blob: bba66902c83b6ada2e3a475572fa5f7101a05a6b [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
* Christian König
*/
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon_reg.h"
#include "radeon.h"
#include "atom.h"
/*
* IB
* IBs (Indirect Buffers) and areas of GPU accessible memory where
* commands are stored. You can put a pointer to the IB in the
* command ring and the hw will fetch the commands from the IB
* and execute them. Generally userspace acceleration drivers
* produce command buffers which are send to the kernel and
* put in IBs for execution by the requested ring.
*/
static int radeon_debugfs_sa_init(struct radeon_device *rdev);
/**
* radeon_ib_get - request an IB (Indirect Buffer)
*
* @rdev: radeon_device pointer
* @ring: ring index the IB is associated with
* @ib: IB object returned
* @size: requested IB size
*
* Request an IB (all asics). IBs are allocated using the
* suballocator.
* Returns 0 on success, error on failure.
*/
int radeon_ib_get(struct radeon_device *rdev, int ring,
struct radeon_ib *ib, struct radeon_vm *vm,
unsigned size)
{
int i, r;
r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true);
if (r) {
dev_err(rdev->dev, "failed to get a new IB (%d)\n", r);
return r;
}
r = radeon_semaphore_create(rdev, &ib->semaphore);
if (r) {
return r;
}
ib->ring = ring;
ib->fence = NULL;
ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo);
ib->vm = vm;
if (vm) {
/* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address
* space and soffset is the offset inside the pool bo
*/
ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET;
} else {
ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo);
}
ib->is_const_ib = false;
for (i = 0; i < RADEON_NUM_RINGS; ++i)
ib->sync_to[i] = NULL;
return 0;
}
/**
* radeon_ib_free - free an IB (Indirect Buffer)
*
* @rdev: radeon_device pointer
* @ib: IB object to free
*
* Free an IB (all asics).
*/
void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib)
{
radeon_semaphore_free(rdev, &ib->semaphore, ib->fence);
radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence);
radeon_fence_unref(&ib->fence);
}
/**
* radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring
*
* @rdev: radeon_device pointer
* @ib: IB object to schedule
* @const_ib: Const IB to schedule (SI only)
*
* Schedule an IB on the associated ring (all asics).
* Returns 0 on success, error on failure.
*
* On SI, there are two parallel engines fed from the primary ring,
* the CE (Constant Engine) and the DE (Drawing Engine). Since
* resource descriptors have moved to memory, the CE allows you to
* prime the caches while the DE is updating register state so that
* the resource descriptors will be already in cache when the draw is
* processed. To accomplish this, the userspace driver submits two
* IBs, one for the CE and one for the DE. If there is a CE IB (called
* a CONST_IB), it will be put on the ring prior to the DE IB. Prior
* to SI there was just a DE IB.
*/
int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib,
struct radeon_ib *const_ib)
{
struct radeon_ring *ring = &rdev->ring[ib->ring];
bool need_sync = false;
int i, r = 0;
if (!ib->length_dw || !ring->ready) {
/* TODO: Nothings in the ib we should report. */
dev_err(rdev->dev, "couldn't schedule ib\n");
return -EINVAL;
}
/* 64 dwords should be enough for fence too */
r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8);
if (r) {
dev_err(rdev->dev, "scheduling IB failed (%d).\n", r);
return r;
}
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
struct radeon_fence *fence = ib->sync_to[i];
if (radeon_fence_need_sync(fence, ib->ring)) {
need_sync = true;
radeon_semaphore_sync_rings(rdev, ib->semaphore,
fence->ring, ib->ring);
radeon_fence_note_sync(fence, ib->ring);
}
}
/* immediately free semaphore when we don't need to sync */
if (!need_sync) {
radeon_semaphore_free(rdev, &ib->semaphore, NULL);
}
/* if we can't remember our last VM flush then flush now! */
if (ib->vm && !ib->vm->last_flush) {
radeon_ring_vm_flush(rdev, ib->ring, ib->vm);
}
if (const_ib) {
radeon_ring_ib_execute(rdev, const_ib->ring, const_ib);
radeon_semaphore_free(rdev, &const_ib->semaphore, NULL);
}
radeon_ring_ib_execute(rdev, ib->ring, ib);
r = radeon_fence_emit(rdev, &ib->fence, ib->ring);
if (r) {
dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r);
radeon_ring_unlock_undo(rdev, ring);
return r;
}
if (const_ib) {
const_ib->fence = radeon_fence_ref(ib->fence);
}
/* we just flushed the VM, remember that */
if (ib->vm && !ib->vm->last_flush) {
ib->vm->last_flush = radeon_fence_ref(ib->fence);
}
radeon_ring_unlock_commit(rdev, ring);
return 0;
}
/**
* radeon_ib_pool_init - Init the IB (Indirect Buffer) pool
*
* @rdev: radeon_device pointer
*
* Initialize the suballocator to manage a pool of memory
* for use as IBs (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ib_pool_init(struct radeon_device *rdev)
{
int r;
if (rdev->ib_pool_ready) {
return 0;
}
r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo,
RADEON_IB_POOL_SIZE*64*1024,
RADEON_GEM_DOMAIN_GTT);
if (r) {
return r;
}
r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo);
if (r) {
return r;
}
rdev->ib_pool_ready = true;
if (radeon_debugfs_sa_init(rdev)) {
dev_err(rdev->dev, "failed to register debugfs file for SA\n");
}
return 0;
}
/**
* radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool
*
* @rdev: radeon_device pointer
*
* Tear down the suballocator managing the pool of memory
* for use as IBs (all asics).
*/
void radeon_ib_pool_fini(struct radeon_device *rdev)
{
if (rdev->ib_pool_ready) {
radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo);
radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo);
rdev->ib_pool_ready = false;
}
}
/**
* radeon_ib_ring_tests - test IBs on the rings
*
* @rdev: radeon_device pointer
*
* Test an IB (Indirect Buffer) on each ring.
* If the test fails, disable the ring.
* Returns 0 on success, error if the primary GFX ring
* IB test fails.
*/
int radeon_ib_ring_tests(struct radeon_device *rdev)
{
unsigned i;
int r;
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
struct radeon_ring *ring = &rdev->ring[i];
if (!ring->ready)
continue;
r = radeon_ib_test(rdev, i, ring);
if (r) {
ring->ready = false;
if (i == RADEON_RING_TYPE_GFX_INDEX) {
/* oh, oh, that's really bad */
DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r);
rdev->accel_working = false;
return r;
} else {
/* still not good, but we can live with it */
DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r);
}
}
}
return 0;
}
/*
* Rings
* Most engines on the GPU are fed via ring buffers. Ring
* buffers are areas of GPU accessible memory that the host
* writes commands into and the GPU reads commands out of.
* There is a rptr (read pointer) that determines where the
* GPU is currently reading, and a wptr (write pointer)
* which determines where the host has written. When the
* pointers are equal, the ring is idle. When the host
* writes commands to the ring buffer, it increments the
* wptr. The GPU then starts fetching commands and executes
* them until the pointers are equal again.
*/
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
/**
* radeon_ring_write - write a value to the ring
*
* @ring: radeon_ring structure holding ring information
* @v: dword (dw) value to write
*
* Write a value to the requested ring buffer (all asics).
*/
void radeon_ring_write(struct radeon_ring *ring, uint32_t v)
{
#if DRM_DEBUG_CODE
if (ring->count_dw <= 0) {
DRM_ERROR("radeon: writting more dword to ring than expected !\n");
}
#endif
ring->ring[ring->wptr++] = v;
ring->wptr &= ring->ptr_mask;
ring->count_dw--;
ring->ring_free_dw--;
}
/**
* radeon_ring_supports_scratch_reg - check if the ring supports
* writing to scratch registers
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Check if a specific ring supports writing to scratch registers (all asics).
* Returns true if the ring supports writing to scratch regs, false if not.
*/
bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
struct radeon_ring *ring)
{
switch (ring->idx) {
case RADEON_RING_TYPE_GFX_INDEX:
case CAYMAN_RING_TYPE_CP1_INDEX:
case CAYMAN_RING_TYPE_CP2_INDEX:
return true;
default:
return false;
}
}
/**
* radeon_ring_free_size - update the free size
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Update the free dw slots in the ring buffer (all asics).
*/
void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
{
u32 rptr;
if (rdev->wb.enabled)
rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
else
rptr = RREG32(ring->rptr_reg);
ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
/* This works because ring_size is a power of 2 */
ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4));
ring->ring_free_dw -= ring->wptr;
ring->ring_free_dw &= ring->ptr_mask;
if (!ring->ring_free_dw) {
ring->ring_free_dw = ring->ring_size / 4;
}
}
/**
* radeon_ring_alloc - allocate space on the ring buffer
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ndw: number of dwords to allocate in the ring buffer
*
* Allocate @ndw dwords in the ring buffer (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
{
int r;
/* Align requested size with padding so unlock_commit can
* pad safely */
ndw = (ndw + ring->align_mask) & ~ring->align_mask;
while (ndw > (ring->ring_free_dw - 1)) {
radeon_ring_free_size(rdev, ring);
if (ndw < ring->ring_free_dw) {
break;
}
r = radeon_fence_wait_next_locked(rdev, ring->idx);
if (r)
return r;
}
ring->count_dw = ndw;
ring->wptr_old = ring->wptr;
return 0;
}
/**
* radeon_ring_lock - lock the ring and allocate space on it
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ndw: number of dwords to allocate in the ring buffer
*
* Lock the ring and allocate @ndw dwords in the ring buffer
* (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
{
int r;
mutex_lock(&rdev->ring_lock);
r = radeon_ring_alloc(rdev, ring, ndw);
if (r) {
mutex_unlock(&rdev->ring_lock);
return r;
}
return 0;
}
/**
* radeon_ring_commit - tell the GPU to execute the new
* commands on the ring buffer
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Update the wptr (write pointer) to tell the GPU to
* execute new commands on the ring buffer (all asics).
*/
void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring)
{
/* We pad to match fetch size */
while (ring->wptr & ring->align_mask) {
radeon_ring_write(ring, ring->nop);
}
DRM_MEMORYBARRIER();
WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask);
(void)RREG32(ring->wptr_reg);
}
/**
* radeon_ring_unlock_commit - tell the GPU to execute the new
* commands on the ring buffer and unlock it
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Call radeon_ring_commit() then unlock the ring (all asics).
*/
void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring)
{
radeon_ring_commit(rdev, ring);
mutex_unlock(&rdev->ring_lock);
}
/**
* radeon_ring_undo - reset the wptr
*
* @ring: radeon_ring structure holding ring information
*
* Reset the driver's copy of the wtpr (all asics).
*/
void radeon_ring_undo(struct radeon_ring *ring)
{
ring->wptr = ring->wptr_old;
}
/**
* radeon_ring_unlock_undo - reset the wptr and unlock the ring
*
* @ring: radeon_ring structure holding ring information
*
* Call radeon_ring_undo() then unlock the ring (all asics).
*/
void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
{
radeon_ring_undo(ring);
mutex_unlock(&rdev->ring_lock);
}
/**
* radeon_ring_force_activity - add some nop packets to the ring
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Add some nop packets to the ring to force activity (all asics).
* Used for lockup detection to see if the rptr is advancing.
*/
void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring)
{
int r;
radeon_ring_free_size(rdev, ring);
if (ring->rptr == ring->wptr) {
r = radeon_ring_alloc(rdev, ring, 1);
if (!r) {
radeon_ring_write(ring, ring->nop);
radeon_ring_commit(rdev, ring);
}
}
}
/**
* radeon_ring_force_activity - update lockup variables
*
* @ring: radeon_ring structure holding ring information
*
* Update the last rptr value and timestamp (all asics).
*/
void radeon_ring_lockup_update(struct radeon_ring *ring)
{
ring->last_rptr = ring->rptr;
ring->last_activity = jiffies;
}
/**
* radeon_ring_test_lockup() - check if ring is lockedup by recording information
* @rdev: radeon device structure
* @ring: radeon_ring structure holding ring information
*
* We don't need to initialize the lockup tracking information as we will either
* have CP rptr to a different value of jiffies wrap around which will force
* initialization of the lockup tracking informations.
*
* A possible false positivie is if we get call after while and last_cp_rptr ==
* the current CP rptr, even if it's unlikely it might happen. To avoid this
* if the elapsed time since last call is bigger than 2 second than we return
* false and update the tracking information. Due to this the caller must call
* radeon_ring_test_lockup several time in less than 2sec for lockup to be reported
* the fencing code should be cautious about that.
*
* Caller should write to the ring to force CP to do something so we don't get
* false positive when CP is just gived nothing to do.
*
**/
bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
unsigned long cjiffies, elapsed;
uint32_t rptr;
cjiffies = jiffies;
if (!time_after(cjiffies, ring->last_activity)) {
/* likely a wrap around */
radeon_ring_lockup_update(ring);
return false;
}
rptr = RREG32(ring->rptr_reg);
ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
if (ring->rptr != ring->last_rptr) {
/* CP is still working no lockup */
radeon_ring_lockup_update(ring);
return false;
}
elapsed = jiffies_to_msecs(cjiffies - ring->last_activity);
if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed);
return true;
}
/* give a chance to the GPU ... */
return false;
}
/**
* radeon_ring_backup - Back up the content of a ring
*
* @rdev: radeon_device pointer
* @ring: the ring we want to back up
*
* Saves all unprocessed commits from a ring, returns the number of dwords saved.
*/
unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
uint32_t **data)
{
unsigned size, ptr, i;
/* just in case lock the ring */
mutex_lock(&rdev->ring_lock);
*data = NULL;
if (ring->ring_obj == NULL) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* it doesn't make sense to save anything if all fences are signaled */
if (!radeon_fence_count_emitted(rdev, ring->idx)) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* calculate the number of dw on the ring */
if (ring->rptr_save_reg)
ptr = RREG32(ring->rptr_save_reg);
else if (rdev->wb.enabled)
ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
else {
/* no way to read back the next rptr */
mutex_unlock(&rdev->ring_lock);
return 0;
}
size = ring->wptr + (ring->ring_size / 4);
size -= ptr;
size &= ring->ptr_mask;
if (size == 0) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* and then save the content of the ring */
*data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
if (!*data) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
for (i = 0; i < size; ++i) {
(*data)[i] = ring->ring[ptr++];
ptr &= ring->ptr_mask;
}
mutex_unlock(&rdev->ring_lock);
return size;
}
/**
* radeon_ring_restore - append saved commands to the ring again
*
* @rdev: radeon_device pointer
* @ring: ring to append commands to
* @size: number of dwords we want to write
* @data: saved commands
*
* Allocates space on the ring and restore the previously saved commands.
*/
int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
unsigned size, uint32_t *data)
{
int i, r;
if (!size || !data)
return 0;
/* restore the saved ring content */
r = radeon_ring_lock(rdev, ring, size);
if (r)
return r;
for (i = 0; i < size; ++i) {
radeon_ring_write(ring, data[i]);
}
radeon_ring_unlock_commit(rdev, ring);
kfree(data);
return 0;
}
/**
* radeon_ring_init - init driver ring struct.
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ring_size: size of the ring
* @rptr_offs: offset of the rptr writeback location in the WB buffer
* @rptr_reg: MMIO offset of the rptr register
* @wptr_reg: MMIO offset of the wptr register
* @ptr_reg_shift: bit offset of the rptr/wptr values
* @ptr_reg_mask: bit mask of the rptr/wptr values
* @nop: nop packet for this ring
*
* Initialize the driver information for the selected ring (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg,
u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop)
{
int r;
ring->ring_size = ring_size;
ring->rptr_offs = rptr_offs;
ring->rptr_reg = rptr_reg;
ring->wptr_reg = wptr_reg;
ring->ptr_reg_shift = ptr_reg_shift;
ring->ptr_reg_mask = ptr_reg_mask;
ring->nop = nop;
/* Allocate ring buffer */
if (ring->ring_obj == NULL) {
r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_GTT,
NULL, &ring->ring_obj);
if (r) {
dev_err(rdev->dev, "(%d) ring create failed\n", r);
return r;
}
r = radeon_bo_reserve(ring->ring_obj, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
&ring->gpu_addr);
if (r) {
radeon_bo_unreserve(ring->ring_obj);
dev_err(rdev->dev, "(%d) ring pin failed\n", r);
return r;
}
r = radeon_bo_kmap(ring->ring_obj,
(void **)&ring->ring);
radeon_bo_unreserve(ring->ring_obj);
if (r) {
dev_err(rdev->dev, "(%d) ring map failed\n", r);
return r;
}
}
ring->ptr_mask = (ring->ring_size / 4) - 1;
ring->ring_free_dw = ring->ring_size / 4;
if (rdev->wb.enabled) {
u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
}
if (radeon_debugfs_ring_init(rdev, ring)) {
DRM_ERROR("Failed to register debugfs file for rings !\n");
}
radeon_ring_lockup_update(ring);
return 0;
}
/**
* radeon_ring_fini - tear down the driver ring struct.
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Tear down the driver information for the selected ring (all asics).
*/
void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
{
int r;
struct radeon_bo *ring_obj;
mutex_lock(&rdev->ring_lock);
ring_obj = ring->ring_obj;
ring->ready = false;
ring->ring = NULL;
ring->ring_obj = NULL;
mutex_unlock(&rdev->ring_lock);
if (ring_obj) {
r = radeon_bo_reserve(ring_obj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(ring_obj);
radeon_bo_unpin(ring_obj);
radeon_bo_unreserve(ring_obj);
}
radeon_bo_unref(&ring_obj);
}
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
int ridx = *(int*)node->info_ent->data;
struct radeon_ring *ring = &rdev->ring[ridx];
unsigned count, i, j;
radeon_ring_free_size(rdev, ring);
count = (ring->ring_size / 4) - ring->ring_free_dw;
seq_printf(m, "wptr(0x%04x): 0x%08x\n", ring->wptr_reg, RREG32(ring->wptr_reg));
seq_printf(m, "rptr(0x%04x): 0x%08x\n", ring->rptr_reg, RREG32(ring->rptr_reg));
if (ring->rptr_save_reg) {
seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
RREG32(ring->rptr_save_reg));
}
seq_printf(m, "driver's copy of the wptr: 0x%08x\n", ring->wptr);
seq_printf(m, "driver's copy of the rptr: 0x%08x\n", ring->rptr);
seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
seq_printf(m, "%u dwords in ring\n", count);
i = ring->rptr;
for (j = 0; j <= count; j++) {
seq_printf(m, "r[%04d]=0x%08x\n", i, ring->ring[i]);
i = (i + 1) & ring->ptr_mask;
}
return 0;
}
static int radeon_ring_type_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
static int cayman_ring_type_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
static int cayman_ring_type_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
static struct drm_info_list radeon_debugfs_ring_info_list[] = {
{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_ring_type_gfx_index},
{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp1_index},
{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp2_index},
};
static int radeon_debugfs_sa_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m);
return 0;
}
static struct drm_info_list radeon_debugfs_sa_list[] = {
{"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL},
};
#endif
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
{
#if defined(CONFIG_DEBUG_FS)
unsigned i;
for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
unsigned r;
if (&rdev->ring[ridx] != ring)
continue;
r = radeon_debugfs_add_files(rdev, info, 1);
if (r)
return r;
}
#endif
return 0;
}
static int radeon_debugfs_sa_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1);
#else
return 0;
#endif
}