| Documentation for /proc/sys/vm/* kernel version 2.6.29 |
| (c) 1998, 1999, Rik van Riel <riel@nl.linux.org> |
| (c) 2008 Peter W. Morreale <pmorreale@novell.com> |
| |
| For general info and legal blurb, please look in README. |
| |
| ============================================================== |
| |
| This file contains the documentation for the sysctl files in |
| /proc/sys/vm and is valid for Linux kernel version 2.6.29. |
| |
| The files in this directory can be used to tune the operation |
| of the virtual memory (VM) subsystem of the Linux kernel and |
| the writeout of dirty data to disk. |
| |
| Default values and initialization routines for most of these |
| files can be found in mm/swap.c. |
| |
| Currently, these files are in /proc/sys/vm: |
| |
| - admin_reserve_kbytes |
| - block_dump |
| - compact_memory |
| - compact_unevictable_allowed |
| - dirty_background_bytes |
| - dirty_background_ratio |
| - dirty_bytes |
| - dirty_expire_centisecs |
| - dirty_ratio |
| - dirty_writeback_centisecs |
| - drop_caches |
| - extfrag_threshold |
| - hugepages_treat_as_movable |
| - hugetlb_shm_group |
| - laptop_mode |
| - legacy_va_layout |
| - lowmem_reserve_ratio |
| - max_map_count |
| - memory_failure_early_kill |
| - memory_failure_recovery |
| - min_free_kbytes |
| - min_slab_ratio |
| - min_unmapped_ratio |
| - mmap_min_addr |
| - nr_hugepages |
| - nr_overcommit_hugepages |
| - nr_trim_pages (only if CONFIG_MMU=n) |
| - numa_zonelist_order |
| - oom_dump_tasks |
| - oom_kill_allocating_task |
| - overcommit_kbytes |
| - overcommit_memory |
| - overcommit_ratio |
| - page-cluster |
| - panic_on_oom |
| - percpu_pagelist_fraction |
| - stat_interval |
| - swappiness |
| - user_reserve_kbytes |
| - vfs_cache_pressure |
| - zone_reclaim_mode |
| |
| ============================================================== |
| |
| admin_reserve_kbytes |
| |
| The amount of free memory in the system that should be reserved for users |
| with the capability cap_sys_admin. |
| |
| admin_reserve_kbytes defaults to min(3% of free pages, 8MB) |
| |
| That should provide enough for the admin to log in and kill a process, |
| if necessary, under the default overcommit 'guess' mode. |
| |
| Systems running under overcommit 'never' should increase this to account |
| for the full Virtual Memory Size of programs used to recover. Otherwise, |
| root may not be able to log in to recover the system. |
| |
| How do you calculate a minimum useful reserve? |
| |
| sshd or login + bash (or some other shell) + top (or ps, kill, etc.) |
| |
| For overcommit 'guess', we can sum resident set sizes (RSS). |
| On x86_64 this is about 8MB. |
| |
| For overcommit 'never', we can take the max of their virtual sizes (VSZ) |
| and add the sum of their RSS. |
| On x86_64 this is about 128MB. |
| |
| Changing this takes effect whenever an application requests memory. |
| |
| ============================================================== |
| |
| block_dump |
| |
| block_dump enables block I/O debugging when set to a nonzero value. More |
| information on block I/O debugging is in Documentation/laptops/laptop-mode.txt. |
| |
| ============================================================== |
| |
| compact_memory |
| |
| Available only when CONFIG_COMPACTION is set. When 1 is written to the file, |
| all zones are compacted such that free memory is available in contiguous |
| blocks where possible. This can be important for example in the allocation of |
| huge pages although processes will also directly compact memory as required. |
| |
| ============================================================== |
| |
| compact_unevictable_allowed |
| |
| Available only when CONFIG_COMPACTION is set. When set to 1, compaction is |
| allowed to examine the unevictable lru (mlocked pages) for pages to compact. |
| This should be used on systems where stalls for minor page faults are an |
| acceptable trade for large contiguous free memory. Set to 0 to prevent |
| compaction from moving pages that are unevictable. Default value is 1. |
| |
| ============================================================== |
| |
| dirty_background_bytes |
| |
| Contains the amount of dirty memory at which the background kernel |
| flusher threads will start writeback. |
| |
| Note: dirty_background_bytes is the counterpart of dirty_background_ratio. Only |
| one of them may be specified at a time. When one sysctl is written it is |
| immediately taken into account to evaluate the dirty memory limits and the |
| other appears as 0 when read. |
| |
| ============================================================== |
| |
| dirty_background_ratio |
| |
| Contains, as a percentage of total available memory that contains free pages |
| and reclaimable pages, the number of pages at which the background kernel |
| flusher threads will start writing out dirty data. |
| |
| The total avaiable memory is not equal to total system memory. |
| |
| ============================================================== |
| |
| dirty_bytes |
| |
| Contains the amount of dirty memory at which a process generating disk writes |
| will itself start writeback. |
| |
| Note: dirty_bytes is the counterpart of dirty_ratio. Only one of them may be |
| specified at a time. When one sysctl is written it is immediately taken into |
| account to evaluate the dirty memory limits and the other appears as 0 when |
| read. |
| |
| Note: the minimum value allowed for dirty_bytes is two pages (in bytes); any |
| value lower than this limit will be ignored and the old configuration will be |
| retained. |
| |
| ============================================================== |
| |
| dirty_expire_centisecs |
| |
| This tunable is used to define when dirty data is old enough to be eligible |
| for writeout by the kernel flusher threads. It is expressed in 100'ths |
| of a second. Data which has been dirty in-memory for longer than this |
| interval will be written out next time a flusher thread wakes up. |
| |
| ============================================================== |
| |
| dirty_ratio |
| |
| Contains, as a percentage of total available memory that contains free pages |
| and reclaimable pages, the number of pages at which a process which is |
| generating disk writes will itself start writing out dirty data. |
| |
| The total avaiable memory is not equal to total system memory. |
| |
| ============================================================== |
| |
| dirty_writeback_centisecs |
| |
| The kernel flusher threads will periodically wake up and write `old' data |
| out to disk. This tunable expresses the interval between those wakeups, in |
| 100'ths of a second. |
| |
| Setting this to zero disables periodic writeback altogether. |
| |
| ============================================================== |
| |
| drop_caches |
| |
| Writing to this will cause the kernel to drop clean caches, as well as |
| reclaimable slab objects like dentries and inodes. Once dropped, their |
| memory becomes free. |
| |
| To free pagecache: |
| echo 1 > /proc/sys/vm/drop_caches |
| To free reclaimable slab objects (includes dentries and inodes): |
| echo 2 > /proc/sys/vm/drop_caches |
| To free slab objects and pagecache: |
| echo 3 > /proc/sys/vm/drop_caches |
| |
| This is a non-destructive operation and will not free any dirty objects. |
| To increase the number of objects freed by this operation, the user may run |
| `sync' prior to writing to /proc/sys/vm/drop_caches. This will minimize the |
| number of dirty objects on the system and create more candidates to be |
| dropped. |
| |
| This file is not a means to control the growth of the various kernel caches |
| (inodes, dentries, pagecache, etc...) These objects are automatically |
| reclaimed by the kernel when memory is needed elsewhere on the system. |
| |
| Use of this file can cause performance problems. Since it discards cached |
| objects, it may cost a significant amount of I/O and CPU to recreate the |
| dropped objects, especially if they were under heavy use. Because of this, |
| use outside of a testing or debugging environment is not recommended. |
| |
| You may see informational messages in your kernel log when this file is |
| used: |
| |
| cat (1234): drop_caches: 3 |
| |
| These are informational only. They do not mean that anything is wrong |
| with your system. To disable them, echo 4 (bit 3) into drop_caches. |
| |
| ============================================================== |
| |
| extfrag_threshold |
| |
| This parameter affects whether the kernel will compact memory or direct |
| reclaim to satisfy a high-order allocation. The extfrag/extfrag_index file in |
| debugfs shows what the fragmentation index for each order is in each zone in |
| the system. Values tending towards 0 imply allocations would fail due to lack |
| of memory, values towards 1000 imply failures are due to fragmentation and -1 |
| implies that the allocation will succeed as long as watermarks are met. |
| |
| The kernel will not compact memory in a zone if the |
| fragmentation index is <= extfrag_threshold. The default value is 500. |
| |
| ============================================================== |
| |
| hugepages_treat_as_movable |
| |
| This parameter controls whether we can allocate hugepages from ZONE_MOVABLE |
| or not. If set to non-zero, hugepages can be allocated from ZONE_MOVABLE. |
| ZONE_MOVABLE is created when kernel boot parameter kernelcore= is specified, |
| so this parameter has no effect if used without kernelcore=. |
| |
| Hugepage migration is now available in some situations which depend on the |
| architecture and/or the hugepage size. If a hugepage supports migration, |
| allocation from ZONE_MOVABLE is always enabled for the hugepage regardless |
| of the value of this parameter. |
| IOW, this parameter affects only non-migratable hugepages. |
| |
| Assuming that hugepages are not migratable in your system, one usecase of |
| this parameter is that users can make hugepage pool more extensible by |
| enabling the allocation from ZONE_MOVABLE. This is because on ZONE_MOVABLE |
| page reclaim/migration/compaction work more and you can get contiguous |
| memory more likely. Note that using ZONE_MOVABLE for non-migratable |
| hugepages can do harm to other features like memory hotremove (because |
| memory hotremove expects that memory blocks on ZONE_MOVABLE are always |
| removable,) so it's a trade-off responsible for the users. |
| |
| ============================================================== |
| |
| hugetlb_shm_group |
| |
| hugetlb_shm_group contains group id that is allowed to create SysV |
| shared memory segment using hugetlb page. |
| |
| ============================================================== |
| |
| laptop_mode |
| |
| laptop_mode is a knob that controls "laptop mode". All the things that are |
| controlled by this knob are discussed in Documentation/laptops/laptop-mode.txt. |
| |
| ============================================================== |
| |
| legacy_va_layout |
| |
| If non-zero, this sysctl disables the new 32-bit mmap layout - the kernel |
| will use the legacy (2.4) layout for all processes. |
| |
| ============================================================== |
| |
| lowmem_reserve_ratio |
| |
| For some specialised workloads on highmem machines it is dangerous for |
| the kernel to allow process memory to be allocated from the "lowmem" |
| zone. This is because that memory could then be pinned via the mlock() |
| system call, or by unavailability of swapspace. |
| |
| And on large highmem machines this lack of reclaimable lowmem memory |
| can be fatal. |
| |
| So the Linux page allocator has a mechanism which prevents allocations |
| which _could_ use highmem from using too much lowmem. This means that |
| a certain amount of lowmem is defended from the possibility of being |
| captured into pinned user memory. |
| |
| (The same argument applies to the old 16 megabyte ISA DMA region. This |
| mechanism will also defend that region from allocations which could use |
| highmem or lowmem). |
| |
| The `lowmem_reserve_ratio' tunable determines how aggressive the kernel is |
| in defending these lower zones. |
| |
| If you have a machine which uses highmem or ISA DMA and your |
| applications are using mlock(), or if you are running with no swap then |
| you probably should change the lowmem_reserve_ratio setting. |
| |
| The lowmem_reserve_ratio is an array. You can see them by reading this file. |
| - |
| % cat /proc/sys/vm/lowmem_reserve_ratio |
| 256 256 32 |
| - |
| Note: # of this elements is one fewer than number of zones. Because the highest |
| zone's value is not necessary for following calculation. |
| |
| But, these values are not used directly. The kernel calculates # of protection |
| pages for each zones from them. These are shown as array of protection pages |
| in /proc/zoneinfo like followings. (This is an example of x86-64 box). |
| Each zone has an array of protection pages like this. |
| |
| - |
| Node 0, zone DMA |
| pages free 1355 |
| min 3 |
| low 3 |
| high 4 |
| : |
| : |
| numa_other 0 |
| protection: (0, 2004, 2004, 2004) |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| pagesets |
| cpu: 0 pcp: 0 |
| : |
| - |
| These protections are added to score to judge whether this zone should be used |
| for page allocation or should be reclaimed. |
| |
| In this example, if normal pages (index=2) are required to this DMA zone and |
| watermark[WMARK_HIGH] is used for watermark, the kernel judges this zone should |
| not be used because pages_free(1355) is smaller than watermark + protection[2] |
| (4 + 2004 = 2008). If this protection value is 0, this zone would be used for |
| normal page requirement. If requirement is DMA zone(index=0), protection[0] |
| (=0) is used. |
| |
| zone[i]'s protection[j] is calculated by following expression. |
| |
| (i < j): |
| zone[i]->protection[j] |
| = (total sums of managed_pages from zone[i+1] to zone[j] on the node) |
| / lowmem_reserve_ratio[i]; |
| (i = j): |
| (should not be protected. = 0; |
| (i > j): |
| (not necessary, but looks 0) |
| |
| The default values of lowmem_reserve_ratio[i] are |
| 256 (if zone[i] means DMA or DMA32 zone) |
| 32 (others). |
| As above expression, they are reciprocal number of ratio. |
| 256 means 1/256. # of protection pages becomes about "0.39%" of total managed |
| pages of higher zones on the node. |
| |
| If you would like to protect more pages, smaller values are effective. |
| The minimum value is 1 (1/1 -> 100%). |
| |
| ============================================================== |
| |
| max_map_count: |
| |
| This file contains the maximum number of memory map areas a process |
| may have. Memory map areas are used as a side-effect of calling |
| malloc, directly by mmap and mprotect, and also when loading shared |
| libraries. |
| |
| While most applications need less than a thousand maps, certain |
| programs, particularly malloc debuggers, may consume lots of them, |
| e.g., up to one or two maps per allocation. |
| |
| The default value is 65536. |
| |
| ============================================================= |
| |
| memory_failure_early_kill: |
| |
| Control how to kill processes when uncorrected memory error (typically |
| a 2bit error in a memory module) is detected in the background by hardware |
| that cannot be handled by the kernel. In some cases (like the page |
| still having a valid copy on disk) the kernel will handle the failure |
| transparently without affecting any applications. But if there is |
| no other uptodate copy of the data it will kill to prevent any data |
| corruptions from propagating. |
| |
| 1: Kill all processes that have the corrupted and not reloadable page mapped |
| as soon as the corruption is detected. Note this is not supported |
| for a few types of pages, like kernel internally allocated data or |
| the swap cache, but works for the majority of user pages. |
| |
| 0: Only unmap the corrupted page from all processes and only kill a process |
| who tries to access it. |
| |
| The kill is done using a catchable SIGBUS with BUS_MCEERR_AO, so processes can |
| handle this if they want to. |
| |
| This is only active on architectures/platforms with advanced machine |
| check handling and depends on the hardware capabilities. |
| |
| Applications can override this setting individually with the PR_MCE_KILL prctl |
| |
| ============================================================== |
| |
| memory_failure_recovery |
| |
| Enable memory failure recovery (when supported by the platform) |
| |
| 1: Attempt recovery. |
| |
| 0: Always panic on a memory failure. |
| |
| ============================================================== |
| |
| min_free_kbytes: |
| |
| This is used to force the Linux VM to keep a minimum number |
| of kilobytes free. The VM uses this number to compute a |
| watermark[WMARK_MIN] value for each lowmem zone in the system. |
| Each lowmem zone gets a number of reserved free pages based |
| proportionally on its size. |
| |
| Some minimal amount of memory is needed to satisfy PF_MEMALLOC |
| allocations; if you set this to lower than 1024KB, your system will |
| become subtly broken, and prone to deadlock under high loads. |
| |
| Setting this too high will OOM your machine instantly. |
| |
| ============================================================= |
| |
| min_slab_ratio: |
| |
| This is available only on NUMA kernels. |
| |
| A percentage of the total pages in each zone. On Zone reclaim |
| (fallback from the local zone occurs) slabs will be reclaimed if more |
| than this percentage of pages in a zone are reclaimable slab pages. |
| This insures that the slab growth stays under control even in NUMA |
| systems that rarely perform global reclaim. |
| |
| The default is 5 percent. |
| |
| Note that slab reclaim is triggered in a per zone / node fashion. |
| The process of reclaiming slab memory is currently not node specific |
| and may not be fast. |
| |
| ============================================================= |
| |
| min_unmapped_ratio: |
| |
| This is available only on NUMA kernels. |
| |
| This is a percentage of the total pages in each zone. Zone reclaim will |
| only occur if more than this percentage of pages are in a state that |
| zone_reclaim_mode allows to be reclaimed. |
| |
| If zone_reclaim_mode has the value 4 OR'd, then the percentage is compared |
| against all file-backed unmapped pages including swapcache pages and tmpfs |
| files. Otherwise, only unmapped pages backed by normal files but not tmpfs |
| files and similar are considered. |
| |
| The default is 1 percent. |
| |
| ============================================================== |
| |
| mmap_min_addr |
| |
| This file indicates the amount of address space which a user process will |
| be restricted from mmapping. Since kernel null dereference bugs could |
| accidentally operate based on the information in the first couple of pages |
| of memory userspace processes should not be allowed to write to them. By |
| default this value is set to 0 and no protections will be enforced by the |
| security module. Setting this value to something like 64k will allow the |
| vast majority of applications to work correctly and provide defense in depth |
| against future potential kernel bugs. |
| |
| ============================================================== |
| |
| nr_hugepages |
| |
| Change the minimum size of the hugepage pool. |
| |
| See Documentation/vm/hugetlbpage.txt |
| |
| ============================================================== |
| |
| nr_overcommit_hugepages |
| |
| Change the maximum size of the hugepage pool. The maximum is |
| nr_hugepages + nr_overcommit_hugepages. |
| |
| See Documentation/vm/hugetlbpage.txt |
| |
| ============================================================== |
| |
| nr_trim_pages |
| |
| This is available only on NOMMU kernels. |
| |
| This value adjusts the excess page trimming behaviour of power-of-2 aligned |
| NOMMU mmap allocations. |
| |
| A value of 0 disables trimming of allocations entirely, while a value of 1 |
| trims excess pages aggressively. Any value >= 1 acts as the watermark where |
| trimming of allocations is initiated. |
| |
| The default value is 1. |
| |
| See Documentation/nommu-mmap.txt for more information. |
| |
| ============================================================== |
| |
| numa_zonelist_order |
| |
| This sysctl is only for NUMA. |
| 'where the memory is allocated from' is controlled by zonelists. |
| (This documentation ignores ZONE_HIGHMEM/ZONE_DMA32 for simple explanation. |
| you may be able to read ZONE_DMA as ZONE_DMA32...) |
| |
| In non-NUMA case, a zonelist for GFP_KERNEL is ordered as following. |
| ZONE_NORMAL -> ZONE_DMA |
| This means that a memory allocation request for GFP_KERNEL will |
| get memory from ZONE_DMA only when ZONE_NORMAL is not available. |
| |
| In NUMA case, you can think of following 2 types of order. |
| Assume 2 node NUMA and below is zonelist of Node(0)'s GFP_KERNEL |
| |
| (A) Node(0) ZONE_NORMAL -> Node(0) ZONE_DMA -> Node(1) ZONE_NORMAL |
| (B) Node(0) ZONE_NORMAL -> Node(1) ZONE_NORMAL -> Node(0) ZONE_DMA. |
| |
| Type(A) offers the best locality for processes on Node(0), but ZONE_DMA |
| will be used before ZONE_NORMAL exhaustion. This increases possibility of |
| out-of-memory(OOM) of ZONE_DMA because ZONE_DMA is tend to be small. |
| |
| Type(B) cannot offer the best locality but is more robust against OOM of |
| the DMA zone. |
| |
| Type(A) is called as "Node" order. Type (B) is "Zone" order. |
| |
| "Node order" orders the zonelists by node, then by zone within each node. |
| Specify "[Nn]ode" for node order |
| |
| "Zone Order" orders the zonelists by zone type, then by node within each |
| zone. Specify "[Zz]one" for zone order. |
| |
| Specify "[Dd]efault" to request automatic configuration. Autoconfiguration |
| will select "node" order in following case. |
| (1) if the DMA zone does not exist or |
| (2) if the DMA zone comprises greater than 50% of the available memory or |
| (3) if any node's DMA zone comprises greater than 70% of its local memory and |
| the amount of local memory is big enough. |
| |
| Otherwise, "zone" order will be selected. Default order is recommended unless |
| this is causing problems for your system/application. |
| |
| ============================================================== |
| |
| oom_dump_tasks |
| |
| Enables a system-wide task dump (excluding kernel threads) to be produced |
| when the kernel performs an OOM-killing and includes such information as |
| pid, uid, tgid, vm size, rss, nr_ptes, nr_pmds, swapents, oom_score_adj |
| score, and name. This is helpful to determine why the OOM killer was |
| invoked, to identify the rogue task that caused it, and to determine why |
| the OOM killer chose the task it did to kill. |
| |
| If this is set to zero, this information is suppressed. On very |
| large systems with thousands of tasks it may not be feasible to dump |
| the memory state information for each one. Such systems should not |
| be forced to incur a performance penalty in OOM conditions when the |
| information may not be desired. |
| |
| If this is set to non-zero, this information is shown whenever the |
| OOM killer actually kills a memory-hogging task. |
| |
| The default value is 1 (enabled). |
| |
| ============================================================== |
| |
| oom_kill_allocating_task |
| |
| This enables or disables killing the OOM-triggering task in |
| out-of-memory situations. |
| |
| If this is set to zero, the OOM killer will scan through the entire |
| tasklist and select a task based on heuristics to kill. This normally |
| selects a rogue memory-hogging task that frees up a large amount of |
| memory when killed. |
| |
| If this is set to non-zero, the OOM killer simply kills the task that |
| triggered the out-of-memory condition. This avoids the expensive |
| tasklist scan. |
| |
| If panic_on_oom is selected, it takes precedence over whatever value |
| is used in oom_kill_allocating_task. |
| |
| The default value is 0. |
| |
| ============================================================== |
| |
| overcommit_kbytes: |
| |
| When overcommit_memory is set to 2, the committed address space is not |
| permitted to exceed swap plus this amount of physical RAM. See below. |
| |
| Note: overcommit_kbytes is the counterpart of overcommit_ratio. Only one |
| of them may be specified at a time. Setting one disables the other (which |
| then appears as 0 when read). |
| |
| ============================================================== |
| |
| overcommit_memory: |
| |
| This value contains a flag that enables memory overcommitment. |
| |
| When this flag is 0, the kernel attempts to estimate the amount |
| of free memory left when userspace requests more memory. |
| |
| When this flag is 1, the kernel pretends there is always enough |
| memory until it actually runs out. |
| |
| When this flag is 2, the kernel uses a "never overcommit" |
| policy that attempts to prevent any overcommit of memory. |
| Note that user_reserve_kbytes affects this policy. |
| |
| This feature can be very useful because there are a lot of |
| programs that malloc() huge amounts of memory "just-in-case" |
| and don't use much of it. |
| |
| The default value is 0. |
| |
| See Documentation/vm/overcommit-accounting and |
| security/commoncap.c::cap_vm_enough_memory() for more information. |
| |
| ============================================================== |
| |
| overcommit_ratio: |
| |
| When overcommit_memory is set to 2, the committed address |
| space is not permitted to exceed swap plus this percentage |
| of physical RAM. See above. |
| |
| ============================================================== |
| |
| page-cluster |
| |
| page-cluster controls the number of pages up to which consecutive pages |
| are read in from swap in a single attempt. This is the swap counterpart |
| to page cache readahead. |
| The mentioned consecutivity is not in terms of virtual/physical addresses, |
| but consecutive on swap space - that means they were swapped out together. |
| |
| It is a logarithmic value - setting it to zero means "1 page", setting |
| it to 1 means "2 pages", setting it to 2 means "4 pages", etc. |
| Zero disables swap readahead completely. |
| |
| The default value is three (eight pages at a time). There may be some |
| small benefits in tuning this to a different value if your workload is |
| swap-intensive. |
| |
| Lower values mean lower latencies for initial faults, but at the same time |
| extra faults and I/O delays for following faults if they would have been part of |
| that consecutive pages readahead would have brought in. |
| |
| ============================================================= |
| |
| panic_on_oom |
| |
| This enables or disables panic on out-of-memory feature. |
| |
| If this is set to 0, the kernel will kill some rogue process, |
| called oom_killer. Usually, oom_killer can kill rogue processes and |
| system will survive. |
| |
| If this is set to 1, the kernel panics when out-of-memory happens. |
| However, if a process limits using nodes by mempolicy/cpusets, |
| and those nodes become memory exhaustion status, one process |
| may be killed by oom-killer. No panic occurs in this case. |
| Because other nodes' memory may be free. This means system total status |
| may be not fatal yet. |
| |
| If this is set to 2, the kernel panics compulsorily even on the |
| above-mentioned. Even oom happens under memory cgroup, the whole |
| system panics. |
| |
| The default value is 0. |
| 1 and 2 are for failover of clustering. Please select either |
| according to your policy of failover. |
| panic_on_oom=2+kdump gives you very strong tool to investigate |
| why oom happens. You can get snapshot. |
| |
| ============================================================= |
| |
| percpu_pagelist_fraction |
| |
| This is the fraction of pages at most (high mark pcp->high) in each zone that |
| are allocated for each per cpu page list. The min value for this is 8. It |
| means that we don't allow more than 1/8th of pages in each zone to be |
| allocated in any single per_cpu_pagelist. This entry only changes the value |
| of hot per cpu pagelists. User can specify a number like 100 to allocate |
| 1/100th of each zone to each per cpu page list. |
| |
| The batch value of each per cpu pagelist is also updated as a result. It is |
| set to pcp->high/4. The upper limit of batch is (PAGE_SHIFT * 8) |
| |
| The initial value is zero. Kernel does not use this value at boot time to set |
| the high water marks for each per cpu page list. If the user writes '0' to this |
| sysctl, it will revert to this default behavior. |
| |
| ============================================================== |
| |
| stat_interval |
| |
| The time interval between which vm statistics are updated. The default |
| is 1 second. |
| |
| ============================================================== |
| |
| swappiness |
| |
| This control is used to define how aggressive the kernel will swap |
| memory pages. Higher values will increase agressiveness, lower values |
| decrease the amount of swap. A value of 0 instructs the kernel not to |
| initiate swap until the amount of free and file-backed pages is less |
| than the high water mark in a zone. |
| |
| The default value is 60. |
| |
| ============================================================== |
| |
| - user_reserve_kbytes |
| |
| When overcommit_memory is set to 2, "never overcommit" mode, reserve |
| min(3% of current process size, user_reserve_kbytes) of free memory. |
| This is intended to prevent a user from starting a single memory hogging |
| process, such that they cannot recover (kill the hog). |
| |
| user_reserve_kbytes defaults to min(3% of the current process size, 128MB). |
| |
| If this is reduced to zero, then the user will be allowed to allocate |
| all free memory with a single process, minus admin_reserve_kbytes. |
| Any subsequent attempts to execute a command will result in |
| "fork: Cannot allocate memory". |
| |
| Changing this takes effect whenever an application requests memory. |
| |
| ============================================================== |
| |
| vfs_cache_pressure |
| ------------------ |
| |
| This percentage value controls the tendency of the kernel to reclaim |
| the memory which is used for caching of directory and inode objects. |
| |
| At the default value of vfs_cache_pressure=100 the kernel will attempt to |
| reclaim dentries and inodes at a "fair" rate with respect to pagecache and |
| swapcache reclaim. Decreasing vfs_cache_pressure causes the kernel to prefer |
| to retain dentry and inode caches. When vfs_cache_pressure=0, the kernel will |
| never reclaim dentries and inodes due to memory pressure and this can easily |
| lead to out-of-memory conditions. Increasing vfs_cache_pressure beyond 100 |
| causes the kernel to prefer to reclaim dentries and inodes. |
| |
| Increasing vfs_cache_pressure significantly beyond 100 may have negative |
| performance impact. Reclaim code needs to take various locks to find freeable |
| directory and inode objects. With vfs_cache_pressure=1000, it will look for |
| ten times more freeable objects than there are. |
| |
| ============================================================== |
| |
| zone_reclaim_mode: |
| |
| Zone_reclaim_mode allows someone to set more or less aggressive approaches to |
| reclaim memory when a zone runs out of memory. If it is set to zero then no |
| zone reclaim occurs. Allocations will be satisfied from other zones / nodes |
| in the system. |
| |
| This is value ORed together of |
| |
| 1 = Zone reclaim on |
| 2 = Zone reclaim writes dirty pages out |
| 4 = Zone reclaim swaps pages |
| |
| zone_reclaim_mode is disabled by default. For file servers or workloads |
| that benefit from having their data cached, zone_reclaim_mode should be |
| left disabled as the caching effect is likely to be more important than |
| data locality. |
| |
| zone_reclaim may be enabled if it's known that the workload is partitioned |
| such that each partition fits within a NUMA node and that accessing remote |
| memory would cause a measurable performance reduction. The page allocator |
| will then reclaim easily reusable pages (those page cache pages that are |
| currently not used) before allocating off node pages. |
| |
| Allowing zone reclaim to write out pages stops processes that are |
| writing large amounts of data from dirtying pages on other nodes. Zone |
| reclaim will write out dirty pages if a zone fills up and so effectively |
| throttle the process. This may decrease the performance of a single process |
| since it cannot use all of system memory to buffer the outgoing writes |
| anymore but it preserve the memory on other nodes so that the performance |
| of other processes running on other nodes will not be affected. |
| |
| Allowing regular swap effectively restricts allocations to the local |
| node unless explicitly overridden by memory policies or cpuset |
| configurations. |
| |
| ============ End of Document ================================= |