blob: 19506f935737d2ee7c27a16d1ecc909cc4b6c518 [file] [log] [blame]
/*
* The file intends to implement the platform dependent EEH operations on pseries.
* Actually, the pseries platform is built based on RTAS heavily. That means the
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
* are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
* been done.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_bridge;
static int ibm_configure_pe;
/*
* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
/**
* pseries_eeh_init - EEH platform dependent initialization
*
* EEH platform dependent initialization on pseries.
*/
static int pseries_eeh_init(void)
{
/* figure out EEH RTAS function call tokens */
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
ibm_configure_pe = rtas_token("ibm,configure-pe");
ibm_configure_bridge = rtas_token("ibm,configure-bridge");
/* necessary sanity check */
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,set-slot-reset> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
"<ibm,read-slot-reset-state> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_get_config_addr_info2 == RTAS_UNKNOWN_SERVICE &&
ibm_get_config_addr_info == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,get-config-addr-info2> and "
"<ibm,get-config-addr-info> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,configure-pe> and "
"<ibm,configure-bridge> invalid\n",
__func__);
return -EINVAL;
}
/* Initialize error log lock and size */
spin_lock_init(&slot_errbuf_lock);
eeh_error_buf_size = rtas_token("rtas-error-log-max");
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: unknown EEH error log size\n",
__func__);
eeh_error_buf_size = 1024;
} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
}
/* Set EEH probe mode */
eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE);
return 0;
}
/**
* pseries_eeh_of_probe - EEH probe on the given device
* @dn: OF node
* @flag: Unused
*
* When EEH module is installed during system boot, all PCI devices
* are checked one by one to see if it supports EEH. The function
* is introduced for the purpose.
*/
static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
{
struct eeh_dev *edev;
struct eeh_pe pe;
const u32 *class_code, *vendor_id, *device_id;
const u32 *regs;
int enable = 0;
int ret;
/* Retrieve OF node and eeh device */
edev = of_node_to_eeh_dev(dn);
if (!of_device_is_available(dn))
return NULL;
/* Retrieve class/vendor/device IDs */
class_code = of_get_property(dn, "class-code", NULL);
vendor_id = of_get_property(dn, "vendor-id", NULL);
device_id = of_get_property(dn, "device-id", NULL);
/* Skip for bad OF node or PCI-ISA bridge */
if (!class_code || !vendor_id || !device_id)
return NULL;
if (dn->type && !strcmp(dn->type, "isa"))
return NULL;
/* Update class code and mode of eeh device */
edev->class_code = *class_code;
edev->mode = 0;
/* Retrieve the device address */
regs = of_get_property(dn, "reg", NULL);
if (!regs) {
pr_warning("%s: OF node property %s::reg not found\n",
__func__, dn->full_name);
return NULL;
}
/* Initialize the fake PE */
memset(&pe, 0, sizeof(struct eeh_pe));
pe.phb = edev->phb;
pe.config_addr = regs[0];
/* Enable EEH on the device */
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
if (!ret) {
edev->config_addr = regs[0];
/* Retrieve PE address */
edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
pe.addr = edev->pe_config_addr;
/* Some older systems (Power4) allow the ibm,set-eeh-option
* call to succeed even on nodes where EEH is not supported.
* Verify support explicitly.
*/
ret = eeh_ops->get_state(&pe, NULL);
if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
enable = 1;
if (enable) {
eeh_subsystem_enabled = 1;
eeh_add_to_parent_pe(edev);
pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
__func__, dn->full_name, pe.phb->global_number,
pe.addr, pe.config_addr);
} else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
(of_node_to_eeh_dev(dn->parent))->pe) {
/* This device doesn't support EEH, but it may have an
* EEH parent, in which case we mark it as supported.
*/
edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
eeh_add_to_parent_pe(edev);
}
}
/* Save memory bars */
eeh_save_bars(edev);
return NULL;
}
/**
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @pe: EEH PE
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
{
int ret = 0;
int config_addr;
/*
* When we're enabling or disabling EEH functioality on
* the particular PE, the PE config address is possibly
* unavailable. Therefore, we have to figure it out from
* the FDT node.
*/
switch (option) {
case EEH_OPT_DISABLE:
case EEH_OPT_ENABLE:
case EEH_OPT_THAW_MMIO:
case EEH_OPT_THAW_DMA:
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
break;
default:
pr_err("%s: Invalid option %d\n",
__func__, option);
return -EINVAL;
}
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), option);
return ret;
}
/**
* pseries_eeh_get_pe_addr - Retrieve PE address
* @pe: EEH PE
*
* Retrieve the assocated PE address. Actually, there're 2 RTAS
* function calls dedicated for the purpose. We need implement
* it through the new function and then the old one. Besides,
* you should make sure the config address is figured out from
* FDT node before calling the function.
*
* It's notable that zero'ed return value means invalid PE config
* address.
*/
static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
{
int ret = 0;
int rets[3];
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/*
* First of all, we need to make sure there has one PE
* associated with the device. Otherwise, PE address is
* meaningless.
*/
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
pe->config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), 1);
if (ret || (rets[0] == 0))
return 0;
/* Retrieve the associated PE config address */
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
pe->config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
__func__, pe->phb->global_number, pe->config_addr);
return 0;
}
return rets[0];
}
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
pe->config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
__func__, pe->phb->global_number, pe->config_addr);
return 0;
}
return rets[0];
}
return ret;
}
/**
* pseries_eeh_get_state - Retrieve PE state
* @pe: EEH PE
* @state: return value
*
* Retrieve the state of the specified PE. On RTAS compliant
* pseries platform, there already has one dedicated RTAS function
* for the purpose. It's notable that the associated PE config address
* might be ready when calling the function. Therefore, endeavour to
* use the PE config address if possible. Further more, there're 2
* RTAS calls for the purpose, we need to try the new one and back
* to the old one if the new one couldn't work properly.
*/
static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
{
int config_addr;
int ret;
int rets[4];
int result;
/* Figure out PE config address if possible */
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
/* Fake PE unavailable info */
rets[2] = 0;
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else {
return EEH_STATE_NOT_SUPPORT;
}
if (ret)
return ret;
/* Parse the result out */
result = 0;
if (rets[1]) {
switch(rets[0]) {
case 0:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 1:
result |= EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 2:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
break;
case 4:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
break;
case 5:
if (rets[2]) {
if (state) *state = rets[2];
result = EEH_STATE_UNAVAILABLE;
} else {
result = EEH_STATE_NOT_SUPPORT;
}
default:
result = EEH_STATE_NOT_SUPPORT;
}
} else {
result = EEH_STATE_NOT_SUPPORT;
}
return result;
}
/**
* pseries_eeh_reset - Reset the specified PE
* @pe: EEH PE
* @option: reset option
*
* Reset the specified PE
*/
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
{
int config_addr;
int ret;
/* Figure out PE address */
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
/* Reset PE through RTAS call */
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), option);
/* If fundamental-reset not supported, try hot-reset */
if (option == EEH_RESET_FUNDAMENTAL &&
ret == -8) {
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid), EEH_RESET_HOT);
}
return ret;
}
/**
* pseries_eeh_wait_state - Wait for PE state
* @pe: EEH PE
* @max_wait: maximal period in microsecond
*
* Wait for the state of associated PE. It might take some time
* to retrieve the PE's state.
*/
static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
{
int ret;
int mwait;
/*
* According to PAPR, the state of PE might be temporarily
* unavailable. Under the circumstance, we have to wait
* for indicated time determined by firmware. The maximal
* wait time is 5 minutes, which is acquired from the original
* EEH implementation. Also, the original implementation
* also defined the minimal wait time as 1 second.
*/
#define EEH_STATE_MIN_WAIT_TIME (1000)
#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
while (1) {
ret = pseries_eeh_get_state(pe, &mwait);
/*
* If the PE's state is temporarily unavailable,
* we have to wait for the specified time. Otherwise,
* the PE's state will be returned immediately.
*/
if (ret != EEH_STATE_UNAVAILABLE)
return ret;
if (max_wait <= 0) {
pr_warning("%s: Timeout when getting PE's state (%d)\n",
__func__, max_wait);
return EEH_STATE_NOT_SUPPORT;
}
if (mwait <= 0) {
pr_warning("%s: Firmware returned bad wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MIN_WAIT_TIME;
} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
pr_warning("%s: Firmware returned too long wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MAX_WAIT_TIME;
}
max_wait -= mwait;
msleep(mwait);
}
return EEH_STATE_NOT_SUPPORT;
}
/**
* pseries_eeh_get_log - Retrieve error log
* @pe: EEH PE
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
* Actually, the error will be retrieved through the dedicated
* RTAS call.
*/
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
{
int config_addr;
unsigned long flags;
int ret;
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
/* Figure out the PE address */
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
virt_to_phys(drv_log), len,
virt_to_phys(slot_errbuf), eeh_error_buf_size,
severity);
if (!ret)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
return ret;
}
/**
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @pe: EEH PE
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
{
int config_addr;
int ret;
/* Figure out the PE address */
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
/* Use new configure-pe function, if supported */
if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
config_addr, BUID_HI(pe->phb->buid),
BUID_LO(pe->phb->buid));
} else {
return -EFAULT;
}
if (ret)
pr_warning("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
__func__, pe->phb->global_number, pe->addr, ret);
return ret;
}
/**
* pseries_eeh_read_config - Read PCI config space
* @dn: device node
* @where: PCI address
* @size: size to read
* @val: return value
*
* Read config space from the speicifed device
*/
static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_read_config(pdn, where, size, val);
}
/**
* pseries_eeh_write_config - Write PCI config space
* @dn: device node
* @where: PCI address
* @size: size to write
* @val: value to be written
*
* Write config space to the specified device
*/
static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_write_config(pdn, where, size, val);
}
static struct eeh_ops pseries_eeh_ops = {
.name = "pseries",
.init = pseries_eeh_init,
.of_probe = pseries_eeh_of_probe,
.dev_probe = NULL,
.set_option = pseries_eeh_set_option,
.get_pe_addr = pseries_eeh_get_pe_addr,
.get_state = pseries_eeh_get_state,
.reset = pseries_eeh_reset,
.wait_state = pseries_eeh_wait_state,
.get_log = pseries_eeh_get_log,
.configure_bridge = pseries_eeh_configure_bridge,
.read_config = pseries_eeh_read_config,
.write_config = pseries_eeh_write_config
};
/**
* eeh_pseries_init - Register platform dependent EEH operations
*
* EEH initialization on pseries platform. This function should be
* called before any EEH related functions.
*/
static int __init eeh_pseries_init(void)
{
int ret = -EINVAL;
if (!machine_is(pseries))
return ret;
ret = eeh_ops_register(&pseries_eeh_ops);
if (!ret)
pr_info("EEH: pSeries platform initialized\n");
else
pr_info("EEH: pSeries platform initialization failure (%d)\n",
ret);
return ret;
}
early_initcall(eeh_pseries_init);