| /*---------------------------------------------------------------------------+ |
| | poly_tan.c | |
| | | |
| | Compute the tan of a FPU_REG, using a polynomial approximation. | |
| | | |
| | Copyright (C) 1992,1993,1994,1997,1999 | |
| | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | |
| | Australia. E-mail billm@melbpc.org.au | |
| | | |
| | | |
| +---------------------------------------------------------------------------*/ |
| |
| #include "exception.h" |
| #include "reg_constant.h" |
| #include "fpu_emu.h" |
| #include "fpu_system.h" |
| #include "control_w.h" |
| #include "poly.h" |
| |
| |
| #define HiPOWERop 3 /* odd poly, positive terms */ |
| static const unsigned long long oddplterm[HiPOWERop] = |
| { |
| 0x0000000000000000LL, |
| 0x0051a1cf08fca228LL, |
| 0x0000000071284ff7LL |
| }; |
| |
| #define HiPOWERon 2 /* odd poly, negative terms */ |
| static const unsigned long long oddnegterm[HiPOWERon] = |
| { |
| 0x1291a9a184244e80LL, |
| 0x0000583245819c21LL |
| }; |
| |
| #define HiPOWERep 2 /* even poly, positive terms */ |
| static const unsigned long long evenplterm[HiPOWERep] = |
| { |
| 0x0e848884b539e888LL, |
| 0x00003c7f18b887daLL |
| }; |
| |
| #define HiPOWERen 2 /* even poly, negative terms */ |
| static const unsigned long long evennegterm[HiPOWERen] = |
| { |
| 0xf1f0200fd51569ccLL, |
| 0x003afb46105c4432LL |
| }; |
| |
| static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; |
| |
| |
| /*--- poly_tan() ------------------------------------------------------------+ |
| | | |
| +---------------------------------------------------------------------------*/ |
| void poly_tan(FPU_REG *st0_ptr) |
| { |
| long int exponent; |
| int invert; |
| Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, |
| argSignif, fix_up; |
| unsigned long adj; |
| |
| exponent = exponent(st0_ptr); |
| |
| #ifdef PARANOID |
| if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */ |
| { arith_invalid(0); return; } /* Need a positive number */ |
| #endif /* PARANOID */ |
| |
| /* Split the problem into two domains, smaller and larger than pi/4 */ |
| if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) |
| { |
| /* The argument is greater than (approx) pi/4 */ |
| invert = 1; |
| accum.lsw = 0; |
| XSIG_LL(accum) = significand(st0_ptr); |
| |
| if ( exponent == 0 ) |
| { |
| /* The argument is >= 1.0 */ |
| /* Put the binary point at the left. */ |
| XSIG_LL(accum) <<= 1; |
| } |
| /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ |
| XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); |
| /* This is a special case which arises due to rounding. */ |
| if ( XSIG_LL(accum) == 0xffffffffffffffffLL ) |
| { |
| FPU_settag0(TAG_Valid); |
| significand(st0_ptr) = 0x8a51e04daabda360LL; |
| setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); |
| return; |
| } |
| |
| argSignif.lsw = accum.lsw; |
| XSIG_LL(argSignif) = XSIG_LL(accum); |
| exponent = -1 + norm_Xsig(&argSignif); |
| } |
| else |
| { |
| invert = 0; |
| argSignif.lsw = 0; |
| XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); |
| |
| if ( exponent < -1 ) |
| { |
| /* shift the argument right by the required places */ |
| if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) |
| XSIG_LL(accum) ++; /* round up */ |
| } |
| } |
| |
| XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; |
| mul_Xsig_Xsig(&argSq, &argSq); |
| XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; |
| mul_Xsig_Xsig(&argSqSq, &argSqSq); |
| |
| /* Compute the negative terms for the numerator polynomial */ |
| accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; |
| polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); |
| mul_Xsig_Xsig(&accumulatoro, &argSq); |
| negate_Xsig(&accumulatoro); |
| /* Add the positive terms */ |
| polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); |
| |
| |
| /* Compute the positive terms for the denominator polynomial */ |
| accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; |
| polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); |
| mul_Xsig_Xsig(&accumulatore, &argSq); |
| negate_Xsig(&accumulatore); |
| /* Add the negative terms */ |
| polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); |
| /* Multiply by arg^2 */ |
| mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
| mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
| /* de-normalize and divide by 2 */ |
| shr_Xsig(&accumulatore, -2*(1+exponent) + 1); |
| negate_Xsig(&accumulatore); /* This does 1 - accumulator */ |
| |
| /* Now find the ratio. */ |
| if ( accumulatore.msw == 0 ) |
| { |
| /* accumulatoro must contain 1.0 here, (actually, 0) but it |
| really doesn't matter what value we use because it will |
| have negligible effect in later calculations |
| */ |
| XSIG_LL(accum) = 0x8000000000000000LL; |
| accum.lsw = 0; |
| } |
| else |
| { |
| div_Xsig(&accumulatoro, &accumulatore, &accum); |
| } |
| |
| /* Multiply by 1/3 * arg^3 */ |
| mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| mul64_Xsig(&accum, &twothirds); |
| shr_Xsig(&accum, -2*(exponent+1)); |
| |
| /* tan(arg) = arg + accum */ |
| add_two_Xsig(&accum, &argSignif, &exponent); |
| |
| if ( invert ) |
| { |
| /* We now have the value of tan(pi_2 - arg) where pi_2 is an |
| approximation for pi/2 |
| */ |
| /* The next step is to fix the answer to compensate for the |
| error due to the approximation used for pi/2 |
| */ |
| |
| /* This is (approx) delta, the error in our approx for pi/2 |
| (see above). It has an exponent of -65 |
| */ |
| XSIG_LL(fix_up) = 0x898cc51701b839a2LL; |
| fix_up.lsw = 0; |
| |
| if ( exponent == 0 ) |
| adj = 0xffffffff; /* We want approx 1.0 here, but |
| this is close enough. */ |
| else if ( exponent > -30 ) |
| { |
| adj = accum.msw >> -(exponent+1); /* tan */ |
| adj = mul_32_32(adj, adj); /* tan^2 */ |
| } |
| else |
| adj = 0; |
| adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */ |
| |
| fix_up.msw += adj; |
| if ( !(fix_up.msw & 0x80000000) ) /* did fix_up overflow ? */ |
| { |
| /* Yes, we need to add an msb */ |
| shr_Xsig(&fix_up, 1); |
| fix_up.msw |= 0x80000000; |
| shr_Xsig(&fix_up, 64 + exponent); |
| } |
| else |
| shr_Xsig(&fix_up, 65 + exponent); |
| |
| add_two_Xsig(&accum, &fix_up, &exponent); |
| |
| /* accum now contains tan(pi/2 - arg). |
| Use tan(arg) = 1.0 / tan(pi/2 - arg) |
| */ |
| accumulatoro.lsw = accumulatoro.midw = 0; |
| accumulatoro.msw = 0x80000000; |
| div_Xsig(&accumulatoro, &accum, &accum); |
| exponent = - exponent - 1; |
| } |
| |
| /* Transfer the result */ |
| round_Xsig(&accum); |
| FPU_settag0(TAG_Valid); |
| significand(st0_ptr) = XSIG_LL(accum); |
| setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ |
| |
| } |