| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/vmalloc.h> |
| |
| #include "hfi.h" |
| |
| /* for the given bus number, return the CSR for reading an i2c line */ |
| static inline u32 i2c_in_csr(u32 bus_num) |
| { |
| return bus_num ? ASIC_QSFP2_IN : ASIC_QSFP1_IN; |
| } |
| |
| /* for the given bus number, return the CSR for writing an i2c line */ |
| static inline u32 i2c_oe_csr(u32 bus_num) |
| { |
| return bus_num ? ASIC_QSFP2_OE : ASIC_QSFP1_OE; |
| } |
| |
| static void hfi1_setsda(void *data, int state) |
| { |
| struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; |
| struct hfi1_devdata *dd = bus->controlling_dd; |
| u64 reg; |
| u32 target_oe; |
| |
| target_oe = i2c_oe_csr(bus->num); |
| reg = read_csr(dd, target_oe); |
| /* |
| * The OE bit value is inverted and connected to the pin. When |
| * OE is 0 the pin is left to be pulled up, when the OE is 1 |
| * the pin is driven low. This matches the "open drain" or "open |
| * collector" convention. |
| */ |
| if (state) |
| reg &= ~QSFP_HFI0_I2CDAT; |
| else |
| reg |= QSFP_HFI0_I2CDAT; |
| write_csr(dd, target_oe, reg); |
| /* do a read to force the write into the chip */ |
| (void)read_csr(dd, target_oe); |
| } |
| |
| static void hfi1_setscl(void *data, int state) |
| { |
| struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; |
| struct hfi1_devdata *dd = bus->controlling_dd; |
| u64 reg; |
| u32 target_oe; |
| |
| target_oe = i2c_oe_csr(bus->num); |
| reg = read_csr(dd, target_oe); |
| /* |
| * The OE bit value is inverted and connected to the pin. When |
| * OE is 0 the pin is left to be pulled up, when the OE is 1 |
| * the pin is driven low. This matches the "open drain" or "open |
| * collector" convention. |
| */ |
| if (state) |
| reg &= ~QSFP_HFI0_I2CCLK; |
| else |
| reg |= QSFP_HFI0_I2CCLK; |
| write_csr(dd, target_oe, reg); |
| /* do a read to force the write into the chip */ |
| (void)read_csr(dd, target_oe); |
| } |
| |
| static int hfi1_getsda(void *data) |
| { |
| struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; |
| u64 reg; |
| u32 target_in; |
| |
| hfi1_setsda(data, 1); /* clear OE so we do not pull line down */ |
| udelay(2); /* 1us pull up + 250ns hold */ |
| |
| target_in = i2c_in_csr(bus->num); |
| reg = read_csr(bus->controlling_dd, target_in); |
| return !!(reg & QSFP_HFI0_I2CDAT); |
| } |
| |
| static int hfi1_getscl(void *data) |
| { |
| struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; |
| u64 reg; |
| u32 target_in; |
| |
| hfi1_setscl(data, 1); /* clear OE so we do not pull line down */ |
| udelay(2); /* 1us pull up + 250ns hold */ |
| |
| target_in = i2c_in_csr(bus->num); |
| reg = read_csr(bus->controlling_dd, target_in); |
| return !!(reg & QSFP_HFI0_I2CCLK); |
| } |
| |
| /* |
| * Allocate and initialize the given i2c bus number. |
| * Returns NULL on failure. |
| */ |
| static struct hfi1_i2c_bus *init_i2c_bus(struct hfi1_devdata *dd, |
| struct hfi1_asic_data *ad, int num) |
| { |
| struct hfi1_i2c_bus *bus; |
| int ret; |
| |
| bus = kzalloc(sizeof(*bus), GFP_KERNEL); |
| if (!bus) |
| return NULL; |
| |
| bus->controlling_dd = dd; |
| bus->num = num; /* our bus number */ |
| |
| bus->algo.setsda = hfi1_setsda; |
| bus->algo.setscl = hfi1_setscl; |
| bus->algo.getsda = hfi1_getsda; |
| bus->algo.getscl = hfi1_getscl; |
| bus->algo.udelay = 5; |
| bus->algo.timeout = usecs_to_jiffies(50); |
| bus->algo.data = bus; |
| |
| bus->adapter.owner = THIS_MODULE; |
| bus->adapter.algo_data = &bus->algo; |
| bus->adapter.dev.parent = &dd->pcidev->dev; |
| snprintf(bus->adapter.name, sizeof(bus->adapter.name), |
| "hfi1_i2c%d", num); |
| |
| ret = i2c_bit_add_bus(&bus->adapter); |
| if (ret) { |
| dd_dev_info(dd, "%s: unable to add i2c bus %d, err %d\n", |
| __func__, num, ret); |
| kfree(bus); |
| return NULL; |
| } |
| |
| return bus; |
| } |
| |
| /* |
| * Initialize i2c buses. |
| * Return 0 on success, -errno on error. |
| */ |
| int set_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad) |
| { |
| ad->i2c_bus0 = init_i2c_bus(dd, ad, 0); |
| ad->i2c_bus1 = init_i2c_bus(dd, ad, 1); |
| if (!ad->i2c_bus0 || !ad->i2c_bus1) |
| return -ENOMEM; |
| return 0; |
| }; |
| |
| static void clean_i2c_bus(struct hfi1_i2c_bus *bus) |
| { |
| if (bus) { |
| i2c_del_adapter(&bus->adapter); |
| kfree(bus); |
| } |
| } |
| |
| void clean_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad) |
| { |
| clean_i2c_bus(ad->i2c_bus0); |
| ad->i2c_bus0 = NULL; |
| clean_i2c_bus(ad->i2c_bus1); |
| ad->i2c_bus1 = NULL; |
| } |
| |
| static int i2c_bus_write(struct hfi1_devdata *dd, struct hfi1_i2c_bus *i2c, |
| u8 slave_addr, int offset, int offset_size, |
| u8 *data, u16 len) |
| { |
| int ret; |
| int num_msgs; |
| u8 offset_bytes[2]; |
| struct i2c_msg msgs[2]; |
| |
| switch (offset_size) { |
| case 0: |
| num_msgs = 1; |
| msgs[0].addr = slave_addr; |
| msgs[0].flags = 0; |
| msgs[0].len = len; |
| msgs[0].buf = data; |
| break; |
| case 2: |
| offset_bytes[1] = (offset >> 8) & 0xff; |
| /* fall through */ |
| case 1: |
| num_msgs = 2; |
| offset_bytes[0] = offset & 0xff; |
| |
| msgs[0].addr = slave_addr; |
| msgs[0].flags = 0; |
| msgs[0].len = offset_size; |
| msgs[0].buf = offset_bytes; |
| |
| msgs[1].addr = slave_addr; |
| msgs[1].flags = I2C_M_NOSTART, |
| msgs[1].len = len; |
| msgs[1].buf = data; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| i2c->controlling_dd = dd; |
| ret = i2c_transfer(&i2c->adapter, msgs, num_msgs); |
| if (ret != num_msgs) { |
| dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; write failed, ret %d\n", |
| __func__, i2c->num, slave_addr, offset, len, ret); |
| return ret < 0 ? ret : -EIO; |
| } |
| return 0; |
| } |
| |
| static int i2c_bus_read(struct hfi1_devdata *dd, struct hfi1_i2c_bus *bus, |
| u8 slave_addr, int offset, int offset_size, |
| u8 *data, u16 len) |
| { |
| int ret; |
| int num_msgs; |
| u8 offset_bytes[2]; |
| struct i2c_msg msgs[2]; |
| |
| switch (offset_size) { |
| case 0: |
| num_msgs = 1; |
| msgs[0].addr = slave_addr; |
| msgs[0].flags = I2C_M_RD; |
| msgs[0].len = len; |
| msgs[0].buf = data; |
| break; |
| case 2: |
| offset_bytes[1] = (offset >> 8) & 0xff; |
| /* fall through */ |
| case 1: |
| num_msgs = 2; |
| offset_bytes[0] = offset & 0xff; |
| |
| msgs[0].addr = slave_addr; |
| msgs[0].flags = 0; |
| msgs[0].len = offset_size; |
| msgs[0].buf = offset_bytes; |
| |
| msgs[1].addr = slave_addr; |
| msgs[1].flags = I2C_M_RD, |
| msgs[1].len = len; |
| msgs[1].buf = data; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| bus->controlling_dd = dd; |
| ret = i2c_transfer(&bus->adapter, msgs, num_msgs); |
| if (ret != num_msgs) { |
| dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; read failed, ret %d\n", |
| __func__, bus->num, slave_addr, offset, len, ret); |
| return ret < 0 ? ret : -EIO; |
| } |
| return 0; |
| } |
| |
| /* |
| * Raw i2c write. No set-up or lock checking. |
| * |
| * Return 0 on success, -errno on error. |
| */ |
| static int __i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, |
| int offset, void *bp, int len) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| struct hfi1_i2c_bus *bus; |
| u8 slave_addr; |
| int offset_size; |
| |
| bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0; |
| slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */ |
| offset_size = (i2c_addr >> 8) & 0x3; |
| return i2c_bus_write(dd, bus, slave_addr, offset, offset_size, bp, len); |
| } |
| |
| /* |
| * Caller must hold the i2c chain resource. |
| * |
| * Return number of bytes written, or -errno. |
| */ |
| int i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, |
| void *bp, int len) |
| { |
| int ret; |
| |
| if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) |
| return -EACCES; |
| |
| ret = __i2c_write(ppd, target, i2c_addr, offset, bp, len); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| /* |
| * Raw i2c read. No set-up or lock checking. |
| * |
| * Return 0 on success, -errno on error. |
| */ |
| static int __i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, |
| int offset, void *bp, int len) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| struct hfi1_i2c_bus *bus; |
| u8 slave_addr; |
| int offset_size; |
| |
| bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0; |
| slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */ |
| offset_size = (i2c_addr >> 8) & 0x3; |
| return i2c_bus_read(dd, bus, slave_addr, offset, offset_size, bp, len); |
| } |
| |
| /* |
| * Caller must hold the i2c chain resource. |
| * |
| * Return number of bytes read, or -errno. |
| */ |
| int i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, |
| void *bp, int len) |
| { |
| int ret; |
| |
| if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) |
| return -EACCES; |
| |
| ret = __i2c_read(ppd, target, i2c_addr, offset, bp, len); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| /* |
| * Write page n, offset m of QSFP memory as defined by SFF 8636 |
| * by writing @addr = ((256 * n) + m) |
| * |
| * Caller must hold the i2c chain resource. |
| * |
| * Return number of bytes written or -errno. |
| */ |
| int qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, |
| int len) |
| { |
| int count = 0; |
| int offset; |
| int nwrite; |
| int ret = 0; |
| u8 page; |
| |
| if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) |
| return -EACCES; |
| |
| while (count < len) { |
| /* |
| * Set the qsfp page based on a zero-based address |
| * and a page size of QSFP_PAGESIZE bytes. |
| */ |
| page = (u8)(addr / QSFP_PAGESIZE); |
| |
| ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, |
| QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1); |
| /* QSFPs require a 5-10msec delay after write operations */ |
| mdelay(5); |
| if (ret) { |
| hfi1_dev_porterr(ppd->dd, ppd->port, |
| "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n", |
| target, ret); |
| break; |
| } |
| |
| offset = addr % QSFP_PAGESIZE; |
| nwrite = len - count; |
| /* truncate write to boundary if crossing boundary */ |
| if (((addr % QSFP_RW_BOUNDARY) + nwrite) > QSFP_RW_BOUNDARY) |
| nwrite = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY); |
| |
| ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, |
| offset, bp + count, nwrite); |
| /* QSFPs require a 5-10msec delay after write operations */ |
| mdelay(5); |
| if (ret) /* stop on error */ |
| break; |
| |
| count += nwrite; |
| addr += nwrite; |
| } |
| |
| if (ret < 0) |
| return ret; |
| return count; |
| } |
| |
| /* |
| * Perform a stand-alone single QSFP write. Acquire the resource, do the |
| * write, then release the resource. |
| */ |
| int one_qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, |
| int len) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| u32 resource = qsfp_resource(dd); |
| int ret; |
| |
| ret = acquire_chip_resource(dd, resource, QSFP_WAIT); |
| if (ret) |
| return ret; |
| ret = qsfp_write(ppd, target, addr, bp, len); |
| release_chip_resource(dd, resource); |
| |
| return ret; |
| } |
| |
| /* |
| * Access page n, offset m of QSFP memory as defined by SFF 8636 |
| * by reading @addr = ((256 * n) + m) |
| * |
| * Caller must hold the i2c chain resource. |
| * |
| * Return the number of bytes read or -errno. |
| */ |
| int qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, |
| int len) |
| { |
| int count = 0; |
| int offset; |
| int nread; |
| int ret = 0; |
| u8 page; |
| |
| if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) |
| return -EACCES; |
| |
| while (count < len) { |
| /* |
| * Set the qsfp page based on a zero-based address |
| * and a page size of QSFP_PAGESIZE bytes. |
| */ |
| page = (u8)(addr / QSFP_PAGESIZE); |
| ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, |
| QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1); |
| /* QSFPs require a 5-10msec delay after write operations */ |
| mdelay(5); |
| if (ret) { |
| hfi1_dev_porterr(ppd->dd, ppd->port, |
| "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n", |
| target, ret); |
| break; |
| } |
| |
| offset = addr % QSFP_PAGESIZE; |
| nread = len - count; |
| /* truncate read to boundary if crossing boundary */ |
| if (((addr % QSFP_RW_BOUNDARY) + nread) > QSFP_RW_BOUNDARY) |
| nread = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY); |
| |
| ret = __i2c_read(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, |
| offset, bp + count, nread); |
| if (ret) /* stop on error */ |
| break; |
| |
| count += nread; |
| addr += nread; |
| } |
| |
| if (ret < 0) |
| return ret; |
| return count; |
| } |
| |
| /* |
| * Perform a stand-alone single QSFP read. Acquire the resource, do the |
| * read, then release the resource. |
| */ |
| int one_qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, |
| int len) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| u32 resource = qsfp_resource(dd); |
| int ret; |
| |
| ret = acquire_chip_resource(dd, resource, QSFP_WAIT); |
| if (ret) |
| return ret; |
| ret = qsfp_read(ppd, target, addr, bp, len); |
| release_chip_resource(dd, resource); |
| |
| return ret; |
| } |
| |
| /* |
| * This function caches the QSFP memory range in 128 byte chunks. |
| * As an example, the next byte after address 255 is byte 128 from |
| * upper page 01H (if existing) rather than byte 0 from lower page 00H. |
| * Access page n, offset m of QSFP memory as defined by SFF 8636 |
| * in the cache by reading byte ((128 * n) + m) |
| * The calls to qsfp_{read,write} in this function correctly handle the |
| * address map difference between this mapping and the mapping implemented |
| * by those functions |
| * |
| * The caller must be holding the QSFP i2c chain resource. |
| */ |
| int refresh_qsfp_cache(struct hfi1_pportdata *ppd, struct qsfp_data *cp) |
| { |
| u32 target = ppd->dd->hfi1_id; |
| int ret; |
| unsigned long flags; |
| u8 *cache = &cp->cache[0]; |
| |
| /* ensure sane contents on invalid reads, for cable swaps */ |
| memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128)); |
| spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); |
| ppd->qsfp_info.cache_valid = 0; |
| spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); |
| |
| if (!qsfp_mod_present(ppd)) { |
| ret = -ENODEV; |
| goto bail; |
| } |
| |
| ret = qsfp_read(ppd, target, 0, cache, QSFP_PAGESIZE); |
| if (ret != QSFP_PAGESIZE) { |
| dd_dev_info(ppd->dd, |
| "%s: Page 0 read failed, expected %d, got %d\n", |
| __func__, QSFP_PAGESIZE, ret); |
| goto bail; |
| } |
| |
| /* Is paging enabled? */ |
| if (!(cache[2] & 4)) { |
| /* Paging enabled, page 03 required */ |
| if ((cache[195] & 0xC0) == 0xC0) { |
| /* all */ |
| ret = qsfp_read(ppd, target, 384, cache + 256, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| ret = qsfp_read(ppd, target, 640, cache + 384, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| ret = qsfp_read(ppd, target, 896, cache + 512, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| } else if ((cache[195] & 0x80) == 0x80) { |
| /* only page 2 and 3 */ |
| ret = qsfp_read(ppd, target, 640, cache + 384, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| ret = qsfp_read(ppd, target, 896, cache + 512, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| } else if ((cache[195] & 0x40) == 0x40) { |
| /* only page 1 and 3 */ |
| ret = qsfp_read(ppd, target, 384, cache + 256, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| ret = qsfp_read(ppd, target, 896, cache + 512, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| } else { |
| /* only page 3 */ |
| ret = qsfp_read(ppd, target, 896, cache + 512, 128); |
| if (ret <= 0 || ret != 128) { |
| dd_dev_info(ppd->dd, "%s failed\n", __func__); |
| goto bail; |
| } |
| } |
| } |
| |
| spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); |
| ppd->qsfp_info.cache_valid = 1; |
| ppd->qsfp_info.cache_refresh_required = 0; |
| spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); |
| |
| return 0; |
| |
| bail: |
| memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128)); |
| return ret; |
| } |
| |
| const char * const hfi1_qsfp_devtech[16] = { |
| "850nm VCSEL", "1310nm VCSEL", "1550nm VCSEL", "1310nm FP", |
| "1310nm DFB", "1550nm DFB", "1310nm EML", "1550nm EML", |
| "Cu Misc", "1490nm DFB", "Cu NoEq", "Cu Eq", |
| "Undef", "Cu Active BothEq", "Cu FarEq", "Cu NearEq" |
| }; |
| |
| #define QSFP_DUMP_CHUNK 16 /* Holds longest string */ |
| #define QSFP_DEFAULT_HDR_CNT 224 |
| |
| #define QSFP_PWR(pbyte) (((pbyte) >> 6) & 3) |
| #define QSFP_HIGH_PWR(pbyte) ((pbyte) & 3) |
| /* For use with QSFP_HIGH_PWR macro */ |
| #define QSFP_HIGH_PWR_UNUSED 0 /* Bits [1:0] = 00 implies low power module */ |
| |
| /* |
| * Takes power class byte [Page 00 Byte 129] in SFF 8636 |
| * Returns power class as integer (1 through 7, per SFF 8636 rev 2.4) |
| */ |
| int get_qsfp_power_class(u8 power_byte) |
| { |
| if (QSFP_HIGH_PWR(power_byte) == QSFP_HIGH_PWR_UNUSED) |
| /* power classes count from 1, their bit encodings from 0 */ |
| return (QSFP_PWR(power_byte) + 1); |
| /* |
| * 00 in the high power classes stands for unused, bringing |
| * balance to the off-by-1 offset above, we add 4 here to |
| * account for the difference between the low and high power |
| * groups |
| */ |
| return (QSFP_HIGH_PWR(power_byte) + 4); |
| } |
| |
| int qsfp_mod_present(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| u64 reg; |
| |
| reg = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_IN : ASIC_QSFP1_IN); |
| return !(reg & QSFP_HFI0_MODPRST_N); |
| } |
| |
| /* |
| * This function maps QSFP memory addresses in 128 byte chunks in the following |
| * fashion per the CableInfo SMA query definition in the IBA 1.3 spec/OPA Gen 1 |
| * spec |
| * For addr 000-127, lower page 00h |
| * For addr 128-255, upper page 00h |
| * For addr 256-383, upper page 01h |
| * For addr 384-511, upper page 02h |
| * For addr 512-639, upper page 03h |
| * |
| * For addresses beyond this range, it returns the invalid range of data buffer |
| * set to 0. |
| * For upper pages that are optional, if they are not valid, returns the |
| * particular range of bytes in the data buffer set to 0. |
| */ |
| int get_cable_info(struct hfi1_devdata *dd, u32 port_num, u32 addr, u32 len, |
| u8 *data) |
| { |
| struct hfi1_pportdata *ppd; |
| u32 excess_len = 0; |
| int ret = 0; |
| |
| if (port_num > dd->num_pports || port_num < 1) { |
| dd_dev_info(dd, "%s: Invalid port number %d\n", |
| __func__, port_num); |
| ret = -EINVAL; |
| goto set_zeroes; |
| } |
| |
| ppd = dd->pport + (port_num - 1); |
| if (!qsfp_mod_present(ppd)) { |
| ret = -ENODEV; |
| goto set_zeroes; |
| } |
| |
| if (!ppd->qsfp_info.cache_valid) { |
| ret = -EINVAL; |
| goto set_zeroes; |
| } |
| |
| if (addr >= (QSFP_MAX_NUM_PAGES * 128)) { |
| ret = -ERANGE; |
| goto set_zeroes; |
| } |
| |
| if ((addr + len) > (QSFP_MAX_NUM_PAGES * 128)) { |
| excess_len = (addr + len) - (QSFP_MAX_NUM_PAGES * 128); |
| memcpy(data, &ppd->qsfp_info.cache[addr], (len - excess_len)); |
| data += (len - excess_len); |
| goto set_zeroes; |
| } |
| |
| memcpy(data, &ppd->qsfp_info.cache[addr], len); |
| return 0; |
| |
| set_zeroes: |
| memset(data, 0, excess_len); |
| return ret; |
| } |
| |
| static const char *pwr_codes[8] = {"N/AW", |
| "1.5W", |
| "2.0W", |
| "2.5W", |
| "3.5W", |
| "4.0W", |
| "4.5W", |
| "5.0W" |
| }; |
| |
| int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len) |
| { |
| u8 *cache = &ppd->qsfp_info.cache[0]; |
| u8 bin_buff[QSFP_DUMP_CHUNK]; |
| char lenstr[6]; |
| int sofar; |
| int bidx = 0; |
| u8 *atten = &cache[QSFP_ATTEN_OFFS]; |
| u8 *vendor_oui = &cache[QSFP_VOUI_OFFS]; |
| u8 power_byte = 0; |
| |
| sofar = 0; |
| lenstr[0] = ' '; |
| lenstr[1] = '\0'; |
| |
| if (ppd->qsfp_info.cache_valid) { |
| if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS])) |
| snprintf(lenstr, sizeof(lenstr), "%dM ", |
| cache[QSFP_MOD_LEN_OFFS]); |
| |
| power_byte = cache[QSFP_MOD_PWR_OFFS]; |
| sofar += scnprintf(buf + sofar, len - sofar, "PWR:%.3sW\n", |
| pwr_codes[get_qsfp_power_class(power_byte)]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "TECH:%s%s\n", |
| lenstr, |
| hfi1_qsfp_devtech[(cache[QSFP_MOD_TECH_OFFS]) >> 4]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Vendor:%.*s\n", |
| QSFP_VEND_LEN, &cache[QSFP_VEND_OFFS]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "OUI:%06X\n", |
| QSFP_OUI(vendor_oui)); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Part#:%.*s\n", |
| QSFP_PN_LEN, &cache[QSFP_PN_OFFS]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Rev:%.*s\n", |
| QSFP_REV_LEN, &cache[QSFP_REV_OFFS]); |
| |
| if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS])) |
| sofar += scnprintf(buf + sofar, len - sofar, |
| "Atten:%d, %d\n", |
| QSFP_ATTEN_SDR(atten), |
| QSFP_ATTEN_DDR(atten)); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Serial:%.*s\n", |
| QSFP_SN_LEN, &cache[QSFP_SN_OFFS]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Date:%.*s\n", |
| QSFP_DATE_LEN, &cache[QSFP_DATE_OFFS]); |
| |
| sofar += scnprintf(buf + sofar, len - sofar, "Lot:%.*s\n", |
| QSFP_LOT_LEN, &cache[QSFP_LOT_OFFS]); |
| |
| while (bidx < QSFP_DEFAULT_HDR_CNT) { |
| int iidx; |
| |
| memcpy(bin_buff, &cache[bidx], QSFP_DUMP_CHUNK); |
| for (iidx = 0; iidx < QSFP_DUMP_CHUNK; ++iidx) { |
| sofar += scnprintf(buf + sofar, len - sofar, |
| " %02X", bin_buff[iidx]); |
| } |
| sofar += scnprintf(buf + sofar, len - sofar, "\n"); |
| bidx += QSFP_DUMP_CHUNK; |
| } |
| } |
| return sofar; |
| } |