |
| struct sta_info *sta, |
| bool txpending) |
| { |
| struct sk_buff *skb = *skbp, *next; |
| struct ieee80211_tx_info *info; |
| struct ieee80211_sub_if_data *sdata; |
| unsigned long flags; |
| int ret, len; |
| bool fragm = false; |
| |
| while (skb) { |
| int q = skb_get_queue_mapping(skb); |
| |
| spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| ret = IEEE80211_TX_OK; |
| if (local->queue_stop_reasons[q] || |
| (!txpending && !skb_queue_empty(&local->pending[q]))) |
| ret = IEEE80211_TX_PENDING; |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); |
| if (ret != IEEE80211_TX_OK) |
| return ret; |
| |
| info = IEEE80211_SKB_CB(skb); |
| |
| if (fragm) |
| info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | |
| IEEE80211_TX_CTL_FIRST_FRAGMENT); |
| |
| next = skb->next; |
| len = skb->len; |
| |
| if (next) |
| info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; |
| |
| sdata = vif_to_sdata(info->control.vif); |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_MONITOR: |
| info->control.vif = NULL; |
| break; |
| case NL80211_IFTYPE_AP_VLAN: |
| info->control.vif = &container_of(sdata->bss, |
| struct ieee80211_sub_if_data, u.ap)->vif; |
| break; |
| default: |
| /* keep */ |
| break; |
| } |
| |
| if (sta && sta->uploaded) |
| info->control.sta = &sta->sta; |
| else |
| info->control.sta = NULL; |
| |
| ret = drv_tx(local, skb); |
| if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { |
| dev_kfree_skb(skb); |
| ret = NETDEV_TX_OK; |
| } |
| if (ret != NETDEV_TX_OK) { |
| info->control.vif = &sdata->vif; |
| return IEEE80211_TX_AGAIN; |
| } |
| |
| *skbp = skb = next; |
| ieee80211_led_tx(local, 1); |
| fragm = true; |
| } |
| |
| return IEEE80211_TX_OK; |
| } |
| |
| /* |
| * Invoke TX handlers, return 0 on success and non-zero if the |
| * frame was dropped or queued. |
| */ |
| static int invoke_tx_handlers(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| ieee80211_tx_result res = TX_DROP; |
| |
| #define CALL_TXH(txh) \ |
| do { \ |
| res = txh(tx); \ |
| if (res != TX_CONTINUE) \ |
| goto txh_done; \ |
| } while (0) |
| |
| CALL_TXH(ieee80211_tx_h_dynamic_ps); |
| CALL_TXH(ieee80211_tx_h_check_assoc); |
| CALL_TXH(ieee80211_tx_h_ps_buf); |
| CALL_TXH(ieee80211_tx_h_check_control_port_protocol); |
| CALL_TXH(ieee80211_tx_h_select_key); |
| if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) |
| CALL_TXH(ieee80211_tx_h_rate_ctrl); |
| |
| if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) |
| goto txh_done; |
| |
| CALL_TXH(ieee80211_tx_h_michael_mic_add); |
| CALL_TXH(ieee80211_tx_h_sequence); |
| CALL_TXH(ieee80211_tx_h_fragment); |
| /* handlers after fragment must be aware of tx info fragmentation! */ |
| CALL_TXH(ieee80211_tx_h_stats); |
| CALL_TXH(ieee80211_tx_h_encrypt); |
| CALL_TXH(ieee80211_tx_h_calculate_duration); |
| #undef CALL_TXH |
| |
| txh_done: |
| if (unlikely(res == TX_DROP)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop); |
| while (skb) { |
| struct sk_buff *next; |
| |
| next = skb->next; |
| dev_kfree_skb(skb); |
| skb = next; |
| } |
| return -1; |
| } else if (unlikely(res == TX_QUEUED)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_queued); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void ieee80211_tx(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb, bool txpending) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_data tx; |
| ieee80211_tx_result res_prepare; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct sk_buff *next; |
| unsigned long flags; |
| int ret, retries; |
| u16 queue; |
| |
| queue = skb_get_queue_mapping(skb); |
| |
| if (unlikely(skb->len < 10)) { |
| dev_kfree_skb(skb); |
| return; |
| } |
| |
| rcu_read_lock(); |
| |
| /* initialises tx */ |
| res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); |
| |
| if (unlikely(res_prepare == TX_DROP)) { |
| dev_kfree_skb(skb); |
| rcu_read_unlock(); |
| return; |
| } else if (unlikely(res_prepare == TX_QUEUED)) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| tx.channel = local->hw.conf.channel; |
| info->band = tx.channel->band; |
| |
| if (invoke_tx_handlers(&tx)) |
| goto out; |
| |
| retries = 0; |
| retry: |
| ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); |
| switch (ret) { |
| case IEEE80211_TX_OK: |
| break; |
| case IEEE80211_TX_AGAIN: |
| /* |
| * Since there are no fragmented frames on A-MPDU |
| * queues, there's no reason for a driver to reject |
| * a frame there, warn and drop it. |
| */ |
| if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| goto drop; |
| /* fall through */ |
| case IEEE80211_TX_PENDING: |
| skb = tx.skb; |
| |
| spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| |
| if (local->queue_stop_reasons[queue] || |
| !skb_queue_empty(&local->pending[queue])) { |
| /* |
| * if queue is stopped, queue up frames for later |
| * transmission from the tasklet |
| */ |
| do { |
| next = skb->next; |
| skb->next = NULL; |
| if (unlikely(txpending)) |
| __skb_queue_head(&local->pending[queue], |
| skb); |
| else |
| __skb_queue_tail(&local->pending[queue], |
| skb); |
| } while ((skb = next)); |
| |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| flags); |
| } else { |
| /* |
| * otherwise retry, but this is a race condition or |
| * a driver bug (which we warn about if it persists) |
| */ |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| flags); |
| |
| retries++; |
| if (WARN(retries > 10, "tx refused but queue active\n")) |
| goto drop; |
| goto retry; |
| } |
| } |
| out: |
| rcu_read_unlock(); |
| return; |
| |
| drop: |
| rcu_read_unlock(); |
| |
| skb = tx.skb; |
| while (skb) { |
| next = skb->next; |
| dev_kfree_skb(skb); |
| skb = next; |
| } |
| } |
| |
| /* device xmit handlers */ |
| |
| static int ieee80211_skb_resize(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| int head_need, bool may_encrypt) |
| { |
| int tail_need = 0; |
| |
| /* |
| * This could be optimised, devices that do full hardware |
| * crypto (including TKIP MMIC) need no tailroom... But we |
| * have no drivers for such devices currently. |
| */ |
| if (may_encrypt) { |
| tail_need = IEEE80211_ENCRYPT_TAILROOM; |
| tail_need -= skb_tailroom(skb); |
| tail_need = max_t(int, tail_need, 0); |
| } |
| |
| if (head_need || tail_need) { |
| /* Sorry. Can't account for this any more */ |
| skb_orphan(skb); |
| } |
| |
| if (skb_header_cloned(skb)) |
| I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| else |
| I802_DEBUG_INC(local->tx_expand_skb_head); |
| |
| if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { |
| wiphy_debug(local->hw.wiphy, |
| "failed to reallocate TX buffer\n"); |
| return -ENOMEM; |
| } |
| |
| /* update truesize too */ |
| skb->truesize += head_need + tail_need; |
| |
| return 0; |
| } |
| |
| static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_sub_if_data *tmp_sdata; |
| int headroom; |
| bool may_encrypt; |
| |
| rcu_read_lock(); |
| |
| if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { |
| int hdrlen; |
| u16 len_rthdr; |
| |
| info->flags |= IEEE80211_TX_CTL_INJECTED | |
| IEEE80211_TX_INTFL_HAS_RADIOTAP; |
| |
| len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| /* check the header is complete in the frame */ |
| if (likely(skb->len >= len_rthdr + hdrlen)) { |
| /* |
| * We process outgoing injected frames that have a |
| * local address we handle as though they are our |
| * own frames. |
| * This code here isn't entirely correct, the local |
| * MAC address is not necessarily enough to find |
| * the interface to use; for that proper VLAN/WDS |
| * support we will need a different mechanism. |
| */ |
| |
| list_for_each_entry_rcu(tmp_sdata, &local->interfaces, |
| list) { |
| if (!ieee80211_sdata_running(tmp_sdata)) |
| continue; |
| if (tmp_sdata->vif.type == |
| NL80211_IFTYPE_MONITOR || |
| tmp_sdata->vif.type == |
| NL80211_IFTYPE_AP_VLAN || |
| tmp_sdata->vif.type == |
| NL80211_IFTYPE_WDS) |
| continue; |
| if (compare_ether_addr(tmp_sdata->vif.addr, |
| hdr->addr2) == 0) { |
| sdata = tmp_sdata; |
| break; |
| } |
| } |
| } |
| } |
| |
| may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); |
| |
| headroom = local->tx_headroom; |
| if (may_encrypt) |
| headroom += IEEE80211_ENCRYPT_HEADROOM; |
| headroom -= skb_headroom(skb); |
| headroom = max_t(int, 0, headroom); |
| |
| if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { |
| dev_kfree_skb(skb); |
| rcu_read_unlock(); |
| return; |
| } |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| info->control.vif = &sdata->vif; |
| |
| if (ieee80211_vif_is_mesh(&sdata->vif) && |
| ieee80211_is_data(hdr->frame_control) && |
| !is_multicast_ether_addr(hdr->addr1)) |
| if (mesh_nexthop_lookup(skb, sdata)) { |
| /* skb queued: don't free */ |
| rcu_read_unlock(); |
| return; |
| } |
| |
| ieee80211_set_qos_hdr(local, skb); |
| ieee80211_tx(sdata, skb, false); |
| rcu_read_unlock(); |
| } |
| |
| netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_channel *chan = local->hw.conf.channel; |
| struct ieee80211_radiotap_header *prthdr = |
| (struct ieee80211_radiotap_header *)skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| u16 len_rthdr; |
| |
| /* |
| * Frame injection is not allowed if beaconing is not allowed |
| * or if we need radar detection. Beaconing is usually not allowed when |
| * the mode or operation (Adhoc, AP, Mesh) does not support DFS. |
| * Passive scan is also used in world regulatory domains where |
| * your country is not known and as such it should be treated as |
| * NO TX unless the channel is explicitly allowed in which case |
| * your current regulatory domain would not have the passive scan |
| * flag. |
| * |
| * Since AP mode uses monitor interfaces to inject/TX management |
| * frames we can make AP mode the exception to this rule once it |
| * supports radar detection as its implementation can deal with |
| * radar detection by itself. We can do that later by adding a |
| * monitor flag interfaces used for AP support. |
| */ |
| if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | |
| IEEE80211_CHAN_PASSIVE_SCAN))) |
| goto fail; |
| |
| /* check for not even having the fixed radiotap header part */ |
| if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) |
| goto fail; /* too short to be possibly valid */ |
| |
| /* is it a header version we can trust to find length from? */ |
| if (unlikely(prthdr->it_version)) |
| goto fail; /* only version 0 is supported */ |
| |
| /* then there must be a radiotap header with a length we can use */ |
| len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| |
| /* does the skb contain enough to deliver on the alleged length? */ |
| if (unlikely(skb->len < len_rthdr)) |
| goto fail; /* skb too short for claimed rt header extent */ |
| |
| /* |
| * fix up the pointers accounting for the radiotap |
| * header still being in there. We are being given |
| * a precooked IEEE80211 header so no need for |
| * normal processing |
| */ |
| skb_set_mac_header(skb, len_rthdr); |
| /* |
| * these are just fixed to the end of the rt area since we |
| * don't have any better information and at this point, nobody cares |
| */ |
| skb_set_network_header(skb, len_rthdr); |
| skb_set_transport_header(skb, len_rthdr); |
| |
| memset(info, 0, sizeof(*info)); |
| |
| info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; |
| |
| /* pass the radiotap header up to xmit */ |
| ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); |
| return NETDEV_TX_OK; |
| |
| fail: |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; /* meaning, we dealt with the skb */ |
| } |
| |
| /** |
| * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type |
| * subinterfaces (wlan#, WDS, and VLAN interfaces) |
| * @skb: packet to be sent |
| * @dev: incoming interface |
| * |
| * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will |
| * not be freed, and caller is responsible for either retrying later or freeing |
| * skb). |
| * |
| * This function takes in an Ethernet header and encapsulates it with suitable |
| * IEEE 802.11 header based on which interface the packet is coming in. The |
| * encapsulated packet will then be passed to master interface, wlan#.11, for |
| * transmission (through low-level driver). |
| */ |
| netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int ret = NETDEV_TX_BUSY, head_need; |
| u16 ethertype, hdrlen, meshhdrlen = 0; |
| __le16 fc; |
| struct ieee80211_hdr hdr; |
| struct ieee80211s_hdr mesh_hdr __maybe_unused; |
| const u8 *encaps_data; |
| int encaps_len, skip_header_bytes; |
| int nh_pos, h_pos; |
| struct sta_info *sta = NULL; |
| u32 sta_flags = 0; |
| |
| if (unlikely(skb->len < ETH_HLEN)) { |
| ret = NETDEV_TX_OK; |
| goto fail; |
| } |
| |
| nh_pos = skb_network_header(skb) - skb->data; |
| h_pos = skb_transport_header(skb) - skb->data; |
| |
| /* convert Ethernet header to proper 802.11 header (based on |
| * operation mode) */ |
| ethertype = (skb->data[12] << 8) | skb->data[13]; |
| fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_AP_VLAN: |
| rcu_read_lock(); |
| sta = rcu_dereference(sdata->u.vlan.sta); |
| if (sta) { |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| sta_flags = get_sta_flags(sta); |
| } |
| rcu_read_unlock(); |
| if (sta) |
| break; |
| /* fall through */ |
| case NL80211_IFTYPE_AP: |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); |
| /* DA BSSID SA */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 24; |
| break; |
| case NL80211_IFTYPE_WDS: |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| break; |
| #ifdef CONFIG_MAC80211_MESH |
| case NL80211_IFTYPE_MESH_POINT: |
| if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { |
| /* Do not send frames with mesh_ttl == 0 */ |
| sdata->u.mesh.mshstats.dropped_frames_ttl++; |
| ret = NETDEV_TX_OK; |
| goto fail; |
| } |
| |
| if (compare_ether_addr(sdata->vif.addr, |
| skb->data + ETH_ALEN) == 0) { |
| hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| skb->data, skb->data + ETH_ALEN); |
| meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, |
| sdata, NULL, NULL, NULL); |
| } else { |
| /* packet from other interface */ |
| struct mesh_path *mppath; |
| int is_mesh_mcast = 1; |
| const u8 *mesh_da; |
| |
| rcu_read_lock(); |
| if (is_multicast_ether_addr(skb->data)) |
| /* DA TA mSA AE:SA */ |
| mesh_da = skb->data; |
| else { |
| static const u8 bcast[ETH_ALEN] = |
| { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| |
| mppath = mpp_path_lookup(skb->data, sdata); |
| if (mppath) { |
| /* RA TA mDA mSA AE:DA SA */ |
| mesh_da = mppath->mpp; |
| is_mesh_mcast = 0; |
| } else { |
| /* DA TA mSA AE:SA */ |
| mesh_da = bcast; |
| } |
| } |
| hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| mesh_da, sdata->vif.addr); |
| rcu_read_unlock(); |
| if (is_mesh_mcast) |
| meshhdrlen = |
| ieee80211_new_mesh_header(&mesh_hdr, |
| sdata, |
| skb->data + ETH_ALEN, |
| NULL, |
| NULL); |
| else |
| meshhdrlen = |
| ieee80211_new_mesh_header(&mesh_hdr, |
| sdata, |
| NULL, |
| skb->data, |
| skb->data + ETH_ALEN); |
| |
| } |
| break; |
| #endif |
| case NL80211_IFTYPE_STATION: |
| memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| if (sdata->u.mgd.use_4addr && |
| cpu_to_be16(ethertype) != sdata->control_port_protocol) { |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| } else { |
| fc |= cpu_to_le16(IEEE80211_FCTL_TODS); |
| /* BSSID SA DA */ |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| hdrlen = 24; |
| } |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); |
| hdrlen = 24; |
| break; |
| default: |
| ret = NETDEV_TX_OK; |
| goto fail; |
| } |
| |
| /* |
| * There's no need to try to look up the destination |
| * if it is a multicast address (which can only happen |
| * in AP mode) |
| */ |
| if (!is_multicast_ether_addr(hdr.addr1)) { |
| rcu_read_lock(); |
| sta = sta_info_get(sdata, hdr.addr1); |
| if (sta) |
| sta_flags = get_sta_flags(sta); |
| rcu_read_unlock(); |
| } |
| |
| /* receiver and we are QoS enabled, use a QoS type frame */ |
| if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { |
| fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); |
| hdrlen += 2; |
| } |
| |
| /* |
| * Drop unicast frames to unauthorised stations unless they are |
| * EAPOL frames from the local station. |
| */ |
| if (!ieee80211_vif_is_mesh(&sdata->vif) && |
| unlikely(!is_multicast_ether_addr(hdr.addr1) && |
| !(sta_flags & WLAN_STA_AUTHORIZED) && |
| !(cpu_to_be16(ethertype) == sdata->control_port_protocol && |
| compare_ether_addr(sdata->vif.addr, |
| skb->data + ETH_ALEN) == 0))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: dropped frame to %pM" |
| " (unauthorized port)\n", dev->name, |
| hdr.addr1); |
| #endif |
| |
| I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); |
| |
| ret = NETDEV_TX_OK; |
| goto fail; |
| } |
| |
| hdr.frame_control = fc; |
| hdr.duration_id = 0; |
| hdr.seq_ctrl = 0; |
| |
| skip_header_bytes = ETH_HLEN; |
| if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| encaps_data = bridge_tunnel_header; |
| encaps_len = sizeof(bridge_tunnel_header); |
| skip_header_bytes -= 2; |
| } else if (ethertype >= 0x600) { |
| encaps_data = rfc1042_header; |
| encaps_len = sizeof(rfc1042_header); |
| skip_header_bytes -= 2; |
| } else { |
| encaps_data = NULL; |
| encaps_len = 0; |
| } |
| |
| skb_pull(skb, skip_header_bytes); |
| nh_pos -= skip_header_bytes; |
| h_pos -= skip_header_bytes; |
| |
| head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); |
| |
| /* |
| * So we need to modify the skb header and hence need a copy of |
| * that. The head_need variable above doesn't, so far, include |
| * the needed header space that we don't need right away. If we |
| * can, then we don't reallocate right now but only after the |
| * frame arrives at the master device (if it does...) |
| * |
| * If we cannot, however, then we will reallocate to include all |
| * the ever needed space. Also, if we need to reallocate it anyway, |
| * make it big enough for everything we may ever need. |
| */ |
| |
| if (head_need > 0 || skb_cloned(skb)) { |
| head_need += IEEE80211_ENCRYPT_HEADROOM; |
| head_need += local->tx_headroom; |
| head_need = max_t(int, 0, head_need); |
| if (ieee80211_skb_resize(local, skb, head_need, true)) |
| goto fail; |
| } |
| |
| if (encaps_data) { |
| memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| nh_pos += encaps_len; |
| h_pos += encaps_len; |
| } |
| |
| #ifdef CONFIG_MAC80211_MESH |
| if (meshhdrlen > 0) { |
| memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); |
| nh_pos += meshhdrlen; |
| h_pos += meshhdrlen; |
| } |
| #endif |
| |
| if (ieee80211_is_data_qos(fc)) { |
| __le16 *qos_control; |
| |
| qos_control = (__le16*) skb_push(skb, 2); |
| memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); |
| /* |
| * Maybe we could actually set some fields here, for now just |
| * initialise to zero to indicate no special operation. |
| */ |
| *qos_control = 0; |
| } else |
| memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| |
| nh_pos += hdrlen; |
| h_pos += hdrlen; |
| |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| |
| /* Update skb pointers to various headers since this modified frame |
| * is going to go through Linux networking code that may potentially |
| * need things like pointer to IP header. */ |
| skb_set_mac_header(skb, 0); |
| skb_set_network_header(skb, nh_pos); |
| skb_set_transport_header(skb, h_pos); |
| |
| memset(info, 0, sizeof(*info)); |
| |
| dev->trans_start = jiffies; |
| ieee80211_xmit(sdata, skb); |
| |
| return NETDEV_TX_OK; |
| |
| fail: |
| if (ret == NETDEV_TX_OK) |
| dev_kfree_skb(skb); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * ieee80211_clear_tx_pending may not be called in a context where |
| * it is possible that it packets could come in again. |
| */ |
| void ieee80211_clear_tx_pending(struct ieee80211_local *local) |
| { |
| int i; |
| |
| for (i = 0; i < local->hw.queues; i++) |
| skb_queue_purge(&local->pending[i]); |
| } |
| |
| static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| struct ieee80211_hdr *hdr; |
| int ret; |
| bool result = true; |
| |
| sdata = vif_to_sdata(info->control.vif); |
| |
| if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { |
| ieee80211_tx(sdata, skb, true); |
| } else { |
| hdr = (struct ieee80211_hdr *)skb->data; |
| sta = sta_info_get(sdata, hdr->addr1); |
| |
| ret = __ieee80211_tx(local, &skb, sta, true); |
| if (ret != IEEE80211_TX_OK) |
| result = false; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Transmit all pending packets. Called from tasklet. |
| */ |
| void ieee80211_tx_pending(unsigned long data) |
| { |
| struct ieee80211_local *local = (struct ieee80211_local *)data; |
| struct ieee80211_sub_if_data *sdata; |
| unsigned long flags; |
| int i; |
| bool txok; |
| |
| rcu_read_lock(); |
| |
| spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| for (i = 0; i < local->hw.queues; i++) { |
| /* |
| * If queue is stopped by something other than due to pending |
| * frames, or we have no pending frames, proceed to next queue. |
| */ |
| if (local->queue_stop_reasons[i] || |
| skb_queue_empty(&local->pending[i])) |
| continue; |
| |
| while (!skb_queue_empty(&local->pending[i])) { |
| struct sk_buff *skb = __skb_dequeue(&local->pending[i]); |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| |
| if (WARN_ON(!info->control.vif)) { |
| kfree_skb(skb); |
| continue; |
| } |
| |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| flags); |
| |
| txok = ieee80211_tx_pending_skb(local, skb); |
| if (!txok) |
| __skb_queue_head(&local->pending[i], skb); |
| spin_lock_irqsave(&local->queue_stop_reason_lock, |
| flags); |
| if (!txok) |
| break; |
| } |
| |
| if (skb_queue_empty(&local->pending[i])) |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) |
| netif_wake_subqueue(sdata->dev, i); |
| } |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); |
| |
| rcu_read_unlock(); |
| } |
| |
| /* functions for drivers to get certain frames */ |
| |
| static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, |
| struct sk_buff *skb, |
| struct beacon_data *beacon) |
| { |
| u8 *pos, *tim; |
| int aid0 = 0; |
| int i, have_bits = 0, n1, n2; |
| |
| /* Generate bitmap for TIM only if there are any STAs in power save |
| * mode. */ |
| if (atomic_read(&bss->num_sta_ps) > 0) |
| /* in the hope that this is faster than |
| * checking byte-for-byte */ |
| have_bits = !bitmap_empty((unsigned long*)bss->tim, |
| IEEE80211_MAX_AID+1); |
| |
| if (bss->dtim_count == 0) |
| bss->dtim_count = beacon->dtim_period - 1; |
| else |
| bss->dtim_count--; |
| |
| tim = pos = (u8 *) skb_put(skb, 6); |
| *pos++ = WLAN_EID_TIM; |
| *pos++ = 4; |
| *pos++ = bss->dtim_count; |
| *pos++ = beacon->dtim_period; |
| |
| if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) |
| aid0 = 1; |
| |
| if (have_bits) { |
| /* Find largest even number N1 so that bits numbered 1 through |
| * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits |
| * (N2 + 1) x 8 through 2007 are 0. */ |
| n1 = 0; |
| for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { |
| if (bss->tim[i]) { |
| n1 = i & 0xfe; |
| break; |
| } |
| } |
| n2 = n1; |
| for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { |
| if (bss->tim[i]) { |
| n2 = i; |
| break; |
| } |
| } |
| |
| /* Bitmap control */ |
| *pos++ = n1 | aid0; |
| /* Part Virt Bitmap */ |
| memcpy(pos, bss->tim + n1, n2 - n1 + 1); |
| |
| tim[1] = n2 - n1 + 4; |
| skb_put(skb, n2 - n1); |
| } else { |
| *pos++ = aid0; /* Bitmap control */ |
| *pos++ = 0; /* Part Virt Bitmap */ |
| } |
| } |
| |
| struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| u16 *tim_offset, u16 *tim_length) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb = NULL; |
| struct ieee80211_tx_info *info; |
| struct ieee80211_sub_if_data *sdata = NULL; |
| struct ieee80211_if_ap *ap = NULL; |
| struct beacon_data *beacon; |
| struct ieee80211_supported_band *sband; |
| enum ieee80211_band band = local->hw.conf.channel->band; |
| struct ieee80211_tx_rate_control txrc; |
| |
| sband = local->hw.wiphy->bands[band]; |
| |
| rcu_read_lock(); |
| |
| sdata = vif_to_sdata(vif); |
| |
| if (tim_offset) |
| *tim_offset = 0; |
| if (tim_length) |
| *tim_length = 0; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| ap = &sdata->u.ap; |
| beacon = rcu_dereference(ap->beacon); |
| if (ap && beacon) { |
| /* |
| * headroom, head length, |
| * tail length and maximum TIM length |
| */ |
| skb = dev_alloc_skb(local->tx_headroom + |
| beacon->head_len + |
| beacon->tail_len + 256); |
| if (!skb) |
| goto out; |
| |
| skb_reserve(skb, local->tx_headroom); |
| memcpy(skb_put(skb, beacon->head_len), beacon->head, |
| beacon->head_len); |
| |
| /* |
| * Not very nice, but we want to allow the driver to call |
| * ieee80211_beacon_get() as a response to the set_tim() |
| * callback. That, however, is already invoked under the |
| * sta_lock to guarantee consistent and race-free update |
| * of the tim bitmap in mac80211 and the driver. |
| */ |
| if (local->tim_in_locked_section) { |
| ieee80211_beacon_add_tim(ap, skb, beacon); |
| } else { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&local->sta_lock, flags); |
| ieee80211_beacon_add_tim(ap, skb, beacon); |
| spin_unlock_irqrestore(&local->sta_lock, flags); |
| } |
| |
| if (tim_offset) |
| *tim_offset = beacon->head_len; |
| if (tim_length) |
| *tim_length = skb->len - beacon->head_len; |
| |
| if (beacon->tail) |
| memcpy(skb_put(skb, beacon->tail_len), |
| beacon->tail, beacon->tail_len); |
| } else |
| goto out; |
| } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { |
| struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; |
| struct ieee80211_hdr *hdr; |
| struct sk_buff *presp = rcu_dereference(ifibss->presp); |
| |
| if (!presp) |
| goto out; |
| |
| skb = skb_copy(presp, GFP_ATOMIC); |
| if (!skb) |
| goto out; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | |
| IEEE80211_STYPE_BEACON); |
| } else if (ieee80211_vif_is_mesh(&sdata->vif)) { |
| struct ieee80211_mgmt *mgmt; |
| u8 *pos; |
| |
| /* headroom, head length, tail length and maximum TIM length */ |
| skb = dev_alloc_skb(local->tx_headroom + 400); |
| if (!skb) |
| goto out; |
| |
| skb_reserve(skb, local->hw.extra_tx_headroom); |
| mgmt = (struct ieee80211_mgmt *) |
| skb_put(skb, 24 + sizeof(mgmt->u.beacon)); |
| memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); |
| mgmt->frame_control = |
| cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); |
| memset(mgmt->da, 0xff, ETH_ALEN); |
| memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); |
| memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); |
| mgmt->u.beacon.beacon_int = |
| cpu_to_le16(sdata->vif.bss_conf.beacon_int); |
| mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ |
| |
| pos = skb_put(skb, 2); |
| *pos++ = WLAN_EID_SSID; |
| *pos++ = 0x0; |
| |
| mesh_mgmt_ies_add(skb, sdata); |
| } else { |
| WARN_ON(1); |
| goto out; |
| } |
| |
| info = IEEE80211_SKB_CB(skb); |
| |
| info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| info->band = band; |
| |
| memset(&txrc, 0, sizeof(txrc)); |
| txrc.hw = hw; |
| txrc.sband = sband; |
| txrc.bss_conf = &sdata->vif.bss_conf; |
| txrc.skb = skb; |
| txrc.reported_rate.idx = -1; |
| txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; |
| if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) |
| txrc.max_rate_idx = -1; |
| else |
| txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; |
| txrc.bss = true; |
| rate_control_get_rate(sdata, NULL, &txrc); |
| |
| info->control.vif = vif; |
| |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | |
| IEEE80211_TX_CTL_ASSIGN_SEQ | |
| IEEE80211_TX_CTL_FIRST_FRAGMENT; |
| out: |
| rcu_read_unlock(); |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_beacon_get_tim); |
| |
| struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_if_managed *ifmgd; |
| struct ieee80211_pspoll *pspoll; |
| struct ieee80211_local *local; |
| struct sk_buff *skb; |
| |
| if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| return NULL; |
| |
| sdata = vif_to_sdata(vif); |
| ifmgd = &sdata->u.mgd; |
| local = sdata->local; |
| |
| skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); |
| if (!skb) { |
| printk(KERN_DEBUG "%s: failed to allocate buffer for " |
| "pspoll template\n", sdata->name); |
| return NULL; |
| } |
| skb_reserve(skb, local->hw.extra_tx_headroom); |
| |
| pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); |
| memset(pspoll, 0, sizeof(*pspoll)); |
| pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | |
| IEEE80211_STYPE_PSPOLL); |
| pspoll->aid = cpu_to_le16(ifmgd->aid); |
| |
| /* aid in PS-Poll has its two MSBs each set to 1 */ |
| pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); |
| |
| memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); |
| memcpy(pspoll->ta, vif->addr, ETH_ALEN); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_pspoll_get); |
| |
| struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct ieee80211_hdr_3addr *nullfunc; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_if_managed *ifmgd; |
| struct ieee80211_local *local; |
| struct sk_buff *skb; |
| |
| if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| return NULL; |
| |
| sdata = vif_to_sdata(vif); |
| ifmgd = &sdata->u.mgd; |
| local = sdata->local; |
| |
| skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); |
| if (!skb) { |
| printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " |
| "template\n", sdata->name); |
| return NULL; |
| } |
| skb_reserve(skb, local->hw.extra_tx_headroom); |
| |
| nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, |
| sizeof(*nullfunc)); |
| memset(nullfunc, 0, sizeof(*nullfunc)); |
| nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | |
| IEEE80211_STYPE_NULLFUNC | |
| IEEE80211_FCTL_TODS); |
| memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); |
| memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); |
| memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_nullfunc_get); |
| |
| struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| const u8 *ssid, size_t ssid_len, |
| const u8 *ie, size_t ie_len) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_local *local; |
| struct ieee80211_hdr_3addr *hdr; |
| struct sk_buff *skb; |
| size_t ie_ssid_len; |
| u8 *pos; |
| |
| sdata = vif_to_sdata(vif); |
| local = sdata->local; |
| ie_ssid_len = 2 + ssid_len; |
| |
| skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + |
| ie_ssid_len + ie_len); |
| if (!skb) { |
| printk(KERN_DEBUG "%s: failed to allocate buffer for probe " |
| "request template\n", sdata->name); |
| return NULL; |
| } |
| |
| skb_reserve(skb, local->hw.extra_tx_headroom); |
| |
| hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); |
| memset(hdr, 0, sizeof(*hdr)); |
| hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | |
| IEEE80211_STYPE_PROBE_REQ); |
| memset(hdr->addr1, 0xff, ETH_ALEN); |
| memcpy(hdr->addr2, vif->addr, ETH_ALEN); |
| memset(hdr->addr3, 0xff, ETH_ALEN); |
| |
| pos = skb_put(skb, ie_ssid_len); |
| *pos++ = WLAN_EID_SSID; |
| *pos++ = ssid_len; |
| if (ssid) |
| memcpy(pos, ssid, ssid_len); |
| pos += ssid_len; |
| |
| if (ie) { |
| pos = skb_put(skb, ie_len); |
| memcpy(pos, ie, ie_len); |
| } |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_probereq_get); |
| |
| void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_info *frame_txctl, |
| struct ieee80211_rts *rts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| |
| rts->frame_control = |
| cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); |
| rts->duration = ieee80211_rts_duration(hw, vif, frame_len, |
| frame_txctl); |
| memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); |
| memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); |
| } |
| EXPORT_SYMBOL(ieee80211_rts_get); |
| |
| void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_info *frame_txctl, |
| struct ieee80211_cts *cts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| |
| cts->frame_control = |
| cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); |
| cts->duration = ieee80211_ctstoself_duration(hw, vif, |
| frame_len, frame_txctl); |
| memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); |
| } |
| EXPORT_SYMBOL(ieee80211_ctstoself_get); |
| |
| struct sk_buff * |
| ieee80211_get_buffered_bc(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb = NULL; |
| struct sta_info *sta; |
| struct ieee80211_tx_data tx; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_if_ap *bss = NULL; |
| struct beacon_data *beacon; |
| struct ieee80211_tx_info *info; |
| |
| sdata = vif_to_sdata(vif); |
| bss = &sdata->u.ap; |
| |
| rcu_read_lock(); |
| beacon = rcu_dereference(bss->beacon); |
| |
| if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) |
| goto out; |
| |
| if (bss->dtim_count != 0) |
| goto out; /* send buffered bc/mc only after DTIM beacon */ |
| |
| while (1) { |
| skb = skb_dequeue(&bss->ps_bc_buf); |
| if (!skb) |
| goto out; |
| local->total_ps_buffered--; |
| |
| if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) skb->data; |
| /* more buffered multicast/broadcast frames ==> set |
| * MoreData flag in IEEE 802.11 header to inform PS |
| * STAs */ |
| hdr->frame_control |= |
| cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| } |
| |
| if (!ieee80211_tx_prepare(sdata, &tx, skb)) |
| break; |
| dev_kfree_skb_any(skb); |
| } |
| |
| info = IEEE80211_SKB_CB(skb); |
| |
| sta = tx.sta; |
| tx.flags |= IEEE80211_TX_PS_BUFFERED; |
| tx.channel = local->hw.conf.channel; |
| info->band = tx.channel->band; |
| |
| if (invoke_tx_handlers(&tx)) |
| skb = NULL; |
| out: |
| rcu_read_unlock(); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_get_buffered_bc); |
| |
| void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) |
| { |
| skb_set_mac_header(skb, 0); |
| skb_set_network_header(skb, 0); |
| skb_set_transport_header(skb, 0); |
| |
| /* send all internal mgmt frames on VO */ |
| skb_set_queue_mapping(skb, 0); |
| |
| /* |
| * The other path calling ieee80211_xmit is from the tasklet, |
| * and while we can handle concurrent transmissions locking |
| * requirements are that we do not come into tx with bhs on. |
| */ |
| local_bh_disable(); |
| ieee80211_xmit(sdata, skb); |
| local_bh_enable(); |
| } |