| /* |
| * include/asm-s390/pgtable.h |
| * |
| * S390 version |
| * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Author(s): Hartmut Penner (hp@de.ibm.com) |
| * Ulrich Weigand (weigand@de.ibm.com) |
| * Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * |
| * Derived from "include/asm-i386/pgtable.h" |
| */ |
| |
| #ifndef _ASM_S390_PGTABLE_H |
| #define _ASM_S390_PGTABLE_H |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. For |
| * s390 31 bit we "fold" the mid level into the top-level page table, so |
| * that we physically have the same two-level page table as the s390 mmu |
| * expects in 31 bit mode. For s390 64 bit we use three of the five levels |
| * the hardware provides (region first and region second tables are not |
| * used). |
| * |
| * The "pgd_xxx()" functions are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the S390 page table tree. |
| */ |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/mm_types.h> |
| #include <asm/bitops.h> |
| #include <asm/bug.h> |
| #include <asm/processor.h> |
| |
| extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); |
| extern void paging_init(void); |
| extern void vmem_map_init(void); |
| |
| /* |
| * The S390 doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| #define update_mmu_cache(vma, address, pte) do { } while (0) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern char empty_zero_page[PAGE_SIZE]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * PMD_SHIFT determines the size of the area a second-level page |
| * table can map |
| * PGDIR_SHIFT determines what a third-level page table entry can map |
| */ |
| #ifndef __s390x__ |
| # define PMD_SHIFT 20 |
| # define PUD_SHIFT 20 |
| # define PGDIR_SHIFT 20 |
| #else /* __s390x__ */ |
| # define PMD_SHIFT 20 |
| # define PUD_SHIFT 31 |
| # define PGDIR_SHIFT 42 |
| #endif /* __s390x__ */ |
| |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PUD_SIZE (1UL << PUD_SHIFT) |
| #define PUD_MASK (~(PUD_SIZE-1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: the S390 is two-level, so |
| * we don't really have any PMD directory physically. |
| * for S390 segment-table entries are combined to one PGD |
| * that leads to 1024 pte per pgd |
| */ |
| #define PTRS_PER_PTE 256 |
| #ifndef __s390x__ |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PUD 1 |
| #else /* __s390x__ */ |
| #define PTRS_PER_PMD 2048 |
| #define PTRS_PER_PUD 2048 |
| #endif /* __s390x__ */ |
| #define PTRS_PER_PGD 2048 |
| |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) |
| #define pud_ERROR(e) \ |
| printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The vmalloc area will always be on the topmost area of the kernel |
| * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc, |
| * which should be enough for any sane case. |
| * By putting vmalloc at the top, we maximise the gap between physical |
| * memory and vmalloc to catch misplaced memory accesses. As a side |
| * effect, this also makes sure that 64 bit module code cannot be used |
| * as system call address. |
| */ |
| #ifndef __s390x__ |
| #define VMALLOC_START 0x78000000UL |
| #define VMALLOC_END 0x7e000000UL |
| #define VMEM_MAP_END 0x80000000UL |
| #else /* __s390x__ */ |
| #define VMALLOC_START 0x3e000000000UL |
| #define VMALLOC_END 0x3e040000000UL |
| #define VMEM_MAP_END 0x40000000000UL |
| #endif /* __s390x__ */ |
| |
| /* |
| * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1 |
| * mapping. This needs to be calculated at compile time since the size of the |
| * VMEM_MAP is static but the size of struct page can change. |
| */ |
| #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page)) |
| #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES) |
| #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1)) |
| #define vmemmap ((struct page *) VMALLOC_END) |
| |
| /* |
| * A 31 bit pagetable entry of S390 has following format: |
| * | PFRA | | OS | |
| * 0 0IP0 |
| * 00000000001111111111222222222233 |
| * 01234567890123456789012345678901 |
| * |
| * I Page-Invalid Bit: Page is not available for address-translation |
| * P Page-Protection Bit: Store access not possible for page |
| * |
| * A 31 bit segmenttable entry of S390 has following format: |
| * | P-table origin | |PTL |
| * 0 IC |
| * 00000000001111111111222222222233 |
| * 01234567890123456789012345678901 |
| * |
| * I Segment-Invalid Bit: Segment is not available for address-translation |
| * C Common-Segment Bit: Segment is not private (PoP 3-30) |
| * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) |
| * |
| * The 31 bit segmenttable origin of S390 has following format: |
| * |
| * |S-table origin | | STL | |
| * X **GPS |
| * 00000000001111111111222222222233 |
| * 01234567890123456789012345678901 |
| * |
| * X Space-Switch event: |
| * G Segment-Invalid Bit: * |
| * P Private-Space Bit: Segment is not private (PoP 3-30) |
| * S Storage-Alteration: |
| * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) |
| * |
| * A 64 bit pagetable entry of S390 has following format: |
| * | PFRA |0IP0| OS | |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Page-Invalid Bit: Page is not available for address-translation |
| * P Page-Protection Bit: Store access not possible for page |
| * |
| * A 64 bit segmenttable entry of S390 has following format: |
| * | P-table origin | TT |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Segment-Invalid Bit: Segment is not available for address-translation |
| * C Common-Segment Bit: Segment is not private (PoP 3-30) |
| * P Page-Protection Bit: Store access not possible for page |
| * TT Type 00 |
| * |
| * A 64 bit region table entry of S390 has following format: |
| * | S-table origin | TF TTTL |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * I Segment-Invalid Bit: Segment is not available for address-translation |
| * TT Type 01 |
| * TF |
| * TL Table length |
| * |
| * The 64 bit regiontable origin of S390 has following format: |
| * | region table origon | DTTL |
| * 0000000000111111111122222222223333333333444444444455555555556666 |
| * 0123456789012345678901234567890123456789012345678901234567890123 |
| * |
| * X Space-Switch event: |
| * G Segment-Invalid Bit: |
| * P Private-Space Bit: |
| * S Storage-Alteration: |
| * R Real space |
| * TL Table-Length: |
| * |
| * A storage key has the following format: |
| * | ACC |F|R|C|0| |
| * 0 3 4 5 6 7 |
| * ACC: access key |
| * F : fetch protection bit |
| * R : referenced bit |
| * C : changed bit |
| */ |
| |
| /* Hardware bits in the page table entry */ |
| #define _PAGE_RO 0x200 /* HW read-only bit */ |
| #define _PAGE_INVALID 0x400 /* HW invalid bit */ |
| |
| /* Software bits in the page table entry */ |
| #define _PAGE_SWT 0x001 /* SW pte type bit t */ |
| #define _PAGE_SWX 0x002 /* SW pte type bit x */ |
| #define _PAGE_SPECIAL 0x004 /* SW associated with special page */ |
| #define __HAVE_ARCH_PTE_SPECIAL |
| |
| /* Set of bits not changed in pte_modify */ |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL) |
| |
| /* Six different types of pages. */ |
| #define _PAGE_TYPE_EMPTY 0x400 |
| #define _PAGE_TYPE_NONE 0x401 |
| #define _PAGE_TYPE_SWAP 0x403 |
| #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ |
| #define _PAGE_TYPE_RO 0x200 |
| #define _PAGE_TYPE_RW 0x000 |
| #define _PAGE_TYPE_EX_RO 0x202 |
| #define _PAGE_TYPE_EX_RW 0x002 |
| |
| /* |
| * Only four types for huge pages, using the invalid bit and protection bit |
| * of a segment table entry. |
| */ |
| #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ |
| #define _HPAGE_TYPE_NONE 0x220 |
| #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ |
| #define _HPAGE_TYPE_RW 0x000 |
| |
| /* |
| * PTE type bits are rather complicated. handle_pte_fault uses pte_present, |
| * pte_none and pte_file to find out the pte type WITHOUT holding the page |
| * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to |
| * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs |
| * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. |
| * This change is done while holding the lock, but the intermediate step |
| * of a previously valid pte with the hw invalid bit set can be observed by |
| * handle_pte_fault. That makes it necessary that all valid pte types with |
| * the hw invalid bit set must be distinguishable from the four pte types |
| * empty, none, swap and file. |
| * |
| * irxt ipte irxt |
| * _PAGE_TYPE_EMPTY 1000 -> 1000 |
| * _PAGE_TYPE_NONE 1001 -> 1001 |
| * _PAGE_TYPE_SWAP 1011 -> 1011 |
| * _PAGE_TYPE_FILE 11?1 -> 11?1 |
| * _PAGE_TYPE_RO 0100 -> 1100 |
| * _PAGE_TYPE_RW 0000 -> 1000 |
| * _PAGE_TYPE_EX_RO 0110 -> 1110 |
| * _PAGE_TYPE_EX_RW 0010 -> 1010 |
| * |
| * pte_none is true for bits combinations 1000, 1010, 1100, 1110 |
| * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 |
| * pte_file is true for bits combinations 1101, 1111 |
| * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. |
| */ |
| |
| /* Page status table bits for virtualization */ |
| #define RCP_PCL_BIT 55 |
| #define RCP_HR_BIT 54 |
| #define RCP_HC_BIT 53 |
| #define RCP_GR_BIT 50 |
| #define RCP_GC_BIT 49 |
| |
| /* User dirty bit for KVM's migration feature */ |
| #define KVM_UD_BIT 47 |
| |
| #ifndef __s390x__ |
| |
| /* Bits in the segment table address-space-control-element */ |
| #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ |
| #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ |
| #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ |
| #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ |
| #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ |
| |
| /* Bits in the segment table entry */ |
| #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ |
| #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ |
| #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ |
| #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ |
| |
| #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) |
| #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) |
| |
| #else /* __s390x__ */ |
| |
| /* Bits in the segment/region table address-space-control-element */ |
| #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ |
| #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ |
| #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ |
| #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ |
| #define _ASCE_REAL_SPACE 0x20 /* real space control */ |
| #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ |
| #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ |
| #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ |
| #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ |
| #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ |
| #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ |
| |
| /* Bits in the region table entry */ |
| #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ |
| #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ |
| #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ |
| #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ |
| #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ |
| #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ |
| #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ |
| |
| #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) |
| #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) |
| #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) |
| #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) |
| #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) |
| #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) |
| |
| /* Bits in the segment table entry */ |
| #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ |
| #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ |
| #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ |
| |
| #define _SEGMENT_ENTRY (0) |
| #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) |
| |
| #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ |
| #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ |
| |
| #endif /* __s390x__ */ |
| |
| /* |
| * A user page table pointer has the space-switch-event bit, the |
| * private-space-control bit and the storage-alteration-event-control |
| * bit set. A kernel page table pointer doesn't need them. |
| */ |
| #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ |
| _ASCE_ALT_EVENT) |
| |
| /* Bits int the storage key */ |
| #define _PAGE_CHANGED 0x02 /* HW changed bit */ |
| #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ |
| |
| /* |
| * Page protection definitions. |
| */ |
| #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) |
| #define PAGE_RO __pgprot(_PAGE_TYPE_RO) |
| #define PAGE_RW __pgprot(_PAGE_TYPE_RW) |
| #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO) |
| #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW) |
| |
| #define PAGE_KERNEL PAGE_RW |
| #define PAGE_COPY PAGE_RO |
| |
| /* |
| * Dependent on the EXEC_PROTECT option s390 can do execute protection. |
| * Write permission always implies read permission. In theory with a |
| * primary/secondary page table execute only can be implemented but |
| * it would cost an additional bit in the pte to distinguish all the |
| * different pte types. To avoid that execute permission currently |
| * implies read permission as well. |
| */ |
| /*xwr*/ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_RO |
| #define __P010 PAGE_RO |
| #define __P011 PAGE_RO |
| #define __P100 PAGE_EX_RO |
| #define __P101 PAGE_EX_RO |
| #define __P110 PAGE_EX_RO |
| #define __P111 PAGE_EX_RO |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_RO |
| #define __S010 PAGE_RW |
| #define __S011 PAGE_RW |
| #define __S100 PAGE_EX_RO |
| #define __S101 PAGE_EX_RO |
| #define __S110 PAGE_EX_RW |
| #define __S111 PAGE_EX_RW |
| |
| #ifndef __s390x__ |
| # define PxD_SHADOW_SHIFT 1 |
| #else /* __s390x__ */ |
| # define PxD_SHADOW_SHIFT 2 |
| #endif /* __s390x__ */ |
| |
| static inline void *get_shadow_table(void *table) |
| { |
| unsigned long addr, offset; |
| struct page *page; |
| |
| addr = (unsigned long) table; |
| offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1); |
| page = virt_to_page((void *)(addr ^ offset)); |
| return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL); |
| } |
| |
| /* |
| * Certain architectures need to do special things when PTEs |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t entry) |
| { |
| *ptep = entry; |
| if (mm->context.noexec) { |
| if (!(pte_val(entry) & _PAGE_INVALID) && |
| (pte_val(entry) & _PAGE_SWX)) |
| pte_val(entry) |= _PAGE_RO; |
| else |
| pte_val(entry) = _PAGE_TYPE_EMPTY; |
| ptep[PTRS_PER_PTE] = entry; |
| } |
| } |
| |
| /* |
| * pgd/pmd/pte query functions |
| */ |
| #ifndef __s390x__ |
| |
| static inline int pgd_present(pgd_t pgd) { return 1; } |
| static inline int pgd_none(pgd_t pgd) { return 0; } |
| static inline int pgd_bad(pgd_t pgd) { return 0; } |
| |
| static inline int pud_present(pud_t pud) { return 1; } |
| static inline int pud_none(pud_t pud) { return 0; } |
| static inline int pud_bad(pud_t pud) { return 0; } |
| |
| #else /* __s390x__ */ |
| |
| static inline int pgd_present(pgd_t pgd) |
| { |
| if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) |
| return 1; |
| return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; |
| } |
| |
| static inline int pgd_none(pgd_t pgd) |
| { |
| if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) |
| return 0; |
| return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; |
| } |
| |
| static inline int pgd_bad(pgd_t pgd) |
| { |
| /* |
| * With dynamic page table levels the pgd can be a region table |
| * entry or a segment table entry. Check for the bit that are |
| * invalid for either table entry. |
| */ |
| unsigned long mask = |
| ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & |
| ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; |
| return (pgd_val(pgd) & mask) != 0; |
| } |
| |
| static inline int pud_present(pud_t pud) |
| { |
| if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) |
| return 1; |
| return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; |
| } |
| |
| static inline int pud_none(pud_t pud) |
| { |
| if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) |
| return 0; |
| return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; |
| } |
| |
| static inline int pud_bad(pud_t pud) |
| { |
| /* |
| * With dynamic page table levels the pud can be a region table |
| * entry or a segment table entry. Check for the bit that are |
| * invalid for either table entry. |
| */ |
| unsigned long mask = |
| ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & |
| ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; |
| return (pud_val(pud) & mask) != 0; |
| } |
| |
| #endif /* __s390x__ */ |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL; |
| } |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL; |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; |
| return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; |
| } |
| |
| static inline int pte_none(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); |
| } |
| |
| static inline int pte_present(pte_t pte) |
| { |
| unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; |
| return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || |
| (!(pte_val(pte) & _PAGE_INVALID) && |
| !(pte_val(pte) & _PAGE_SWT)); |
| } |
| |
| static inline int pte_file(pte_t pte) |
| { |
| unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; |
| return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; |
| } |
| |
| static inline int pte_special(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_SPECIAL); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(a,b) (pte_val(a) == pte_val(b)) |
| |
| static inline void rcp_lock(pte_t *ptep) |
| { |
| #ifdef CONFIG_PGSTE |
| unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); |
| preempt_disable(); |
| while (test_and_set_bit(RCP_PCL_BIT, pgste)) |
| ; |
| #endif |
| } |
| |
| static inline void rcp_unlock(pte_t *ptep) |
| { |
| #ifdef CONFIG_PGSTE |
| unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); |
| clear_bit(RCP_PCL_BIT, pgste); |
| preempt_enable(); |
| #endif |
| } |
| |
| /* forward declaration for SetPageUptodate in page-flags.h*/ |
| static inline void page_clear_dirty(struct page *page); |
| #include <linux/page-flags.h> |
| |
| static inline void ptep_rcp_copy(pte_t *ptep) |
| { |
| #ifdef CONFIG_PGSTE |
| struct page *page = virt_to_page(pte_val(*ptep)); |
| unsigned int skey; |
| unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); |
| |
| skey = page_get_storage_key(page_to_phys(page)); |
| if (skey & _PAGE_CHANGED) { |
| set_bit_simple(RCP_GC_BIT, pgste); |
| set_bit_simple(KVM_UD_BIT, pgste); |
| } |
| if (skey & _PAGE_REFERENCED) |
| set_bit_simple(RCP_GR_BIT, pgste); |
| if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) { |
| SetPageDirty(page); |
| set_bit_simple(KVM_UD_BIT, pgste); |
| } |
| if (test_and_clear_bit_simple(RCP_HR_BIT, pgste)) |
| SetPageReferenced(page); |
| #endif |
| } |
| |
| /* |
| * query functions pte_write/pte_dirty/pte_young only work if |
| * pte_present() is true. Undefined behaviour if not.. |
| */ |
| static inline int pte_write(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_RO) == 0; |
| } |
| |
| static inline int pte_dirty(pte_t pte) |
| { |
| /* A pte is neither clean nor dirty on s/390. The dirty bit |
| * is in the storage key. See page_test_and_clear_dirty for |
| * details. |
| */ |
| return 0; |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| /* A pte is neither young nor old on s/390. The young bit |
| * is in the storage key. See page_test_and_clear_young for |
| * details. |
| */ |
| return 0; |
| } |
| |
| /* |
| * pgd/pmd/pte modification functions |
| */ |
| |
| #ifndef __s390x__ |
| |
| #define pgd_clear(pgd) do { } while (0) |
| #define pud_clear(pud) do { } while (0) |
| |
| #else /* __s390x__ */ |
| |
| static inline void pgd_clear_kernel(pgd_t * pgd) |
| { |
| if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) |
| pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; |
| } |
| |
| static inline void pgd_clear(pgd_t * pgd) |
| { |
| pgd_t *shadow = get_shadow_table(pgd); |
| |
| pgd_clear_kernel(pgd); |
| if (shadow) |
| pgd_clear_kernel(shadow); |
| } |
| |
| static inline void pud_clear_kernel(pud_t *pud) |
| { |
| if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) |
| pud_val(*pud) = _REGION3_ENTRY_EMPTY; |
| } |
| |
| static inline void pud_clear(pud_t *pud) |
| { |
| pud_t *shadow = get_shadow_table(pud); |
| |
| pud_clear_kernel(pud); |
| if (shadow) |
| pud_clear_kernel(shadow); |
| } |
| |
| #endif /* __s390x__ */ |
| |
| static inline void pmd_clear_kernel(pmd_t * pmdp) |
| { |
| pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; |
| } |
| |
| static inline void pmd_clear(pmd_t *pmd) |
| { |
| pmd_t *shadow = get_shadow_table(pmd); |
| |
| pmd_clear_kernel(pmd); |
| if (shadow) |
| pmd_clear_kernel(shadow); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| if (mm->context.pgstes) |
| ptep_rcp_copy(ptep); |
| pte_val(*ptep) = _PAGE_TYPE_EMPTY; |
| if (mm->context.noexec) |
| pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY; |
| } |
| |
| /* |
| * The following pte modification functions only work if |
| * pte_present() is true. Undefined behaviour if not.. |
| */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) &= _PAGE_CHG_MASK; |
| pte_val(pte) |= pgprot_val(newprot); |
| return pte; |
| } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| /* Do not clobber _PAGE_TYPE_NONE pages! */ |
| if (!(pte_val(pte) & _PAGE_INVALID)) |
| pte_val(pte) |= _PAGE_RO; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_RO; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| /* The only user of pte_mkclean is the fork() code. |
| We must *not* clear the *physical* page dirty bit |
| just because fork() wants to clear the dirty bit in |
| *one* of the page's mappings. So we just do nothing. */ |
| return pte; |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| /* We do not explicitly set the dirty bit because the |
| * sske instruction is slow. It is faster to let the |
| * next instruction set the dirty bit. |
| */ |
| return pte; |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| /* S/390 doesn't keep its dirty/referenced bit in the pte. |
| * There is no point in clearing the real referenced bit. |
| */ |
| return pte; |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| /* S/390 doesn't keep its dirty/referenced bit in the pte. |
| * There is no point in setting the real referenced bit. |
| */ |
| return pte; |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_SPECIAL; |
| return pte; |
| } |
| |
| #ifdef CONFIG_PGSTE |
| /* |
| * Get (and clear) the user dirty bit for a PTE. |
| */ |
| static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm, |
| pte_t *ptep) |
| { |
| int dirty; |
| unsigned long *pgste; |
| struct page *page; |
| unsigned int skey; |
| |
| if (!mm->context.pgstes) |
| return -EINVAL; |
| rcp_lock(ptep); |
| pgste = (unsigned long *) (ptep + PTRS_PER_PTE); |
| page = virt_to_page(pte_val(*ptep)); |
| skey = page_get_storage_key(page_to_phys(page)); |
| if (skey & _PAGE_CHANGED) { |
| set_bit_simple(RCP_GC_BIT, pgste); |
| set_bit_simple(KVM_UD_BIT, pgste); |
| } |
| if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) { |
| SetPageDirty(page); |
| set_bit_simple(KVM_UD_BIT, pgste); |
| } |
| dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste); |
| if (skey & _PAGE_CHANGED) |
| page_clear_dirty(page); |
| rcp_unlock(ptep); |
| return dirty; |
| } |
| #endif |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_PGSTE |
| unsigned long physpage; |
| int young; |
| unsigned long *pgste; |
| |
| if (!vma->vm_mm->context.pgstes) |
| return 0; |
| physpage = pte_val(*ptep) & PAGE_MASK; |
| pgste = (unsigned long *) (ptep + PTRS_PER_PTE); |
| |
| young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0); |
| rcp_lock(ptep); |
| if (young) |
| set_bit_simple(RCP_GR_BIT, pgste); |
| young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste); |
| rcp_unlock(ptep); |
| return young; |
| #endif |
| return 0; |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| static inline int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| /* No need to flush TLB |
| * On s390 reference bits are in storage key and never in TLB |
| * With virtualization we handle the reference bit, without we |
| * we can simply return */ |
| #ifdef CONFIG_PGSTE |
| return ptep_test_and_clear_young(vma, address, ptep); |
| #endif |
| return 0; |
| } |
| |
| static inline void __ptep_ipte(unsigned long address, pte_t *ptep) |
| { |
| if (!(pte_val(*ptep) & _PAGE_INVALID)) { |
| #ifndef __s390x__ |
| /* pto must point to the start of the segment table */ |
| pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); |
| #else |
| /* ipte in zarch mode can do the math */ |
| pte_t *pto = ptep; |
| #endif |
| asm volatile( |
| " ipte %2,%3" |
| : "=m" (*ptep) : "m" (*ptep), |
| "a" (pto), "a" (address)); |
| } |
| } |
| |
| static inline void ptep_invalidate(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| if (mm->context.pgstes) { |
| rcp_lock(ptep); |
| __ptep_ipte(address, ptep); |
| ptep_rcp_copy(ptep); |
| pte_val(*ptep) = _PAGE_TYPE_EMPTY; |
| rcp_unlock(ptep); |
| return; |
| } |
| __ptep_ipte(address, ptep); |
| pte_val(*ptep) = _PAGE_TYPE_EMPTY; |
| if (mm->context.noexec) { |
| __ptep_ipte(address, ptep + PTRS_PER_PTE); |
| pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY; |
| } |
| } |
| |
| /* |
| * This is hard to understand. ptep_get_and_clear and ptep_clear_flush |
| * both clear the TLB for the unmapped pte. The reason is that |
| * ptep_get_and_clear is used in common code (e.g. change_pte_range) |
| * to modify an active pte. The sequence is |
| * 1) ptep_get_and_clear |
| * 2) set_pte_at |
| * 3) flush_tlb_range |
| * On s390 the tlb needs to get flushed with the modification of the pte |
| * if the pte is active. The only way how this can be implemented is to |
| * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range |
| * is a nop. |
| */ |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define ptep_get_and_clear(__mm, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| if (atomic_read(&(__mm)->mm_users) > 1 || \ |
| (__mm) != current->active_mm) \ |
| ptep_invalidate(__mm, __address, __ptep); \ |
| else \ |
| pte_clear((__mm), (__address), (__ptep)); \ |
| __pte; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| ptep_invalidate(vma->vm_mm, address, ptep); |
| return pte; |
| } |
| |
| /* |
| * The batched pte unmap code uses ptep_get_and_clear_full to clear the |
| * ptes. Here an optimization is possible. tlb_gather_mmu flushes all |
| * tlbs of an mm if it can guarantee that the ptes of the mm_struct |
| * cannot be accessed while the batched unmap is running. In this case |
| * full==1 and a simple pte_clear is enough. See tlb.h. |
| */ |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, int full) |
| { |
| pte_t pte = *ptep; |
| |
| if (full) |
| pte_clear(mm, addr, ptep); |
| else |
| ptep_invalidate(mm, addr, ptep); |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define ptep_set_wrprotect(__mm, __addr, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| if (pte_write(__pte)) { \ |
| if (atomic_read(&(__mm)->mm_users) > 1 || \ |
| (__mm) != current->active_mm) \ |
| ptep_invalidate(__mm, __addr, __ptep); \ |
| set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \ |
| } \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \ |
| ({ \ |
| int __changed = !pte_same(*(__ptep), __entry); \ |
| if (__changed) { \ |
| ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \ |
| set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \ |
| } \ |
| __changed; \ |
| }) |
| |
| /* |
| * Test and clear dirty bit in storage key. |
| * We can't clear the changed bit atomically. This is a potential |
| * race against modification of the referenced bit. This function |
| * should therefore only be called if it is not mapped in any |
| * address space. |
| */ |
| #define __HAVE_ARCH_PAGE_TEST_DIRTY |
| static inline int page_test_dirty(struct page *page) |
| { |
| return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0; |
| } |
| |
| #define __HAVE_ARCH_PAGE_CLEAR_DIRTY |
| static inline void page_clear_dirty(struct page *page) |
| { |
| page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY); |
| } |
| |
| /* |
| * Test and clear referenced bit in storage key. |
| */ |
| #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG |
| static inline int page_test_and_clear_young(struct page *page) |
| { |
| unsigned long physpage = page_to_phys(page); |
| int ccode; |
| |
| asm volatile( |
| " rrbe 0,%1\n" |
| " ipm %0\n" |
| " srl %0,28\n" |
| : "=d" (ccode) : "a" (physpage) : "cc" ); |
| return ccode & 2; |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) |
| { |
| pte_t __pte; |
| pte_val(__pte) = physpage + pgprot_val(pgprot); |
| return __pte; |
| } |
| |
| static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) |
| { |
| unsigned long physpage = page_to_phys(page); |
| |
| return mk_pte_phys(physpage, pgprot); |
| } |
| |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) |
| #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) |
| |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| #ifndef __s390x__ |
| |
| #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) |
| #define pud_deref(pmd) ({ BUG(); 0UL; }) |
| #define pgd_deref(pmd) ({ BUG(); 0UL; }) |
| |
| #define pud_offset(pgd, address) ((pud_t *) pgd) |
| #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) |
| |
| #else /* __s390x__ */ |
| |
| #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) |
| #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) |
| #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) |
| |
| static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) |
| { |
| pud_t *pud = (pud_t *) pgd; |
| if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) |
| pud = (pud_t *) pgd_deref(*pgd); |
| return pud + pud_index(address); |
| } |
| |
| static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) |
| { |
| pmd_t *pmd = (pmd_t *) pud; |
| if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) |
| pmd = (pmd_t *) pud_deref(*pud); |
| return pmd + pmd_index(address); |
| } |
| |
| #endif /* __s390x__ */ |
| |
| #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) |
| #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) |
| |
| /* Find an entry in the lowest level page table.. */ |
| #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) |
| #define pte_offset_kernel(pmd, address) pte_offset(pmd,address) |
| #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) |
| #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| /* |
| * 31 bit swap entry format: |
| * A page-table entry has some bits we have to treat in a special way. |
| * Bits 0, 20 and bit 23 have to be zero, otherwise an specification |
| * exception will occur instead of a page translation exception. The |
| * specifiation exception has the bad habit not to store necessary |
| * information in the lowcore. |
| * Bit 21 and bit 22 are the page invalid bit and the page protection |
| * bit. We set both to indicate a swapped page. |
| * Bit 30 and 31 are used to distinguish the different page types. For |
| * a swapped page these bits need to be zero. |
| * This leaves the bits 1-19 and bits 24-29 to store type and offset. |
| * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 |
| * plus 24 for the offset. |
| * 0| offset |0110|o|type |00| |
| * 0 0000000001111111111 2222 2 22222 33 |
| * 0 1234567890123456789 0123 4 56789 01 |
| * |
| * 64 bit swap entry format: |
| * A page-table entry has some bits we have to treat in a special way. |
| * Bits 52 and bit 55 have to be zero, otherwise an specification |
| * exception will occur instead of a page translation exception. The |
| * specifiation exception has the bad habit not to store necessary |
| * information in the lowcore. |
| * Bit 53 and bit 54 are the page invalid bit and the page protection |
| * bit. We set both to indicate a swapped page. |
| * Bit 62 and 63 are used to distinguish the different page types. For |
| * a swapped page these bits need to be zero. |
| * This leaves the bits 0-51 and bits 56-61 to store type and offset. |
| * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 |
| * plus 56 for the offset. |
| * | offset |0110|o|type |00| |
| * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 |
| * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 |
| */ |
| #ifndef __s390x__ |
| #define __SWP_OFFSET_MASK (~0UL >> 12) |
| #else |
| #define __SWP_OFFSET_MASK (~0UL >> 11) |
| #endif |
| static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) |
| { |
| pte_t pte; |
| offset &= __SWP_OFFSET_MASK; |
| pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | |
| ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); |
| return pte; |
| } |
| |
| #define __swp_type(entry) (((entry).val >> 2) & 0x1f) |
| #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) |
| #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #ifndef __s390x__ |
| # define PTE_FILE_MAX_BITS 26 |
| #else /* __s390x__ */ |
| # define PTE_FILE_MAX_BITS 59 |
| #endif /* __s390x__ */ |
| |
| #define pte_to_pgoff(__pte) \ |
| ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) |
| |
| #define pgoff_to_pte(__off) \ |
| ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ |
| | _PAGE_TYPE_FILE }) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define kern_addr_valid(addr) (1) |
| |
| extern int vmem_add_mapping(unsigned long start, unsigned long size); |
| extern int vmem_remove_mapping(unsigned long start, unsigned long size); |
| extern int s390_enable_sie(void); |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _S390_PAGE_H */ |