| /* |
| * Copyright (c) 2008-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include "ath9k.h" |
| #include "ar9003_mac.h" |
| |
| #define BITS_PER_BYTE 8 |
| #define OFDM_PLCP_BITS 22 |
| #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) |
| #define L_STF 8 |
| #define L_LTF 8 |
| #define L_SIG 4 |
| #define HT_SIG 8 |
| #define HT_STF 4 |
| #define HT_LTF(_ns) (4 * (_ns)) |
| #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ |
| #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ |
| #define TIME_SYMBOLS(t) ((t) >> 2) |
| #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) |
| #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) |
| #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) |
| |
| |
| static u16 bits_per_symbol[][2] = { |
| /* 20MHz 40MHz */ |
| { 26, 54 }, /* 0: BPSK */ |
| { 52, 108 }, /* 1: QPSK 1/2 */ |
| { 78, 162 }, /* 2: QPSK 3/4 */ |
| { 104, 216 }, /* 3: 16-QAM 1/2 */ |
| { 156, 324 }, /* 4: 16-QAM 3/4 */ |
| { 208, 432 }, /* 5: 64-QAM 2/3 */ |
| { 234, 486 }, /* 6: 64-QAM 3/4 */ |
| { 260, 540 }, /* 7: 64-QAM 5/6 */ |
| }; |
| |
| #define IS_HT_RATE(_rate) ((_rate) & 0x80) |
| |
| static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid, struct sk_buff *skb); |
| static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, |
| int tx_flags, struct ath_txq *txq); |
| static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_txq *txq, struct list_head *bf_q, |
| struct ath_tx_status *ts, int txok); |
| static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, |
| struct list_head *head, bool internal); |
| static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_tx_status *ts, int nframes, int nbad, |
| int txok); |
| static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, |
| int seqno); |
| static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, |
| struct ath_txq *txq, |
| struct ath_atx_tid *tid, |
| struct sk_buff *skb); |
| |
| enum { |
| MCS_HT20, |
| MCS_HT20_SGI, |
| MCS_HT40, |
| MCS_HT40_SGI, |
| }; |
| |
| /*********************/ |
| /* Aggregation logic */ |
| /*********************/ |
| |
| void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) |
| __acquires(&txq->axq_lock) |
| { |
| spin_lock_bh(&txq->axq_lock); |
| } |
| |
| void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) |
| __releases(&txq->axq_lock) |
| { |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| |
| void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) |
| __releases(&txq->axq_lock) |
| { |
| struct sk_buff_head q; |
| struct sk_buff *skb; |
| |
| __skb_queue_head_init(&q); |
| skb_queue_splice_init(&txq->complete_q, &q); |
| spin_unlock_bh(&txq->axq_lock); |
| |
| while ((skb = __skb_dequeue(&q))) |
| ieee80211_tx_status(sc->hw, skb); |
| } |
| |
| static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) |
| { |
| struct ath_atx_ac *ac = tid->ac; |
| |
| if (tid->paused) |
| return; |
| |
| if (tid->sched) |
| return; |
| |
| tid->sched = true; |
| list_add_tail(&tid->list, &ac->tid_q); |
| |
| if (ac->sched) |
| return; |
| |
| ac->sched = true; |
| list_add_tail(&ac->list, &txq->axq_acq); |
| } |
| |
| static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| { |
| struct ath_txq *txq = tid->ac->txq; |
| |
| WARN_ON(!tid->paused); |
| |
| ath_txq_lock(sc, txq); |
| tid->paused = false; |
| |
| if (skb_queue_empty(&tid->buf_q)) |
| goto unlock; |
| |
| ath_tx_queue_tid(txq, tid); |
| ath_txq_schedule(sc, txq); |
| unlock: |
| ath_txq_unlock_complete(sc, txq); |
| } |
| |
| static struct ath_frame_info *get_frame_info(struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| BUILD_BUG_ON(sizeof(struct ath_frame_info) > |
| sizeof(tx_info->rate_driver_data)); |
| return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; |
| } |
| |
| static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) |
| { |
| ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, |
| seqno << IEEE80211_SEQ_SEQ_SHIFT); |
| } |
| |
| static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| { |
| struct ath_txq *txq = tid->ac->txq; |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| struct list_head bf_head; |
| struct ath_tx_status ts; |
| struct ath_frame_info *fi; |
| bool sendbar = false; |
| |
| INIT_LIST_HEAD(&bf_head); |
| |
| memset(&ts, 0, sizeof(ts)); |
| |
| while ((skb = __skb_dequeue(&tid->buf_q))) { |
| fi = get_frame_info(skb); |
| bf = fi->bf; |
| |
| if (!bf) { |
| bf = ath_tx_setup_buffer(sc, txq, tid, skb); |
| if (!bf) { |
| ieee80211_free_txskb(sc->hw, skb); |
| continue; |
| } |
| } |
| |
| if (fi->retries) { |
| list_add_tail(&bf->list, &bf_head); |
| ath_tx_update_baw(sc, tid, bf->bf_state.seqno); |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); |
| sendbar = true; |
| } else { |
| ath_tx_send_normal(sc, txq, NULL, skb); |
| } |
| } |
| |
| if (tid->baw_head == tid->baw_tail) { |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->state &= ~AGGR_CLEANUP; |
| } |
| |
| if (sendbar) { |
| ath_txq_unlock(sc, txq); |
| ath_send_bar(tid, tid->seq_start); |
| ath_txq_lock(sc, txq); |
| } |
| } |
| |
| static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, |
| int seqno) |
| { |
| int index, cindex; |
| |
| index = ATH_BA_INDEX(tid->seq_start, seqno); |
| cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| |
| __clear_bit(cindex, tid->tx_buf); |
| |
| while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { |
| INCR(tid->seq_start, IEEE80211_SEQ_MAX); |
| INCR(tid->baw_head, ATH_TID_MAX_BUFS); |
| if (tid->bar_index >= 0) |
| tid->bar_index--; |
| } |
| } |
| |
| static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, |
| u16 seqno) |
| { |
| int index, cindex; |
| |
| index = ATH_BA_INDEX(tid->seq_start, seqno); |
| cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| __set_bit(cindex, tid->tx_buf); |
| |
| if (index >= ((tid->baw_tail - tid->baw_head) & |
| (ATH_TID_MAX_BUFS - 1))) { |
| tid->baw_tail = cindex; |
| INCR(tid->baw_tail, ATH_TID_MAX_BUFS); |
| } |
| } |
| |
| /* |
| * TODO: For frame(s) that are in the retry state, we will reuse the |
| * sequence number(s) without setting the retry bit. The |
| * alternative is to give up on these and BAR the receiver's window |
| * forward. |
| */ |
| static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid) |
| |
| { |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| struct list_head bf_head; |
| struct ath_tx_status ts; |
| struct ath_frame_info *fi; |
| |
| memset(&ts, 0, sizeof(ts)); |
| INIT_LIST_HEAD(&bf_head); |
| |
| while ((skb = __skb_dequeue(&tid->buf_q))) { |
| fi = get_frame_info(skb); |
| bf = fi->bf; |
| |
| if (!bf) { |
| ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); |
| continue; |
| } |
| |
| list_add_tail(&bf->list, &bf_head); |
| |
| if (fi->retries) |
| ath_tx_update_baw(sc, tid, bf->bf_state.seqno); |
| |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); |
| } |
| |
| tid->seq_next = tid->seq_start; |
| tid->baw_tail = tid->baw_head; |
| tid->bar_index = -1; |
| } |
| |
| static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, |
| struct sk_buff *skb, int count) |
| { |
| struct ath_frame_info *fi = get_frame_info(skb); |
| struct ath_buf *bf = fi->bf; |
| struct ieee80211_hdr *hdr; |
| int prev = fi->retries; |
| |
| TX_STAT_INC(txq->axq_qnum, a_retries); |
| fi->retries += count; |
| |
| if (prev > 0) |
| return; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); |
| dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, |
| sizeof(*hdr), DMA_TO_DEVICE); |
| } |
| |
| static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) |
| { |
| struct ath_buf *bf = NULL; |
| |
| spin_lock_bh(&sc->tx.txbuflock); |
| |
| if (unlikely(list_empty(&sc->tx.txbuf))) { |
| spin_unlock_bh(&sc->tx.txbuflock); |
| return NULL; |
| } |
| |
| bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); |
| list_del(&bf->list); |
| |
| spin_unlock_bh(&sc->tx.txbuflock); |
| |
| return bf; |
| } |
| |
| static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| spin_lock_bh(&sc->tx.txbuflock); |
| list_add_tail(&bf->list, &sc->tx.txbuf); |
| spin_unlock_bh(&sc->tx.txbuflock); |
| } |
| |
| static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| struct ath_buf *tbf; |
| |
| tbf = ath_tx_get_buffer(sc); |
| if (WARN_ON(!tbf)) |
| return NULL; |
| |
| ATH_TXBUF_RESET(tbf); |
| |
| tbf->bf_mpdu = bf->bf_mpdu; |
| tbf->bf_buf_addr = bf->bf_buf_addr; |
| memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); |
| tbf->bf_state = bf->bf_state; |
| |
| return tbf; |
| } |
| |
| static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_tx_status *ts, int txok, |
| int *nframes, int *nbad) |
| { |
| struct ath_frame_info *fi; |
| u16 seq_st = 0; |
| u32 ba[WME_BA_BMP_SIZE >> 5]; |
| int ba_index; |
| int isaggr = 0; |
| |
| *nbad = 0; |
| *nframes = 0; |
| |
| isaggr = bf_isaggr(bf); |
| if (isaggr) { |
| seq_st = ts->ts_seqnum; |
| memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); |
| } |
| |
| while (bf) { |
| fi = get_frame_info(bf->bf_mpdu); |
| ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); |
| |
| (*nframes)++; |
| if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) |
| (*nbad)++; |
| |
| bf = bf->bf_next; |
| } |
| } |
| |
| |
| static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_buf *bf, struct list_head *bf_q, |
| struct ath_tx_status *ts, int txok, bool retry) |
| { |
| struct ath_node *an = NULL; |
| struct sk_buff *skb; |
| struct ieee80211_sta *sta; |
| struct ieee80211_hw *hw = sc->hw; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_tx_info *tx_info; |
| struct ath_atx_tid *tid = NULL; |
| struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; |
| struct list_head bf_head; |
| struct sk_buff_head bf_pending; |
| u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; |
| u32 ba[WME_BA_BMP_SIZE >> 5]; |
| int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; |
| bool rc_update = true; |
| struct ieee80211_tx_rate rates[4]; |
| struct ath_frame_info *fi; |
| int nframes; |
| u8 tidno; |
| bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); |
| int i, retries; |
| int bar_index = -1; |
| |
| skb = bf->bf_mpdu; |
| hdr = (struct ieee80211_hdr *)skb->data; |
| |
| tx_info = IEEE80211_SKB_CB(skb); |
| |
| memcpy(rates, tx_info->control.rates, sizeof(rates)); |
| |
| retries = ts->ts_longretry + 1; |
| for (i = 0; i < ts->ts_rateindex; i++) |
| retries += rates[i].count; |
| |
| rcu_read_lock(); |
| |
| sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); |
| if (!sta) { |
| rcu_read_unlock(); |
| |
| INIT_LIST_HEAD(&bf_head); |
| while (bf) { |
| bf_next = bf->bf_next; |
| |
| if (!bf->bf_stale || bf_next != NULL) |
| list_move_tail(&bf->list, &bf_head); |
| |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); |
| |
| bf = bf_next; |
| } |
| return; |
| } |
| |
| an = (struct ath_node *)sta->drv_priv; |
| tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; |
| tid = ATH_AN_2_TID(an, tidno); |
| seq_first = tid->seq_start; |
| |
| /* |
| * The hardware occasionally sends a tx status for the wrong TID. |
| * In this case, the BA status cannot be considered valid and all |
| * subframes need to be retransmitted |
| */ |
| if (tidno != ts->tid) |
| txok = false; |
| |
| isaggr = bf_isaggr(bf); |
| memset(ba, 0, WME_BA_BMP_SIZE >> 3); |
| |
| if (isaggr && txok) { |
| if (ts->ts_flags & ATH9K_TX_BA) { |
| seq_st = ts->ts_seqnum; |
| memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); |
| } else { |
| /* |
| * AR5416 can become deaf/mute when BA |
| * issue happens. Chip needs to be reset. |
| * But AP code may have sychronization issues |
| * when perform internal reset in this routine. |
| * Only enable reset in STA mode for now. |
| */ |
| if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) |
| needreset = 1; |
| } |
| } |
| |
| __skb_queue_head_init(&bf_pending); |
| |
| ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); |
| while (bf) { |
| u16 seqno = bf->bf_state.seqno; |
| |
| txfail = txpending = sendbar = 0; |
| bf_next = bf->bf_next; |
| |
| skb = bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| fi = get_frame_info(skb); |
| |
| if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { |
| /* transmit completion, subframe is |
| * acked by block ack */ |
| acked_cnt++; |
| } else if (!isaggr && txok) { |
| /* transmit completion */ |
| acked_cnt++; |
| } else if ((tid->state & AGGR_CLEANUP) || !retry) { |
| /* |
| * cleanup in progress, just fail |
| * the un-acked sub-frames |
| */ |
| txfail = 1; |
| } else if (flush) { |
| txpending = 1; |
| } else if (fi->retries < ATH_MAX_SW_RETRIES) { |
| if (txok || !an->sleeping) |
| ath_tx_set_retry(sc, txq, bf->bf_mpdu, |
| retries); |
| |
| txpending = 1; |
| } else { |
| txfail = 1; |
| txfail_cnt++; |
| bar_index = max_t(int, bar_index, |
| ATH_BA_INDEX(seq_first, seqno)); |
| } |
| |
| /* |
| * Make sure the last desc is reclaimed if it |
| * not a holding desc. |
| */ |
| INIT_LIST_HEAD(&bf_head); |
| if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) || |
| bf_next != NULL || !bf_last->bf_stale) |
| list_move_tail(&bf->list, &bf_head); |
| |
| if (!txpending || (tid->state & AGGR_CLEANUP)) { |
| /* |
| * complete the acked-ones/xretried ones; update |
| * block-ack window |
| */ |
| ath_tx_update_baw(sc, tid, seqno); |
| |
| if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { |
| memcpy(tx_info->control.rates, rates, sizeof(rates)); |
| ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); |
| rc_update = false; |
| } |
| |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, |
| !txfail); |
| } else { |
| /* retry the un-acked ones */ |
| if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) && |
| bf->bf_next == NULL && bf_last->bf_stale) { |
| struct ath_buf *tbf; |
| |
| tbf = ath_clone_txbuf(sc, bf_last); |
| /* |
| * Update tx baw and complete the |
| * frame with failed status if we |
| * run out of tx buf. |
| */ |
| if (!tbf) { |
| ath_tx_update_baw(sc, tid, seqno); |
| |
| ath_tx_complete_buf(sc, bf, txq, |
| &bf_head, ts, 0); |
| bar_index = max_t(int, bar_index, |
| ATH_BA_INDEX(seq_first, seqno)); |
| break; |
| } |
| |
| fi->bf = tbf; |
| } |
| |
| /* |
| * Put this buffer to the temporary pending |
| * queue to retain ordering |
| */ |
| __skb_queue_tail(&bf_pending, skb); |
| } |
| |
| bf = bf_next; |
| } |
| |
| /* prepend un-acked frames to the beginning of the pending frame queue */ |
| if (!skb_queue_empty(&bf_pending)) { |
| if (an->sleeping) |
| ieee80211_sta_set_buffered(sta, tid->tidno, true); |
| |
| skb_queue_splice(&bf_pending, &tid->buf_q); |
| if (!an->sleeping) { |
| ath_tx_queue_tid(txq, tid); |
| |
| if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) |
| tid->ac->clear_ps_filter = true; |
| } |
| } |
| |
| if (bar_index >= 0) { |
| u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); |
| |
| if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) |
| tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); |
| |
| ath_txq_unlock(sc, txq); |
| ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); |
| ath_txq_lock(sc, txq); |
| } |
| |
| if (tid->state & AGGR_CLEANUP) |
| ath_tx_flush_tid(sc, tid); |
| |
| rcu_read_unlock(); |
| |
| if (needreset) |
| ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); |
| } |
| |
| static bool ath_lookup_legacy(struct ath_buf *bf) |
| { |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ieee80211_tx_rate *rates; |
| int i; |
| |
| skb = bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| rates = tx_info->control.rates; |
| |
| for (i = 0; i < 4; i++) { |
| if (!rates[i].count || rates[i].idx < 0) |
| break; |
| |
| if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_atx_tid *tid) |
| { |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ieee80211_tx_rate *rates; |
| u32 max_4ms_framelen, frmlen; |
| u16 aggr_limit, bt_aggr_limit, legacy = 0; |
| int q = tid->ac->txq->mac80211_qnum; |
| int i; |
| |
| skb = bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| rates = tx_info->control.rates; |
| |
| /* |
| * Find the lowest frame length among the rate series that will have a |
| * 4ms (or TXOP limited) transmit duration. |
| */ |
| max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; |
| |
| for (i = 0; i < 4; i++) { |
| int modeidx; |
| |
| if (!rates[i].count) |
| continue; |
| |
| if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { |
| legacy = 1; |
| break; |
| } |
| |
| if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) |
| modeidx = MCS_HT40; |
| else |
| modeidx = MCS_HT20; |
| |
| if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) |
| modeidx++; |
| |
| frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; |
| max_4ms_framelen = min(max_4ms_framelen, frmlen); |
| } |
| |
| /* |
| * limit aggregate size by the minimum rate if rate selected is |
| * not a probe rate, if rate selected is a probe rate then |
| * avoid aggregation of this packet. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) |
| return 0; |
| |
| aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); |
| |
| /* |
| * Override the default aggregation limit for BTCOEX. |
| */ |
| bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); |
| if (bt_aggr_limit) |
| aggr_limit = bt_aggr_limit; |
| |
| /* |
| * h/w can accept aggregates up to 16 bit lengths (65535). |
| * The IE, however can hold up to 65536, which shows up here |
| * as zero. Ignore 65536 since we are constrained by hw. |
| */ |
| if (tid->an->maxampdu) |
| aggr_limit = min(aggr_limit, tid->an->maxampdu); |
| |
| return aggr_limit; |
| } |
| |
| /* |
| * Returns the number of delimiters to be added to |
| * meet the minimum required mpdudensity. |
| */ |
| static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, |
| struct ath_buf *bf, u16 frmlen, |
| bool first_subfrm) |
| { |
| #define FIRST_DESC_NDELIMS 60 |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| u32 nsymbits, nsymbols; |
| u16 minlen; |
| u8 flags, rix; |
| int width, streams, half_gi, ndelim, mindelim; |
| struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); |
| |
| /* Select standard number of delimiters based on frame length alone */ |
| ndelim = ATH_AGGR_GET_NDELIM(frmlen); |
| |
| /* |
| * If encryption enabled, hardware requires some more padding between |
| * subframes. |
| * TODO - this could be improved to be dependent on the rate. |
| * The hardware can keep up at lower rates, but not higher rates |
| */ |
| if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && |
| !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) |
| ndelim += ATH_AGGR_ENCRYPTDELIM; |
| |
| /* |
| * Add delimiter when using RTS/CTS with aggregation |
| * and non enterprise AR9003 card |
| */ |
| if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && |
| (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) |
| ndelim = max(ndelim, FIRST_DESC_NDELIMS); |
| |
| /* |
| * Convert desired mpdu density from microeconds to bytes based |
| * on highest rate in rate series (i.e. first rate) to determine |
| * required minimum length for subframe. Take into account |
| * whether high rate is 20 or 40Mhz and half or full GI. |
| * |
| * If there is no mpdu density restriction, no further calculation |
| * is needed. |
| */ |
| |
| if (tid->an->mpdudensity == 0) |
| return ndelim; |
| |
| rix = tx_info->control.rates[0].idx; |
| flags = tx_info->control.rates[0].flags; |
| width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; |
| half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; |
| |
| if (half_gi) |
| nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); |
| else |
| nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); |
| |
| if (nsymbols == 0) |
| nsymbols = 1; |
| |
| streams = HT_RC_2_STREAMS(rix); |
| nsymbits = bits_per_symbol[rix % 8][width] * streams; |
| minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; |
| |
| if (frmlen < minlen) { |
| mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; |
| ndelim = max(mindelim, ndelim); |
| } |
| |
| return ndelim; |
| } |
| |
| static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, |
| struct ath_txq *txq, |
| struct ath_atx_tid *tid, |
| struct list_head *bf_q, |
| int *aggr_len) |
| { |
| #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) |
| struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL; |
| int rl = 0, nframes = 0, ndelim, prev_al = 0; |
| u16 aggr_limit = 0, al = 0, bpad = 0, |
| al_delta, h_baw = tid->baw_size / 2; |
| enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; |
| struct ieee80211_tx_info *tx_info; |
| struct ath_frame_info *fi; |
| struct sk_buff *skb; |
| u16 seqno; |
| |
| do { |
| skb = skb_peek(&tid->buf_q); |
| fi = get_frame_info(skb); |
| bf = fi->bf; |
| if (!fi->bf) |
| bf = ath_tx_setup_buffer(sc, txq, tid, skb); |
| |
| if (!bf) { |
| __skb_unlink(skb, &tid->buf_q); |
| ieee80211_free_txskb(sc->hw, skb); |
| continue; |
| } |
| |
| bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; |
| seqno = bf->bf_state.seqno; |
| |
| /* do not step over block-ack window */ |
| if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { |
| status = ATH_AGGR_BAW_CLOSED; |
| break; |
| } |
| |
| if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { |
| struct ath_tx_status ts = {}; |
| struct list_head bf_head; |
| |
| INIT_LIST_HEAD(&bf_head); |
| list_add(&bf->list, &bf_head); |
| __skb_unlink(skb, &tid->buf_q); |
| ath_tx_update_baw(sc, tid, seqno); |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); |
| continue; |
| } |
| |
| if (!bf_first) |
| bf_first = bf; |
| |
| if (!rl) { |
| aggr_limit = ath_lookup_rate(sc, bf, tid); |
| rl = 1; |
| } |
| |
| /* do not exceed aggregation limit */ |
| al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; |
| |
| if (nframes && |
| ((aggr_limit < (al + bpad + al_delta + prev_al)) || |
| ath_lookup_legacy(bf))) { |
| status = ATH_AGGR_LIMITED; |
| break; |
| } |
| |
| tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); |
| if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) |
| break; |
| |
| /* do not exceed subframe limit */ |
| if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { |
| status = ATH_AGGR_LIMITED; |
| break; |
| } |
| |
| /* add padding for previous frame to aggregation length */ |
| al += bpad + al_delta; |
| |
| /* |
| * Get the delimiters needed to meet the MPDU |
| * density for this node. |
| */ |
| ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, |
| !nframes); |
| bpad = PADBYTES(al_delta) + (ndelim << 2); |
| |
| nframes++; |
| bf->bf_next = NULL; |
| |
| /* link buffers of this frame to the aggregate */ |
| if (!fi->retries) |
| ath_tx_addto_baw(sc, tid, seqno); |
| bf->bf_state.ndelim = ndelim; |
| |
| __skb_unlink(skb, &tid->buf_q); |
| list_add_tail(&bf->list, bf_q); |
| if (bf_prev) |
| bf_prev->bf_next = bf; |
| |
| bf_prev = bf; |
| |
| } while (!skb_queue_empty(&tid->buf_q)); |
| |
| *aggr_len = al; |
| |
| return status; |
| #undef PADBYTES |
| } |
| |
| /* |
| * rix - rate index |
| * pktlen - total bytes (delims + data + fcs + pads + pad delims) |
| * width - 0 for 20 MHz, 1 for 40 MHz |
| * half_gi - to use 4us v/s 3.6 us for symbol time |
| */ |
| static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, |
| int width, int half_gi, bool shortPreamble) |
| { |
| u32 nbits, nsymbits, duration, nsymbols; |
| int streams; |
| |
| /* find number of symbols: PLCP + data */ |
| streams = HT_RC_2_STREAMS(rix); |
| nbits = (pktlen << 3) + OFDM_PLCP_BITS; |
| nsymbits = bits_per_symbol[rix % 8][width] * streams; |
| nsymbols = (nbits + nsymbits - 1) / nsymbits; |
| |
| if (!half_gi) |
| duration = SYMBOL_TIME(nsymbols); |
| else |
| duration = SYMBOL_TIME_HALFGI(nsymbols); |
| |
| /* addup duration for legacy/ht training and signal fields */ |
| duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); |
| |
| return duration; |
| } |
| |
| static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) |
| { |
| int streams = HT_RC_2_STREAMS(mcs); |
| int symbols, bits; |
| int bytes = 0; |
| |
| symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); |
| bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; |
| bits -= OFDM_PLCP_BITS; |
| bytes = bits / 8; |
| bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); |
| if (bytes > 65532) |
| bytes = 65532; |
| |
| return bytes; |
| } |
| |
| void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) |
| { |
| u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; |
| int mcs; |
| |
| /* 4ms is the default (and maximum) duration */ |
| if (!txop || txop > 4096) |
| txop = 4096; |
| |
| cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; |
| cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; |
| cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; |
| cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; |
| for (mcs = 0; mcs < 32; mcs++) { |
| cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); |
| cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); |
| cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); |
| cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); |
| } |
| } |
| |
| static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_tx_info *info, int len) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ieee80211_tx_rate *rates; |
| const struct ieee80211_rate *rate; |
| struct ieee80211_hdr *hdr; |
| struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); |
| int i; |
| u8 rix = 0; |
| |
| skb = bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| rates = tx_info->control.rates; |
| hdr = (struct ieee80211_hdr *)skb->data; |
| |
| /* set dur_update_en for l-sig computation except for PS-Poll frames */ |
| info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); |
| info->rtscts_rate = fi->rtscts_rate; |
| |
| for (i = 0; i < 4; i++) { |
| bool is_40, is_sgi, is_sp; |
| int phy; |
| |
| if (!rates[i].count || (rates[i].idx < 0)) |
| continue; |
| |
| rix = rates[i].idx; |
| info->rates[i].Tries = rates[i].count; |
| |
| if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { |
| info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; |
| info->flags |= ATH9K_TXDESC_RTSENA; |
| } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { |
| info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; |
| info->flags |= ATH9K_TXDESC_CTSENA; |
| } |
| |
| if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) |
| info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; |
| if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) |
| info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; |
| |
| is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); |
| is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); |
| is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); |
| |
| if (rates[i].flags & IEEE80211_TX_RC_MCS) { |
| /* MCS rates */ |
| info->rates[i].Rate = rix | 0x80; |
| info->rates[i].ChSel = ath_txchainmask_reduction(sc, |
| ah->txchainmask, info->rates[i].Rate); |
| info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, |
| is_40, is_sgi, is_sp); |
| if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) |
| info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; |
| continue; |
| } |
| |
| /* legacy rates */ |
| rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; |
| if ((tx_info->band == IEEE80211_BAND_2GHZ) && |
| !(rate->flags & IEEE80211_RATE_ERP_G)) |
| phy = WLAN_RC_PHY_CCK; |
| else |
| phy = WLAN_RC_PHY_OFDM; |
| |
| info->rates[i].Rate = rate->hw_value; |
| if (rate->hw_value_short) { |
| if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) |
| info->rates[i].Rate |= rate->hw_value_short; |
| } else { |
| is_sp = false; |
| } |
| |
| if (bf->bf_state.bfs_paprd) |
| info->rates[i].ChSel = ah->txchainmask; |
| else |
| info->rates[i].ChSel = ath_txchainmask_reduction(sc, |
| ah->txchainmask, info->rates[i].Rate); |
| |
| info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, |
| phy, rate->bitrate * 100, len, rix, is_sp); |
| } |
| |
| /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ |
| if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) |
| info->flags &= ~ATH9K_TXDESC_RTSENA; |
| |
| /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ |
| if (info->flags & ATH9K_TXDESC_RTSENA) |
| info->flags &= ~ATH9K_TXDESC_CTSENA; |
| } |
| |
| static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr; |
| enum ath9k_pkt_type htype; |
| __le16 fc; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| |
| if (ieee80211_is_beacon(fc)) |
| htype = ATH9K_PKT_TYPE_BEACON; |
| else if (ieee80211_is_probe_resp(fc)) |
| htype = ATH9K_PKT_TYPE_PROBE_RESP; |
| else if (ieee80211_is_atim(fc)) |
| htype = ATH9K_PKT_TYPE_ATIM; |
| else if (ieee80211_is_pspoll(fc)) |
| htype = ATH9K_PKT_TYPE_PSPOLL; |
| else |
| htype = ATH9K_PKT_TYPE_NORMAL; |
| |
| return htype; |
| } |
| |
| static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_txq *txq, int len) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); |
| struct ath_buf *bf_first = bf; |
| struct ath_tx_info info; |
| bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); |
| |
| memset(&info, 0, sizeof(info)); |
| info.is_first = true; |
| info.is_last = true; |
| info.txpower = MAX_RATE_POWER; |
| info.qcu = txq->axq_qnum; |
| |
| info.flags = ATH9K_TXDESC_INTREQ; |
| if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) |
| info.flags |= ATH9K_TXDESC_NOACK; |
| if (tx_info->flags & IEEE80211_TX_CTL_LDPC) |
| info.flags |= ATH9K_TXDESC_LDPC; |
| |
| ath_buf_set_rate(sc, bf, &info, len); |
| |
| if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) |
| info.flags |= ATH9K_TXDESC_CLRDMASK; |
| |
| if (bf->bf_state.bfs_paprd) |
| info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S; |
| |
| |
| while (bf) { |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ath_frame_info *fi = get_frame_info(skb); |
| |
| info.type = get_hw_packet_type(skb); |
| if (bf->bf_next) |
| info.link = bf->bf_next->bf_daddr; |
| else |
| info.link = 0; |
| |
| info.buf_addr[0] = bf->bf_buf_addr; |
| info.buf_len[0] = skb->len; |
| info.pkt_len = fi->framelen; |
| info.keyix = fi->keyix; |
| info.keytype = fi->keytype; |
| |
| if (aggr) { |
| if (bf == bf_first) |
| info.aggr = AGGR_BUF_FIRST; |
| else if (!bf->bf_next) |
| info.aggr = AGGR_BUF_LAST; |
| else |
| info.aggr = AGGR_BUF_MIDDLE; |
| |
| info.ndelim = bf->bf_state.ndelim; |
| info.aggr_len = len; |
| } |
| |
| ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); |
| bf = bf->bf_next; |
| } |
| } |
| |
| static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid) |
| { |
| struct ath_buf *bf; |
| enum ATH_AGGR_STATUS status; |
| struct ieee80211_tx_info *tx_info; |
| struct list_head bf_q; |
| int aggr_len; |
| |
| do { |
| if (skb_queue_empty(&tid->buf_q)) |
| return; |
| |
| INIT_LIST_HEAD(&bf_q); |
| |
| status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len); |
| |
| /* |
| * no frames picked up to be aggregated; |
| * block-ack window is not open. |
| */ |
| if (list_empty(&bf_q)) |
| break; |
| |
| bf = list_first_entry(&bf_q, struct ath_buf, list); |
| bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); |
| tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); |
| |
| if (tid->ac->clear_ps_filter) { |
| tid->ac->clear_ps_filter = false; |
| tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| } else { |
| tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| } |
| |
| /* if only one frame, send as non-aggregate */ |
| if (bf == bf->bf_lastbf) { |
| aggr_len = get_frame_info(bf->bf_mpdu)->framelen; |
| bf->bf_state.bf_type = BUF_AMPDU; |
| } else { |
| TX_STAT_INC(txq->axq_qnum, a_aggr); |
| } |
| |
| ath_tx_fill_desc(sc, bf, txq, aggr_len); |
| ath_tx_txqaddbuf(sc, txq, &bf_q, false); |
| } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH && |
| status != ATH_AGGR_BAW_CLOSED); |
| } |
| |
| int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, |
| u16 tid, u16 *ssn) |
| { |
| struct ath_atx_tid *txtid; |
| struct ath_node *an; |
| u8 density; |
| |
| an = (struct ath_node *)sta->drv_priv; |
| txtid = ATH_AN_2_TID(an, tid); |
| |
| if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE)) |
| return -EAGAIN; |
| |
| /* update ampdu factor/density, they may have changed. This may happen |
| * in HT IBSS when a beacon with HT-info is received after the station |
| * has already been added. |
| */ |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) { |
| an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + |
| sta->ht_cap.ampdu_factor); |
| density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); |
| an->mpdudensity = density; |
| } |
| |
| txtid->state |= AGGR_ADDBA_PROGRESS; |
| txtid->paused = true; |
| *ssn = txtid->seq_start = txtid->seq_next; |
| txtid->bar_index = -1; |
| |
| memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); |
| txtid->baw_head = txtid->baw_tail = 0; |
| |
| return 0; |
| } |
| |
| void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) |
| { |
| struct ath_node *an = (struct ath_node *)sta->drv_priv; |
| struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); |
| struct ath_txq *txq = txtid->ac->txq; |
| |
| if (txtid->state & AGGR_CLEANUP) |
| return; |
| |
| if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { |
| txtid->state &= ~AGGR_ADDBA_PROGRESS; |
| return; |
| } |
| |
| ath_txq_lock(sc, txq); |
| txtid->paused = true; |
| |
| /* |
| * If frames are still being transmitted for this TID, they will be |
| * cleaned up during tx completion. To prevent race conditions, this |
| * TID can only be reused after all in-progress subframes have been |
| * completed. |
| */ |
| if (txtid->baw_head != txtid->baw_tail) |
| txtid->state |= AGGR_CLEANUP; |
| else |
| txtid->state &= ~AGGR_ADDBA_COMPLETE; |
| |
| ath_tx_flush_tid(sc, txtid); |
| ath_txq_unlock_complete(sc, txq); |
| } |
| |
| void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, |
| struct ath_node *an) |
| { |
| struct ath_atx_tid *tid; |
| struct ath_atx_ac *ac; |
| struct ath_txq *txq; |
| bool buffered; |
| int tidno; |
| |
| for (tidno = 0, tid = &an->tid[tidno]; |
| tidno < WME_NUM_TID; tidno++, tid++) { |
| |
| if (!tid->sched) |
| continue; |
| |
| ac = tid->ac; |
| txq = ac->txq; |
| |
| ath_txq_lock(sc, txq); |
| |
| buffered = !skb_queue_empty(&tid->buf_q); |
| |
| tid->sched = false; |
| list_del(&tid->list); |
| |
| if (ac->sched) { |
| ac->sched = false; |
| list_del(&ac->list); |
| } |
| |
| ath_txq_unlock(sc, txq); |
| |
| ieee80211_sta_set_buffered(sta, tidno, buffered); |
| } |
| } |
| |
| void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) |
| { |
| struct ath_atx_tid *tid; |
| struct ath_atx_ac *ac; |
| struct ath_txq *txq; |
| int tidno; |
| |
| for (tidno = 0, tid = &an->tid[tidno]; |
| tidno < WME_NUM_TID; tidno++, tid++) { |
| |
| ac = tid->ac; |
| txq = ac->txq; |
| |
| ath_txq_lock(sc, txq); |
| ac->clear_ps_filter = true; |
| |
| if (!skb_queue_empty(&tid->buf_q) && !tid->paused) { |
| ath_tx_queue_tid(txq, tid); |
| ath_txq_schedule(sc, txq); |
| } |
| |
| ath_txq_unlock_complete(sc, txq); |
| } |
| } |
| |
| void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) |
| { |
| struct ath_atx_tid *txtid; |
| struct ath_node *an; |
| |
| an = (struct ath_node *)sta->drv_priv; |
| |
| txtid = ATH_AN_2_TID(an, tid); |
| txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; |
| txtid->state |= AGGR_ADDBA_COMPLETE; |
| txtid->state &= ~AGGR_ADDBA_PROGRESS; |
| ath_tx_resume_tid(sc, txtid); |
| } |
| |
| /********************/ |
| /* Queue Management */ |
| /********************/ |
| |
| static void ath_txq_drain_pending_buffers(struct ath_softc *sc, |
| struct ath_txq *txq) |
| { |
| struct ath_atx_ac *ac, *ac_tmp; |
| struct ath_atx_tid *tid, *tid_tmp; |
| |
| list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { |
| list_del(&ac->list); |
| ac->sched = false; |
| list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { |
| list_del(&tid->list); |
| tid->sched = false; |
| ath_tid_drain(sc, txq, tid); |
| } |
| } |
| } |
| |
| struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath9k_tx_queue_info qi; |
| static const int subtype_txq_to_hwq[] = { |
| [WME_AC_BE] = ATH_TXQ_AC_BE, |
| [WME_AC_BK] = ATH_TXQ_AC_BK, |
| [WME_AC_VI] = ATH_TXQ_AC_VI, |
| [WME_AC_VO] = ATH_TXQ_AC_VO, |
| }; |
| int axq_qnum, i; |
| |
| memset(&qi, 0, sizeof(qi)); |
| qi.tqi_subtype = subtype_txq_to_hwq[subtype]; |
| qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_physCompBuf = 0; |
| |
| /* |
| * Enable interrupts only for EOL and DESC conditions. |
| * We mark tx descriptors to receive a DESC interrupt |
| * when a tx queue gets deep; otherwise waiting for the |
| * EOL to reap descriptors. Note that this is done to |
| * reduce interrupt load and this only defers reaping |
| * descriptors, never transmitting frames. Aside from |
| * reducing interrupts this also permits more concurrency. |
| * The only potential downside is if the tx queue backs |
| * up in which case the top half of the kernel may backup |
| * due to a lack of tx descriptors. |
| * |
| * The UAPSD queue is an exception, since we take a desc- |
| * based intr on the EOSP frames. |
| */ |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; |
| } else { |
| if (qtype == ATH9K_TX_QUEUE_UAPSD) |
| qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; |
| else |
| qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | |
| TXQ_FLAG_TXDESCINT_ENABLE; |
| } |
| axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); |
| if (axq_qnum == -1) { |
| /* |
| * NB: don't print a message, this happens |
| * normally on parts with too few tx queues |
| */ |
| return NULL; |
| } |
| if (!ATH_TXQ_SETUP(sc, axq_qnum)) { |
| struct ath_txq *txq = &sc->tx.txq[axq_qnum]; |
| |
| txq->axq_qnum = axq_qnum; |
| txq->mac80211_qnum = -1; |
| txq->axq_link = NULL; |
| __skb_queue_head_init(&txq->complete_q); |
| INIT_LIST_HEAD(&txq->axq_q); |
| INIT_LIST_HEAD(&txq->axq_acq); |
| spin_lock_init(&txq->axq_lock); |
| txq->axq_depth = 0; |
| txq->axq_ampdu_depth = 0; |
| txq->axq_tx_inprogress = false; |
| sc->tx.txqsetup |= 1<<axq_qnum; |
| |
| txq->txq_headidx = txq->txq_tailidx = 0; |
| for (i = 0; i < ATH_TXFIFO_DEPTH; i++) |
| INIT_LIST_HEAD(&txq->txq_fifo[i]); |
| } |
| return &sc->tx.txq[axq_qnum]; |
| } |
| |
| int ath_txq_update(struct ath_softc *sc, int qnum, |
| struct ath9k_tx_queue_info *qinfo) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| int error = 0; |
| struct ath9k_tx_queue_info qi; |
| |
| BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); |
| |
| ath9k_hw_get_txq_props(ah, qnum, &qi); |
| qi.tqi_aifs = qinfo->tqi_aifs; |
| qi.tqi_cwmin = qinfo->tqi_cwmin; |
| qi.tqi_cwmax = qinfo->tqi_cwmax; |
| qi.tqi_burstTime = qinfo->tqi_burstTime; |
| qi.tqi_readyTime = qinfo->tqi_readyTime; |
| |
| if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { |
| ath_err(ath9k_hw_common(sc->sc_ah), |
| "Unable to update hardware queue %u!\n", qnum); |
| error = -EIO; |
| } else { |
| ath9k_hw_resettxqueue(ah, qnum); |
| } |
| |
| return error; |
| } |
| |
| int ath_cabq_update(struct ath_softc *sc) |
| { |
| struct ath9k_tx_queue_info qi; |
| struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; |
| int qnum = sc->beacon.cabq->axq_qnum; |
| |
| ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); |
| /* |
| * Ensure the readytime % is within the bounds. |
| */ |
| if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) |
| sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; |
| else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) |
| sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; |
| |
| qi.tqi_readyTime = (cur_conf->beacon_interval * |
| sc->config.cabqReadytime) / 100; |
| ath_txq_update(sc, qnum, &qi); |
| |
| return 0; |
| } |
| |
| static bool bf_is_ampdu_not_probing(struct ath_buf *bf) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); |
| return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); |
| } |
| |
| static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, |
| struct list_head *list, bool retry_tx) |
| { |
| struct ath_buf *bf, *lastbf; |
| struct list_head bf_head; |
| struct ath_tx_status ts; |
| |
| memset(&ts, 0, sizeof(ts)); |
| ts.ts_status = ATH9K_TX_FLUSH; |
| INIT_LIST_HEAD(&bf_head); |
| |
| while (!list_empty(list)) { |
| bf = list_first_entry(list, struct ath_buf, list); |
| |
| if (bf->bf_stale) { |
| list_del(&bf->list); |
| |
| ath_tx_return_buffer(sc, bf); |
| continue; |
| } |
| |
| lastbf = bf->bf_lastbf; |
| list_cut_position(&bf_head, list, &lastbf->list); |
| |
| txq->axq_depth--; |
| if (bf_is_ampdu_not_probing(bf)) |
| txq->axq_ampdu_depth--; |
| |
| if (bf_isampdu(bf)) |
| ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0, |
| retry_tx); |
| else |
| ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); |
| } |
| } |
| |
| /* |
| * Drain a given TX queue (could be Beacon or Data) |
| * |
| * This assumes output has been stopped and |
| * we do not need to block ath_tx_tasklet. |
| */ |
| void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) |
| { |
| ath_txq_lock(sc, txq); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| int idx = txq->txq_tailidx; |
| |
| while (!list_empty(&txq->txq_fifo[idx])) { |
| ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx], |
| retry_tx); |
| |
| INCR(idx, ATH_TXFIFO_DEPTH); |
| } |
| txq->txq_tailidx = idx; |
| } |
| |
| txq->axq_link = NULL; |
| txq->axq_tx_inprogress = false; |
| ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx); |
| |
| /* flush any pending frames if aggregation is enabled */ |
| if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx) |
| ath_txq_drain_pending_buffers(sc, txq); |
| |
| ath_txq_unlock_complete(sc, txq); |
| } |
| |
| bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct ath_txq *txq; |
| int i; |
| u32 npend = 0; |
| |
| if (test_bit(SC_OP_INVALID, &sc->sc_flags)) |
| return true; |
| |
| ath9k_hw_abort_tx_dma(ah); |
| |
| /* Check if any queue remains active */ |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (!ATH_TXQ_SETUP(sc, i)) |
| continue; |
| |
| if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) |
| npend |= BIT(i); |
| } |
| |
| if (npend) |
| ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); |
| |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (!ATH_TXQ_SETUP(sc, i)) |
| continue; |
| |
| /* |
| * The caller will resume queues with ieee80211_wake_queues. |
| * Mark the queue as not stopped to prevent ath_tx_complete |
| * from waking the queue too early. |
| */ |
| txq = &sc->tx.txq[i]; |
| txq->stopped = false; |
| ath_draintxq(sc, txq, retry_tx); |
| } |
| |
| return !npend; |
| } |
| |
| void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); |
| sc->tx.txqsetup &= ~(1<<txq->axq_qnum); |
| } |
| |
| /* For each axq_acq entry, for each tid, try to schedule packets |
| * for transmit until ampdu_depth has reached min Q depth. |
| */ |
| void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| struct ath_atx_ac *ac, *ac_tmp, *last_ac; |
| struct ath_atx_tid *tid, *last_tid; |
| |
| if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) || |
| list_empty(&txq->axq_acq) || |
| txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) |
| return; |
| |
| ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); |
| last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); |
| |
| list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { |
| last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); |
| list_del(&ac->list); |
| ac->sched = false; |
| |
| while (!list_empty(&ac->tid_q)) { |
| tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, |
| list); |
| list_del(&tid->list); |
| tid->sched = false; |
| |
| if (tid->paused) |
| continue; |
| |
| ath_tx_sched_aggr(sc, txq, tid); |
| |
| /* |
| * add tid to round-robin queue if more frames |
| * are pending for the tid |
| */ |
| if (!skb_queue_empty(&tid->buf_q)) |
| ath_tx_queue_tid(txq, tid); |
| |
| if (tid == last_tid || |
| txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) |
| break; |
| } |
| |
| if (!list_empty(&ac->tid_q) && !ac->sched) { |
| ac->sched = true; |
| list_add_tail(&ac->list, &txq->axq_acq); |
| } |
| |
| if (ac == last_ac || |
| txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) |
| return; |
| } |
| } |
| |
| /***********/ |
| /* TX, DMA */ |
| /***********/ |
| |
| /* |
| * Insert a chain of ath_buf (descriptors) on a txq and |
| * assume the descriptors are already chained together by caller. |
| */ |
| static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, |
| struct list_head *head, bool internal) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_buf *bf, *bf_last; |
| bool puttxbuf = false; |
| bool edma; |
| |
| /* |
| * Insert the frame on the outbound list and |
| * pass it on to the hardware. |
| */ |
| |
| if (list_empty(head)) |
| return; |
| |
| edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); |
| bf = list_first_entry(head, struct ath_buf, list); |
| bf_last = list_entry(head->prev, struct ath_buf, list); |
| |
| ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", |
| txq->axq_qnum, txq->axq_depth); |
| |
| if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { |
| list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); |
| INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); |
| puttxbuf = true; |
| } else { |
| list_splice_tail_init(head, &txq->axq_q); |
| |
| if (txq->axq_link) { |
| ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); |
| ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", |
| txq->axq_qnum, txq->axq_link, |
| ito64(bf->bf_daddr), bf->bf_desc); |
| } else if (!edma) |
| puttxbuf = true; |
| |
| txq->axq_link = bf_last->bf_desc; |
| } |
| |
| if (puttxbuf) { |
| TX_STAT_INC(txq->axq_qnum, puttxbuf); |
| ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); |
| ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", |
| txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); |
| } |
| |
| if (!edma) { |
| TX_STAT_INC(txq->axq_qnum, txstart); |
| ath9k_hw_txstart(ah, txq->axq_qnum); |
| } |
| |
| if (!internal) { |
| txq->axq_depth++; |
| if (bf_is_ampdu_not_probing(bf)) |
| txq->axq_ampdu_depth++; |
| } |
| } |
| |
| static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, |
| struct sk_buff *skb, struct ath_tx_control *txctl) |
| { |
| struct ath_frame_info *fi = get_frame_info(skb); |
| struct list_head bf_head; |
| struct ath_buf *bf; |
| |
| /* |
| * Do not queue to h/w when any of the following conditions is true: |
| * - there are pending frames in software queue |
| * - the TID is currently paused for ADDBA/BAR request |
| * - seqno is not within block-ack window |
| * - h/w queue depth exceeds low water mark |
| */ |
| if (!skb_queue_empty(&tid->buf_q) || tid->paused || |
| !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) || |
| txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) { |
| /* |
| * Add this frame to software queue for scheduling later |
| * for aggregation. |
| */ |
| TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw); |
| __skb_queue_tail(&tid->buf_q, skb); |
| if (!txctl->an || !txctl->an->sleeping) |
| ath_tx_queue_tid(txctl->txq, tid); |
| return; |
| } |
| |
| bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb); |
| if (!bf) { |
| ieee80211_free_txskb(sc->hw, skb); |
| return; |
| } |
| |
| bf->bf_state.bf_type = BUF_AMPDU; |
| INIT_LIST_HEAD(&bf_head); |
| list_add(&bf->list, &bf_head); |
| |
| /* Add sub-frame to BAW */ |
| ath_tx_addto_baw(sc, tid, bf->bf_state.seqno); |
| |
| /* Queue to h/w without aggregation */ |
| TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw); |
| bf->bf_lastbf = bf; |
| ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen); |
| ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false); |
| } |
| |
| static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid, struct sk_buff *skb) |
| { |
| struct ath_frame_info *fi = get_frame_info(skb); |
| struct list_head bf_head; |
| struct ath_buf *bf; |
| |
| bf = fi->bf; |
| |
| INIT_LIST_HEAD(&bf_head); |
| list_add_tail(&bf->list, &bf_head); |
| bf->bf_state.bf_type = 0; |
| |
| bf->bf_lastbf = bf; |
| ath_tx_fill_desc(sc, bf, txq, fi->framelen); |
| ath_tx_txqaddbuf(sc, txq, &bf_head, false); |
| TX_STAT_INC(txq->axq_qnum, queued); |
| } |
| |
| static void setup_frame_info(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, |
| struct sk_buff *skb, |
| int framelen) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| const struct ieee80211_rate *rate; |
| struct ath_frame_info *fi = get_frame_info(skb); |
| struct ath_node *an = NULL; |
| enum ath9k_key_type keytype; |
| bool short_preamble = false; |
| |
| /* |
| * We check if Short Preamble is needed for the CTS rate by |
| * checking the BSS's global flag. |
| * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. |
| */ |
| if (tx_info->control.vif && |
| tx_info->control.vif->bss_conf.use_short_preamble) |
| short_preamble = true; |
| |
| rate = ieee80211_get_rts_cts_rate(hw, tx_info); |
| keytype = ath9k_cmn_get_hw_crypto_keytype(skb); |
| |
| if (sta) |
| an = (struct ath_node *) sta->drv_priv; |
| |
| memset(fi, 0, sizeof(*fi)); |
| if (hw_key) |
| fi->keyix = hw_key->hw_key_idx; |
| else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) |
| fi->keyix = an->ps_key; |
| else |
| fi->keyix = ATH9K_TXKEYIX_INVALID; |
| fi->keytype = keytype; |
| fi->framelen = framelen; |
| fi->rtscts_rate = rate->hw_value; |
| if (short_preamble) |
| fi->rtscts_rate |= rate->hw_value_short; |
| } |
| |
| u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath9k_channel *curchan = ah->curchan; |
| |
| if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && |
| (curchan->channelFlags & CHANNEL_5GHZ) && |
| (chainmask == 0x7) && (rate < 0x90)) |
| return 0x3; |
| else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && |
| IS_CCK_RATE(rate)) |
| return 0x2; |
| else |
| return chainmask; |
| } |
| |
| /* |
| * Assign a descriptor (and sequence number if necessary, |
| * and map buffer for DMA. Frees skb on error |
| */ |
| static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, |
| struct ath_txq *txq, |
| struct ath_atx_tid *tid, |
| struct sk_buff *skb) |
| { |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct ath_frame_info *fi = get_frame_info(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ath_buf *bf; |
| int fragno; |
| u16 seqno; |
| |
| bf = ath_tx_get_buffer(sc); |
| if (!bf) { |
| ath_dbg(common, XMIT, "TX buffers are full\n"); |
| return NULL; |
| } |
| |
| ATH_TXBUF_RESET(bf); |
| |
| if (tid) { |
| fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; |
| seqno = tid->seq_next; |
| hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); |
| |
| if (fragno) |
| hdr->seq_ctrl |= cpu_to_le16(fragno); |
| |
| if (!ieee80211_has_morefrags(hdr->frame_control)) |
| INCR(tid->seq_next, IEEE80211_SEQ_MAX); |
| |
| bf->bf_state.seqno = seqno; |
| } |
| |
| bf->bf_mpdu = skb; |
| |
| bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, |
| skb->len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { |
| bf->bf_mpdu = NULL; |
| bf->bf_buf_addr = 0; |
| ath_err(ath9k_hw_common(sc->sc_ah), |
| "dma_mapping_error() on TX\n"); |
| ath_tx_return_buffer(sc, bf); |
| return NULL; |
| } |
| |
| fi->bf = bf; |
| |
| return bf; |
| } |
| |
| /* FIXME: tx power */ |
| static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb, |
| struct ath_tx_control *txctl) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ath_atx_tid *tid = NULL; |
| struct ath_buf *bf; |
| u8 tidno; |
| |
| if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an && |
| ieee80211_is_data_qos(hdr->frame_control)) { |
| tidno = ieee80211_get_qos_ctl(hdr)[0] & |
| IEEE80211_QOS_CTL_TID_MASK; |
| tid = ATH_AN_2_TID(txctl->an, tidno); |
| |
| WARN_ON(tid->ac->txq != txctl->txq); |
| } |
| |
| if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) { |
| /* |
| * Try aggregation if it's a unicast data frame |
| * and the destination is HT capable. |
| */ |
| ath_tx_send_ampdu(sc, tid, skb, txctl); |
| } else { |
| bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb); |
| if (!bf) { |
| if (txctl->paprd) |
| dev_kfree_skb_any(skb); |
| else |
| ieee80211_free_txskb(sc->hw, skb); |
| return; |
| } |
| |
| bf->bf_state.bfs_paprd = txctl->paprd; |
| |
| if (txctl->paprd) |
| bf->bf_state.bfs_paprd_timestamp = jiffies; |
| |
| ath_tx_send_normal(sc, txctl->txq, tid, skb); |
| } |
| } |
| |
| /* Upon failure caller should free skb */ |
| int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ath_tx_control *txctl) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_sta *sta = txctl->sta; |
| struct ieee80211_vif *vif = info->control.vif; |
| struct ath_softc *sc = hw->priv; |
| struct ath_txq *txq = txctl->txq; |
| int padpos, padsize; |
| int frmlen = skb->len + FCS_LEN; |
| int q; |
| |
| /* NOTE: sta can be NULL according to net/mac80211.h */ |
| if (sta) |
| txctl->an = (struct ath_node *)sta->drv_priv; |
| |
| if (info->control.hw_key) |
| frmlen += info->control.hw_key->icv_len; |
| |
| /* |
| * As a temporary workaround, assign seq# here; this will likely need |
| * to be cleaned up to work better with Beacon transmission and virtual |
| * BSSes. |
| */ |
| if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { |
| if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) |
| sc->tx.seq_no += 0x10; |
| hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); |
| hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); |
| } |
| |
| /* Add the padding after the header if this is not already done */ |
| padpos = ath9k_cmn_padpos(hdr->frame_control); |
| padsize = padpos & 3; |
| if (padsize && skb->len > padpos) { |
| if (skb_headroom(skb) < padsize) |
| return -ENOMEM; |
| |
| skb_push(skb, padsize); |
| memmove(skb->data, skb->data + padsize, padpos); |
| hdr = (struct ieee80211_hdr *) skb->data; |
| } |
| |
| if ((vif && vif->type != NL80211_IFTYPE_AP && |
| vif->type != NL80211_IFTYPE_AP_VLAN) || |
| !ieee80211_is_data(hdr->frame_control)) |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| |
| setup_frame_info(hw, sta, skb, frmlen); |
| |
| /* |
| * At this point, the vif, hw_key and sta pointers in the tx control |
| * info are no longer valid (overwritten by the ath_frame_info data. |
| */ |
| |
| q = skb_get_queue_mapping(skb); |
| |
| ath_txq_lock(sc, txq); |
| if (txq == sc->tx.txq_map[q] && |
| ++txq->pending_frames > sc->tx.txq_max_pending[q] && |
| !txq->stopped) { |
| ieee80211_stop_queue(sc->hw, q); |
| txq->stopped = true; |
| } |
| |
| ath_tx_start_dma(sc, skb, txctl); |
| |
| ath_txq_unlock(sc, txq); |
| |
| return 0; |
| } |
| |
| /*****************/ |
| /* TX Completion */ |
| /*****************/ |
| |
| static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, |
| int tx_flags, struct ath_txq *txq) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; |
| int q, padpos, padsize; |
| unsigned long flags; |
| |
| ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); |
| |
| if (sc->sc_ah->caldata) |
| sc->sc_ah->caldata->paprd_packet_sent = true; |
| |
| if (!(tx_flags & ATH_TX_ERROR)) |
| /* Frame was ACKed */ |
| tx_info->flags |= IEEE80211_TX_STAT_ACK; |
| |
| padpos = ath9k_cmn_padpos(hdr->frame_control); |
| padsize = padpos & 3; |
| if (padsize && skb->len>padpos+padsize) { |
| /* |
| * Remove MAC header padding before giving the frame back to |
| * mac80211. |
| */ |
| memmove(skb->data + padsize, skb->data, padpos); |
| skb_pull(skb, padsize); |
| } |
| |
| spin_lock_irqsave(&sc->sc_pm_lock, flags); |
| if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { |
| sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; |
| ath_dbg(common, PS, |
| "Going back to sleep after having received TX status (0x%lx)\n", |
| sc->ps_flags & (PS_WAIT_FOR_BEACON | |
| PS_WAIT_FOR_CAB | |
| PS_WAIT_FOR_PSPOLL_DATA | |
| PS_WAIT_FOR_TX_ACK)); |
| } |
| spin_unlock_irqrestore(&sc->sc_pm_lock, flags); |
| |
| q = skb_get_queue_mapping(skb); |
| if (txq == sc->tx.txq_map[q]) { |
| if (WARN_ON(--txq->pending_frames < 0)) |
| txq->pending_frames = 0; |
| |
| if (txq->stopped && |
| txq->pending_frames < sc->tx.txq_max_pending[q]) { |
| ieee80211_wake_queue(sc->hw, q); |
| txq->stopped = false; |
| } |
| } |
| |
| __skb_queue_tail(&txq->complete_q, skb); |
| } |
| |
| static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_txq *txq, struct list_head *bf_q, |
| struct ath_tx_status *ts, int txok) |
| { |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| unsigned long flags; |
| int tx_flags = 0; |
| |
| if (!txok) |
| tx_flags |= ATH_TX_ERROR; |
| |
| if (ts->ts_status & ATH9K_TXERR_FILT) |
| tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; |
| |
| dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); |
| bf->bf_buf_addr = 0; |
| |
| if (bf->bf_state.bfs_paprd) { |
| if (time_after(jiffies, |
| bf->bf_state.bfs_paprd_timestamp + |
| msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) |
| dev_kfree_skb_any(skb); |
| else |
| complete(&sc->paprd_complete); |
| } else { |
| ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); |
| ath_tx_complete(sc, skb, tx_flags, txq); |
| } |
| /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't |
| * accidentally reference it later. |
| */ |
| bf->bf_mpdu = NULL; |
| |
| /* |
| * Return the list of ath_buf of this mpdu to free queue |
| */ |
| spin_lock_irqsave(&sc->tx.txbuflock, flags); |
| list_splice_tail_init(bf_q, &sc->tx.txbuf); |
| spin_unlock_irqrestore(&sc->tx.txbuflock, flags); |
| } |
| |
| static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_tx_status *ts, int nframes, int nbad, |
| int txok) |
| { |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hw *hw = sc->hw; |
| struct ath_hw *ah = sc->sc_ah; |
| u8 i, tx_rateindex; |
| |
| if (txok) |
| tx_info->status.ack_signal = ts->ts_rssi; |
| |
| tx_rateindex = ts->ts_rateindex; |
| WARN_ON(tx_rateindex >= hw->max_rates); |
| |
| if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { |
| tx_info->flags |= IEEE80211_TX_STAT_AMPDU; |
| |
| BUG_ON(nbad > nframes); |
| } |
| tx_info->status.ampdu_len = nframes; |
| tx_info->status.ampdu_ack_len = nframes - nbad; |
| |
| if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && |
| (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { |
| /* |
| * If an underrun error is seen assume it as an excessive |
| * retry only if max frame trigger level has been reached |
| * (2 KB for single stream, and 4 KB for dual stream). |
| * Adjust the long retry as if the frame was tried |
| * hw->max_rate_tries times to affect how rate control updates |
| * PER for the failed rate. |
| * In case of congestion on the bus penalizing this type of |
| * underruns should help hardware actually transmit new frames |
| * successfully by eventually preferring slower rates. |
| * This itself should also alleviate congestion on the bus. |
| */ |
| if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | |
| ATH9K_TX_DELIM_UNDERRUN)) && |
| ieee80211_is_data(hdr->frame_control) && |
| ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) |
| tx_info->status.rates[tx_rateindex].count = |
| hw->max_rate_tries; |
| } |
| |
| for (i = tx_rateindex + 1; i < hw->max_rates; i++) { |
| tx_info->status.rates[i].count = 0; |
| tx_info->status.rates[i].idx = -1; |
| } |
| |
| tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; |
| } |
| |
| static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_tx_status *ts, struct ath_buf *bf, |
| struct list_head *bf_head) |
| { |
| int txok; |
| |
| txq->axq_depth--; |
| txok = !(ts->ts_status & ATH9K_TXERR_MASK); |
| txq->axq_tx_inprogress = false; |
| if (bf_is_ampdu_not_probing(bf)) |
| txq->axq_ampdu_depth--; |
| |
| if (!bf_isampdu(bf)) { |
| ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); |
| ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); |
| } else |
| ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) |
| ath_txq_schedule(sc, txq); |
| } |
| |
| static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_buf *bf, *lastbf, *bf_held = NULL; |
| struct list_head bf_head; |
| struct ath_desc *ds; |
| struct ath_tx_status ts; |
| int status; |
| |
| ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", |
| txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), |
| txq->axq_link); |
| |
| ath_txq_lock(sc, txq); |
| for (;;) { |
| if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) |
| break; |
| |
| if (list_empty(&txq->axq_q)) { |
| txq->axq_link = NULL; |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) |
| ath_txq_schedule(sc, txq); |
| break; |
| } |
| bf = list_first_entry(&txq->axq_q, struct ath_buf, list); |
| |
| /* |
| * There is a race condition that a BH gets scheduled |
| * after sw writes TxE and before hw re-load the last |
| * descriptor to get the newly chained one. |
| * Software must keep the last DONE descriptor as a |
| * holding descriptor - software does so by marking |
| * it with the STALE flag. |
| */ |
| bf_held = NULL; |
| if (bf->bf_stale) { |
| bf_held = bf; |
| if (list_is_last(&bf_held->list, &txq->axq_q)) |
| break; |
| |
| bf = list_entry(bf_held->list.next, struct ath_buf, |
| list); |
| } |
| |
| lastbf = bf->bf_lastbf; |
| ds = lastbf->bf_desc; |
| |
| memset(&ts, 0, sizeof(ts)); |
| status = ath9k_hw_txprocdesc(ah, ds, &ts); |
| if (status == -EINPROGRESS) |
| break; |
| |
| TX_STAT_INC(txq->axq_qnum, txprocdesc); |
| |
| /* |
| * Remove ath_buf's of the same transmit unit from txq, |
| * however leave the last descriptor back as the holding |
| * descriptor for hw. |
| */ |
| lastbf->bf_stale = true; |
| INIT_LIST_HEAD(&bf_head); |
| if (!list_is_singular(&lastbf->list)) |
| list_cut_position(&bf_head, |
| &txq->axq_q, lastbf->list.prev); |
| |
| if (bf_held) { |
| list_del(&bf_held->list); |
| ath_tx_return_buffer(sc, bf_held); |
| } |
| |
| ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); |
| } |
| ath_txq_unlock_complete(sc, txq); |
| } |
| |
| void ath_tx_tasklet(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; |
| int i; |
| |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) |
| ath_tx_processq(sc, &sc->tx.txq[i]); |
| } |
| } |
| |
| void ath_tx_edma_tasklet(struct ath_softc *sc) |
| { |
| struct ath_tx_status ts; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_txq *txq; |
| struct ath_buf *bf, *lastbf; |
| struct list_head bf_head; |
| int status; |
| |
| for (;;) { |
| if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) |
| break; |
| |
| status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); |
| if (status == -EINPROGRESS) |
| break; |
| if (status == -EIO) { |
| ath_dbg(common, XMIT, "Error processing tx status\n"); |
| break; |
| } |
| |
| /* Process beacon completions separately */ |
| if (ts.qid == sc->beacon.beaconq) { |
| sc->beacon.tx_processed = true; |
| sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); |
| continue; |
| } |
| |
| txq = &sc->tx.txq[ts.qid]; |
| |
| ath_txq_lock(sc, txq); |
| |
| if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { |
| ath_txq_unlock(sc, txq); |
| return; |
| } |
| |
| bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx], |
| struct ath_buf, list); |
| lastbf = bf->bf_lastbf; |
| |
| INIT_LIST_HEAD(&bf_head); |
| list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx], |
| &lastbf->list); |
| |
| if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { |
| INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); |
| |
| if (!list_empty(&txq->axq_q)) { |
| struct list_head bf_q; |
| |
| INIT_LIST_HEAD(&bf_q); |
| txq->axq_link = NULL; |
| list_splice_tail_init(&txq->axq_q, &bf_q); |
| ath_tx_txqaddbuf(sc, txq, &bf_q, true); |
| } |
| } |
| |
| ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); |
| ath_txq_unlock_complete(sc, txq); |
| } |
| } |
| |
| /*****************/ |
| /* Init, Cleanup */ |
| /*****************/ |
| |
| static int ath_txstatus_setup(struct ath_softc *sc, int size) |
| { |
| struct ath_descdma *dd = &sc->txsdma; |
| u8 txs_len = sc->sc_ah->caps.txs_len; |
| |
| dd->dd_desc_len = size * txs_len; |
| dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, |
| &dd->dd_desc_paddr, GFP_KERNEL); |
| if (!dd->dd_desc) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int ath_tx_edma_init(struct ath_softc *sc) |
| { |
| int err; |
| |
| err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); |
| if (!err) |
| ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, |
| sc->txsdma.dd_desc_paddr, |
| ATH_TXSTATUS_RING_SIZE); |
| |
| return err; |
| } |
| |
| static void ath_tx_edma_cleanup(struct ath_softc *sc) |
| { |
| struct ath_descdma *dd = &sc->txsdma; |
| |
| dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, |
| dd->dd_desc_paddr); |
| } |
| |
| int ath_tx_init(struct ath_softc *sc, int nbufs) |
| { |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| int error = 0; |
| |
| spin_lock_init(&sc->tx.txbuflock); |
| |
| error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, |
| "tx", nbufs, 1, 1); |
| if (error != 0) { |
| ath_err(common, |
| "Failed to allocate tx descriptors: %d\n", error); |
| goto err; |
| } |
| |
| error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, |
| "beacon", ATH_BCBUF, 1, 1); |
| if (error != 0) { |
| ath_err(common, |
| "Failed to allocate beacon descriptors: %d\n", error); |
| goto err; |
| } |
| |
| INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| error = ath_tx_edma_init(sc); |
| if (error) |
| goto err; |
| } |
| |
| err: |
| if (error != 0) |
| ath_tx_cleanup(sc); |
| |
| return error; |
| } |
| |
| void ath_tx_cleanup(struct ath_softc *sc) |
| { |
| if (sc->beacon.bdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); |
| |
| if (sc->tx.txdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) |
| ath_tx_edma_cleanup(sc); |
| } |
| |
| void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) |
| { |
| struct ath_atx_tid *tid; |
| struct ath_atx_ac *ac; |
| int tidno, acno; |
| |
| for (tidno = 0, tid = &an->tid[tidno]; |
| tidno < WME_NUM_TID; |
| tidno++, tid++) { |
| tid->an = an; |
| tid->tidno = tidno; |
| tid->seq_start = tid->seq_next = 0; |
| tid->baw_size = WME_MAX_BA; |
| tid->baw_head = tid->baw_tail = 0; |
| tid->sched = false; |
| tid->paused = false; |
| tid->state &= ~AGGR_CLEANUP; |
| __skb_queue_head_init(&tid->buf_q); |
| acno = TID_TO_WME_AC(tidno); |
| tid->ac = &an->ac[acno]; |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->state &= ~AGGR_ADDBA_PROGRESS; |
| } |
| |
| for (acno = 0, ac = &an->ac[acno]; |
| acno < WME_NUM_AC; acno++, ac++) { |
| ac->sched = false; |
| ac->txq = sc->tx.txq_map[acno]; |
| INIT_LIST_HEAD(&ac->tid_q); |
| } |
| } |
| |
| void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) |
| { |
| struct ath_atx_ac *ac; |
| struct ath_atx_tid *tid; |
| struct ath_txq *txq; |
| int tidno; |
| |
| for (tidno = 0, tid = &an->tid[tidno]; |
| tidno < WME_NUM_TID; tidno++, tid++) { |
| |
| ac = tid->ac; |
| txq = ac->txq; |
| |
| ath_txq_lock(sc, txq); |
| |
| if (tid->sched) { |
| list_del(&tid->list); |
| tid->sched = false; |
| } |
| |
| if (ac->sched) { |
| list_del(&ac->list); |
| tid->ac->sched = false; |
| } |
| |
| ath_tid_drain(sc, txq, tid); |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->state &= ~AGGR_CLEANUP; |
| |
| ath_txq_unlock(sc, txq); |
| } |
| } |