| /* |
| * The low performance USB storage driver (ub). |
| * |
| * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net) |
| * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com) |
| * |
| * This work is a part of Linux kernel, is derived from it, |
| * and is not licensed separately. See file COPYING for details. |
| * |
| * TODO (sorted by decreasing priority) |
| * -- Do resets with usb_device_reset (needs a thread context, use khubd) |
| * -- set readonly flag for CDs, set removable flag for CF readers |
| * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch) |
| * -- support pphaneuf's SDDR-75 with two LUNs (also broken capacity...) |
| * -- special case some senses, e.g. 3a/0 -> no media present, reduce retries |
| * -- verify the 13 conditions and do bulk resets |
| * -- normal pool of commands instead of cmdv[]? |
| * -- kill last_pipe and simply do two-state clearing on both pipes |
| * -- verify protocol (bulk) from USB descriptors (maybe...) |
| * -- highmem and sg |
| * -- move top_sense and work_bcs into separate allocations (if they survive) |
| * for cache purists and esoteric architectures. |
| * -- prune comments, they are too volumnous |
| * -- Exterminate P3 printks |
| * -- Resove XXX's |
| * -- Redo "benh's retries", perhaps have spin-up code to handle them. V:D=? |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/usb.h> |
| #include <linux/blkdev.h> |
| #include <linux/devfs_fs_kernel.h> |
| #include <linux/timer.h> |
| #include <scsi/scsi.h> |
| |
| #define DRV_NAME "ub" |
| #define DEVFS_NAME DRV_NAME |
| |
| #define UB_MAJOR 180 |
| |
| /* |
| * Definitions which have to be scattered once we understand the layout better. |
| */ |
| |
| /* Transport (despite PR in the name) */ |
| #define US_PR_BULK 0x50 /* bulk only */ |
| |
| /* Protocol */ |
| #define US_SC_SCSI 0x06 /* Transparent */ |
| |
| /* |
| */ |
| #define UB_MINORS_PER_MAJOR 8 |
| |
| #define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */ |
| |
| #define UB_SENSE_SIZE 18 |
| |
| /* |
| */ |
| |
| /* command block wrapper */ |
| struct bulk_cb_wrap { |
| __le32 Signature; /* contains 'USBC' */ |
| u32 Tag; /* unique per command id */ |
| __le32 DataTransferLength; /* size of data */ |
| u8 Flags; /* direction in bit 0 */ |
| u8 Lun; /* LUN normally 0 */ |
| u8 Length; /* of of the CDB */ |
| u8 CDB[UB_MAX_CDB_SIZE]; /* max command */ |
| }; |
| |
| #define US_BULK_CB_WRAP_LEN 31 |
| #define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */ |
| #define US_BULK_FLAG_IN 1 |
| #define US_BULK_FLAG_OUT 0 |
| |
| /* command status wrapper */ |
| struct bulk_cs_wrap { |
| __le32 Signature; /* should = 'USBS' */ |
| u32 Tag; /* same as original command */ |
| __le32 Residue; /* amount not transferred */ |
| u8 Status; /* see below */ |
| }; |
| |
| #define US_BULK_CS_WRAP_LEN 13 |
| #define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */ |
| /* This is for Olympus Camedia digital cameras */ |
| #define US_BULK_CS_OLYMPUS_SIGN 0x55425355 /* spells out 'USBU' */ |
| #define US_BULK_STAT_OK 0 |
| #define US_BULK_STAT_FAIL 1 |
| #define US_BULK_STAT_PHASE 2 |
| |
| /* bulk-only class specific requests */ |
| #define US_BULK_RESET_REQUEST 0xff |
| #define US_BULK_GET_MAX_LUN 0xfe |
| |
| /* |
| */ |
| struct ub_dev; |
| |
| #define UB_MAX_REQ_SG 1 |
| #define UB_MAX_SECTORS 64 |
| |
| /* |
| * A second is more than enough for a 32K transfer (UB_MAX_SECTORS) |
| * even if a webcam hogs the bus, but some devices need time to spin up. |
| */ |
| #define UB_URB_TIMEOUT (HZ*2) |
| #define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */ |
| #define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */ |
| #define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */ |
| |
| /* |
| * An instance of a SCSI command in transit. |
| */ |
| #define UB_DIR_NONE 0 |
| #define UB_DIR_READ 1 |
| #define UB_DIR_ILLEGAL2 2 |
| #define UB_DIR_WRITE 3 |
| |
| #define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \ |
| (((c)==UB_DIR_READ)? 'r': 'n')) |
| |
| enum ub_scsi_cmd_state { |
| UB_CMDST_INIT, /* Initial state */ |
| UB_CMDST_CMD, /* Command submitted */ |
| UB_CMDST_DATA, /* Data phase */ |
| UB_CMDST_CLR2STS, /* Clearing before requesting status */ |
| UB_CMDST_STAT, /* Status phase */ |
| UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */ |
| UB_CMDST_SENSE, /* Sending Request Sense */ |
| UB_CMDST_DONE /* Final state */ |
| }; |
| |
| static char *ub_scsi_cmd_stname[] = { |
| ". ", |
| "Cmd", |
| "dat", |
| "c2s", |
| "sts", |
| "clr", |
| "Sen", |
| "fin" |
| }; |
| |
| struct ub_scsi_cmd { |
| unsigned char cdb[UB_MAX_CDB_SIZE]; |
| unsigned char cdb_len; |
| |
| unsigned char dir; /* 0 - none, 1 - read, 3 - write. */ |
| unsigned char trace_index; |
| enum ub_scsi_cmd_state state; |
| unsigned int tag; |
| struct ub_scsi_cmd *next; |
| |
| int error; /* Return code - valid upon done */ |
| unsigned int act_len; /* Return size */ |
| unsigned char key, asc, ascq; /* May be valid if error==-EIO */ |
| |
| int stat_count; /* Retries getting status. */ |
| |
| /* |
| * We do not support transfers from highmem pages |
| * because the underlying USB framework does not do what we need. |
| */ |
| char *data; /* Requested buffer */ |
| unsigned int len; /* Requested length */ |
| // struct scatterlist sgv[UB_MAX_REQ_SG]; |
| |
| void (*done)(struct ub_dev *, struct ub_scsi_cmd *); |
| void *back; |
| }; |
| |
| /* |
| */ |
| struct ub_capacity { |
| unsigned long nsec; /* Linux size - 512 byte sectors */ |
| unsigned int bsize; /* Linux hardsect_size */ |
| unsigned int bshift; /* Shift between 512 and hard sects */ |
| }; |
| |
| /* |
| * The SCSI command tracing structure. |
| */ |
| |
| #define SCMD_ST_HIST_SZ 8 |
| #define SCMD_TRACE_SZ 63 /* Less than 4KB of 61-byte lines */ |
| |
| struct ub_scsi_cmd_trace { |
| int hcur; |
| unsigned int tag; |
| unsigned int req_size, act_size; |
| unsigned char op; |
| unsigned char dir; |
| unsigned char key, asc, ascq; |
| char st_hst[SCMD_ST_HIST_SZ]; |
| }; |
| |
| struct ub_scsi_trace { |
| int cur; |
| struct ub_scsi_cmd_trace vec[SCMD_TRACE_SZ]; |
| }; |
| |
| /* |
| * This is a direct take-off from linux/include/completion.h |
| * The difference is that I do not wait on this thing, just poll. |
| * When I want to wait (ub_probe), I just use the stock completion. |
| * |
| * Note that INIT_COMPLETION takes no lock. It is correct. But why |
| * in the bloody hell that thing takes struct instead of pointer to struct |
| * is quite beyond me. I just copied it from the stock completion. |
| */ |
| struct ub_completion { |
| unsigned int done; |
| spinlock_t lock; |
| }; |
| |
| static inline void ub_init_completion(struct ub_completion *x) |
| { |
| x->done = 0; |
| spin_lock_init(&x->lock); |
| } |
| |
| #define UB_INIT_COMPLETION(x) ((x).done = 0) |
| |
| static void ub_complete(struct ub_completion *x) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&x->lock, flags); |
| x->done++; |
| spin_unlock_irqrestore(&x->lock, flags); |
| } |
| |
| static int ub_is_completed(struct ub_completion *x) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&x->lock, flags); |
| ret = x->done; |
| spin_unlock_irqrestore(&x->lock, flags); |
| return ret; |
| } |
| |
| /* |
| */ |
| struct ub_scsi_cmd_queue { |
| int qlen, qmax; |
| struct ub_scsi_cmd *head, *tail; |
| }; |
| |
| /* |
| * The UB device instance. |
| */ |
| struct ub_dev { |
| spinlock_t lock; |
| int id; /* Number among ub's */ |
| atomic_t poison; /* The USB device is disconnected */ |
| int openc; /* protected by ub_lock! */ |
| /* kref is too implicit for our taste */ |
| unsigned int tagcnt; |
| int changed; /* Media was changed */ |
| int removable; |
| int readonly; |
| int first_open; /* Kludge. See ub_bd_open. */ |
| char name[8]; |
| struct usb_device *dev; |
| struct usb_interface *intf; |
| |
| struct ub_capacity capacity; |
| struct gendisk *disk; |
| |
| unsigned int send_bulk_pipe; /* cached pipe values */ |
| unsigned int recv_bulk_pipe; |
| unsigned int send_ctrl_pipe; |
| unsigned int recv_ctrl_pipe; |
| |
| struct tasklet_struct tasklet; |
| |
| /* XXX Use Ingo's mempool (once we have more than one) */ |
| int cmda[1]; |
| struct ub_scsi_cmd cmdv[1]; |
| |
| struct ub_scsi_cmd_queue cmd_queue; |
| struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */ |
| unsigned char top_sense[UB_SENSE_SIZE]; |
| |
| struct ub_completion work_done; |
| struct urb work_urb; |
| struct timer_list work_timer; |
| int last_pipe; /* What might need clearing */ |
| struct bulk_cb_wrap work_bcb; |
| struct bulk_cs_wrap work_bcs; |
| struct usb_ctrlrequest work_cr; |
| |
| struct ub_scsi_trace tr; |
| }; |
| |
| /* |
| */ |
| static void ub_cleanup(struct ub_dev *sc); |
| static int ub_bd_rq_fn_1(struct ub_dev *sc, struct request *rq); |
| static int ub_cmd_build_block(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| struct request *rq); |
| static int ub_cmd_build_packet(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| struct request *rq); |
| static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static void ub_end_rq(struct request *rq, int uptodate); |
| static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static void ub_urb_complete(struct urb *urb, struct pt_regs *pt); |
| static void ub_scsi_action(unsigned long _dev); |
| static void ub_scsi_dispatch(struct ub_dev *sc); |
| static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc); |
| static void __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
| static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| int stalled_pipe); |
| static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd); |
| static int ub_sync_tur(struct ub_dev *sc); |
| static int ub_sync_read_cap(struct ub_dev *sc, struct ub_capacity *ret); |
| |
| /* |
| */ |
| static struct usb_device_id ub_usb_ids[] = { |
| // { USB_DEVICE_VER(0x0781, 0x0002, 0x0009, 0x0009) }, /* SDDR-31 */ |
| { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, US_SC_SCSI, US_PR_BULK) }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(usb, ub_usb_ids); |
| |
| /* |
| * Find me a way to identify "next free minor" for add_disk(), |
| * and the array disappears the next day. However, the number of |
| * hosts has something to do with the naming and /proc/partitions. |
| * This has to be thought out in detail before changing. |
| * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure. |
| */ |
| #define UB_MAX_HOSTS 26 |
| static char ub_hostv[UB_MAX_HOSTS]; |
| static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */ |
| |
| /* |
| * The SCSI command tracing procedures. |
| */ |
| |
| static void ub_cmdtr_new(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| int n; |
| struct ub_scsi_cmd_trace *t; |
| |
| if ((n = sc->tr.cur + 1) == SCMD_TRACE_SZ) n = 0; |
| t = &sc->tr.vec[n]; |
| |
| memset(t, 0, sizeof(struct ub_scsi_cmd_trace)); |
| t->tag = cmd->tag; |
| t->op = cmd->cdb[0]; |
| t->dir = cmd->dir; |
| t->req_size = cmd->len; |
| t->st_hst[0] = cmd->state; |
| |
| sc->tr.cur = n; |
| cmd->trace_index = n; |
| } |
| |
| static void ub_cmdtr_state(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| int n; |
| struct ub_scsi_cmd_trace *t; |
| |
| t = &sc->tr.vec[cmd->trace_index]; |
| if (t->tag == cmd->tag) { |
| if ((n = t->hcur + 1) == SCMD_ST_HIST_SZ) n = 0; |
| t->st_hst[n] = cmd->state; |
| t->hcur = n; |
| } |
| } |
| |
| static void ub_cmdtr_act_len(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct ub_scsi_cmd_trace *t; |
| |
| t = &sc->tr.vec[cmd->trace_index]; |
| if (t->tag == cmd->tag) |
| t->act_size = cmd->act_len; |
| } |
| |
| static void ub_cmdtr_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| unsigned char *sense) |
| { |
| struct ub_scsi_cmd_trace *t; |
| |
| t = &sc->tr.vec[cmd->trace_index]; |
| if (t->tag == cmd->tag) { |
| t->key = sense[2] & 0x0F; |
| t->asc = sense[12]; |
| t->ascq = sense[13]; |
| } |
| } |
| |
| static ssize_t ub_diag_show(struct device *dev, char *page) |
| { |
| struct usb_interface *intf; |
| struct ub_dev *sc; |
| int cnt; |
| unsigned long flags; |
| int nc, nh; |
| int i, j; |
| struct ub_scsi_cmd_trace *t; |
| |
| intf = to_usb_interface(dev); |
| sc = usb_get_intfdata(intf); |
| if (sc == NULL) |
| return 0; |
| |
| cnt = 0; |
| spin_lock_irqsave(&sc->lock, flags); |
| |
| cnt += sprintf(page + cnt, |
| "qlen %d qmax %d changed %d removable %d readonly %d\n", |
| sc->cmd_queue.qlen, sc->cmd_queue.qmax, |
| sc->changed, sc->removable, sc->readonly); |
| |
| if ((nc = sc->tr.cur + 1) == SCMD_TRACE_SZ) nc = 0; |
| for (j = 0; j < SCMD_TRACE_SZ; j++) { |
| t = &sc->tr.vec[nc]; |
| |
| cnt += sprintf(page + cnt, "%08x %02x", t->tag, t->op); |
| if (t->op == REQUEST_SENSE) { |
| cnt += sprintf(page + cnt, " [sense %x %02x %02x]", |
| t->key, t->asc, t->ascq); |
| } else { |
| cnt += sprintf(page + cnt, " %c", UB_DIR_CHAR(t->dir)); |
| cnt += sprintf(page + cnt, " [%5d %5d]", |
| t->req_size, t->act_size); |
| } |
| if ((nh = t->hcur + 1) == SCMD_ST_HIST_SZ) nh = 0; |
| for (i = 0; i < SCMD_ST_HIST_SZ; i++) { |
| cnt += sprintf(page + cnt, " %s", |
| ub_scsi_cmd_stname[(int)t->st_hst[nh]]); |
| if (++nh == SCMD_ST_HIST_SZ) nh = 0; |
| } |
| cnt += sprintf(page + cnt, "\n"); |
| |
| if (++nc == SCMD_TRACE_SZ) nc = 0; |
| } |
| |
| spin_unlock_irqrestore(&sc->lock, flags); |
| return cnt; |
| } |
| |
| static DEVICE_ATTR(diag, S_IRUGO, ub_diag_show, NULL); /* N.B. World readable */ |
| |
| /* |
| * The id allocator. |
| * |
| * This also stores the host for indexing by minor, which is somewhat dirty. |
| */ |
| static int ub_id_get(void) |
| { |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&ub_lock, flags); |
| for (i = 0; i < UB_MAX_HOSTS; i++) { |
| if (ub_hostv[i] == 0) { |
| ub_hostv[i] = 1; |
| spin_unlock_irqrestore(&ub_lock, flags); |
| return i; |
| } |
| } |
| spin_unlock_irqrestore(&ub_lock, flags); |
| return -1; |
| } |
| |
| static void ub_id_put(int id) |
| { |
| unsigned long flags; |
| |
| if (id < 0 || id >= UB_MAX_HOSTS) { |
| printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id); |
| return; |
| } |
| |
| spin_lock_irqsave(&ub_lock, flags); |
| if (ub_hostv[id] == 0) { |
| spin_unlock_irqrestore(&ub_lock, flags); |
| printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id); |
| return; |
| } |
| ub_hostv[id] = 0; |
| spin_unlock_irqrestore(&ub_lock, flags); |
| } |
| |
| /* |
| * Downcount for deallocation. This rides on two assumptions: |
| * - once something is poisoned, its refcount cannot grow |
| * - opens cannot happen at this time (del_gendisk was done) |
| * If the above is true, we can drop the lock, which we need for |
| * blk_cleanup_queue(): the silly thing may attempt to sleep. |
| * [Actually, it never needs to sleep for us, but it calls might_sleep()] |
| */ |
| static void ub_put(struct ub_dev *sc) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ub_lock, flags); |
| --sc->openc; |
| if (sc->openc == 0 && atomic_read(&sc->poison)) { |
| spin_unlock_irqrestore(&ub_lock, flags); |
| ub_cleanup(sc); |
| } else { |
| spin_unlock_irqrestore(&ub_lock, flags); |
| } |
| } |
| |
| /* |
| * Final cleanup and deallocation. |
| */ |
| static void ub_cleanup(struct ub_dev *sc) |
| { |
| request_queue_t *q; |
| |
| /* I don't think queue can be NULL. But... Stolen from sx8.c */ |
| if ((q = sc->disk->queue) != NULL) |
| blk_cleanup_queue(q); |
| |
| /* |
| * If we zero disk->private_data BEFORE put_disk, we have to check |
| * for NULL all over the place in open, release, check_media and |
| * revalidate, because the block level semaphore is well inside the |
| * put_disk. But we cannot zero after the call, because *disk is gone. |
| * The sd.c is blatantly racy in this area. |
| */ |
| /* disk->private_data = NULL; */ |
| put_disk(sc->disk); |
| sc->disk = NULL; |
| |
| ub_id_put(sc->id); |
| kfree(sc); |
| } |
| |
| /* |
| * The "command allocator". |
| */ |
| static struct ub_scsi_cmd *ub_get_cmd(struct ub_dev *sc) |
| { |
| struct ub_scsi_cmd *ret; |
| |
| if (sc->cmda[0]) |
| return NULL; |
| ret = &sc->cmdv[0]; |
| sc->cmda[0] = 1; |
| return ret; |
| } |
| |
| static void ub_put_cmd(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| if (cmd != &sc->cmdv[0]) { |
| printk(KERN_WARNING "%s: releasing a foreign cmd %p\n", |
| sc->name, cmd); |
| return; |
| } |
| if (!sc->cmda[0]) { |
| printk(KERN_WARNING "%s: releasing a free cmd\n", sc->name); |
| return; |
| } |
| sc->cmda[0] = 0; |
| } |
| |
| /* |
| * The command queue. |
| */ |
| static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
| |
| if (t->qlen++ == 0) { |
| t->head = cmd; |
| t->tail = cmd; |
| } else { |
| t->tail->next = cmd; |
| t->tail = cmd; |
| } |
| |
| if (t->qlen > t->qmax) |
| t->qmax = t->qlen; |
| } |
| |
| static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
| |
| if (t->qlen++ == 0) { |
| t->head = cmd; |
| t->tail = cmd; |
| } else { |
| cmd->next = t->head; |
| t->head = cmd; |
| } |
| |
| if (t->qlen > t->qmax) |
| t->qmax = t->qlen; |
| } |
| |
| static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc) |
| { |
| struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
| struct ub_scsi_cmd *cmd; |
| |
| if (t->qlen == 0) |
| return NULL; |
| if (--t->qlen == 0) |
| t->tail = NULL; |
| cmd = t->head; |
| t->head = cmd->next; |
| cmd->next = NULL; |
| return cmd; |
| } |
| |
| #define ub_cmdq_peek(sc) ((sc)->cmd_queue.head) |
| |
| /* |
| * The request function is our main entry point |
| */ |
| |
| static void ub_bd_rq_fn(request_queue_t *q) |
| { |
| struct ub_dev *sc = q->queuedata; |
| struct request *rq; |
| |
| while ((rq = elv_next_request(q)) != NULL) { |
| if (ub_bd_rq_fn_1(sc, rq) != 0) { |
| blk_stop_queue(q); |
| break; |
| } |
| } |
| } |
| |
| static int ub_bd_rq_fn_1(struct ub_dev *sc, struct request *rq) |
| { |
| struct ub_scsi_cmd *cmd; |
| int rc; |
| |
| if (atomic_read(&sc->poison) || sc->changed) { |
| blkdev_dequeue_request(rq); |
| ub_end_rq(rq, 0); |
| return 0; |
| } |
| |
| if ((cmd = ub_get_cmd(sc)) == NULL) |
| return -1; |
| memset(cmd, 0, sizeof(struct ub_scsi_cmd)); |
| |
| blkdev_dequeue_request(rq); |
| |
| if (blk_pc_request(rq)) { |
| rc = ub_cmd_build_packet(sc, cmd, rq); |
| } else { |
| rc = ub_cmd_build_block(sc, cmd, rq); |
| } |
| if (rc != 0) { |
| ub_put_cmd(sc, cmd); |
| ub_end_rq(rq, 0); |
| blk_start_queue(sc->disk->queue); |
| return 0; |
| } |
| |
| cmd->state = UB_CMDST_INIT; |
| cmd->done = ub_rw_cmd_done; |
| cmd->back = rq; |
| |
| cmd->tag = sc->tagcnt++; |
| if ((rc = ub_submit_scsi(sc, cmd)) != 0) { |
| ub_put_cmd(sc, cmd); |
| ub_end_rq(rq, 0); |
| blk_start_queue(sc->disk->queue); |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| static int ub_cmd_build_block(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| struct request *rq) |
| { |
| int ub_dir; |
| #if 0 /* We use rq->buffer for now */ |
| struct scatterlist *sg; |
| int n_elem; |
| #endif |
| unsigned int block, nblks; |
| |
| if (rq_data_dir(rq) == WRITE) |
| ub_dir = UB_DIR_WRITE; |
| else |
| ub_dir = UB_DIR_READ; |
| |
| /* |
| * get scatterlist from block layer |
| */ |
| #if 0 /* We use rq->buffer for now */ |
| sg = &cmd->sgv[0]; |
| n_elem = blk_rq_map_sg(q, rq, sg); |
| if (n_elem <= 0) { |
| ub_put_cmd(sc, cmd); |
| ub_end_rq(rq, 0); |
| blk_start_queue(q); |
| return 0; /* request with no s/g entries? */ |
| } |
| |
| if (n_elem != 1) { /* Paranoia */ |
| printk(KERN_WARNING "%s: request with %d segments\n", |
| sc->name, n_elem); |
| ub_put_cmd(sc, cmd); |
| ub_end_rq(rq, 0); |
| blk_start_queue(q); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * XXX Unfortunately, this check does not work. It is quite possible |
| * to get bogus non-null rq->buffer if you allow sg by mistake. |
| */ |
| if (rq->buffer == NULL) { |
| /* |
| * This must not happen if we set the queue right. |
| * The block level must create bounce buffers for us. |
| */ |
| static int do_print = 1; |
| if (do_print) { |
| printk(KERN_WARNING "%s: unmapped block request" |
| " flags 0x%lx sectors %lu\n", |
| sc->name, rq->flags, rq->nr_sectors); |
| do_print = 0; |
| } |
| return -1; |
| } |
| |
| /* |
| * build the command |
| * |
| * The call to blk_queue_hardsect_size() guarantees that request |
| * is aligned, but it is given in terms of 512 byte units, always. |
| */ |
| block = rq->sector >> sc->capacity.bshift; |
| nblks = rq->nr_sectors >> sc->capacity.bshift; |
| |
| cmd->cdb[0] = (ub_dir == UB_DIR_READ)? READ_10: WRITE_10; |
| /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */ |
| cmd->cdb[2] = block >> 24; |
| cmd->cdb[3] = block >> 16; |
| cmd->cdb[4] = block >> 8; |
| cmd->cdb[5] = block; |
| cmd->cdb[7] = nblks >> 8; |
| cmd->cdb[8] = nblks; |
| cmd->cdb_len = 10; |
| |
| cmd->dir = ub_dir; |
| cmd->data = rq->buffer; |
| cmd->len = rq->nr_sectors * 512; |
| |
| return 0; |
| } |
| |
| static int ub_cmd_build_packet(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| struct request *rq) |
| { |
| |
| if (rq->data_len != 0 && rq->data == NULL) { |
| static int do_print = 1; |
| if (do_print) { |
| printk(KERN_WARNING "%s: unmapped packet request" |
| " flags 0x%lx length %d\n", |
| sc->name, rq->flags, rq->data_len); |
| do_print = 0; |
| } |
| return -1; |
| } |
| |
| memcpy(&cmd->cdb, rq->cmd, rq->cmd_len); |
| cmd->cdb_len = rq->cmd_len; |
| |
| if (rq->data_len == 0) { |
| cmd->dir = UB_DIR_NONE; |
| } else { |
| if (rq_data_dir(rq) == WRITE) |
| cmd->dir = UB_DIR_WRITE; |
| else |
| cmd->dir = UB_DIR_READ; |
| } |
| cmd->data = rq->data; |
| cmd->len = rq->data_len; |
| |
| return 0; |
| } |
| |
| static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct request *rq = cmd->back; |
| struct gendisk *disk = sc->disk; |
| request_queue_t *q = disk->queue; |
| int uptodate; |
| |
| if (blk_pc_request(rq)) { |
| /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */ |
| memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE); |
| rq->sense_len = UB_SENSE_SIZE; |
| } |
| |
| if (cmd->error == 0) |
| uptodate = 1; |
| else |
| uptodate = 0; |
| |
| ub_put_cmd(sc, cmd); |
| ub_end_rq(rq, uptodate); |
| blk_start_queue(q); |
| } |
| |
| static void ub_end_rq(struct request *rq, int uptodate) |
| { |
| int rc; |
| |
| rc = end_that_request_first(rq, uptodate, rq->hard_nr_sectors); |
| // assert(rc == 0); |
| end_that_request_last(rq); |
| } |
| |
| /* |
| * Submit a regular SCSI operation (not an auto-sense). |
| * |
| * The Iron Law of Good Submit Routine is: |
| * Zero return - callback is done, Nonzero return - callback is not done. |
| * No exceptions. |
| * |
| * Host is assumed locked. |
| * |
| * XXX We only support Bulk for the moment. |
| */ |
| static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| |
| if (cmd->state != UB_CMDST_INIT || |
| (cmd->dir != UB_DIR_NONE && cmd->len == 0)) { |
| return -EINVAL; |
| } |
| |
| ub_cmdq_add(sc, cmd); |
| /* |
| * We can call ub_scsi_dispatch(sc) right away here, but it's a little |
| * safer to jump to a tasklet, in case upper layers do something silly. |
| */ |
| tasklet_schedule(&sc->tasklet); |
| return 0; |
| } |
| |
| /* |
| * Submit the first URB for the queued command. |
| * This function does not deal with queueing in any way. |
| */ |
| static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct bulk_cb_wrap *bcb; |
| int rc; |
| |
| bcb = &sc->work_bcb; |
| |
| /* |
| * ``If the allocation length is eighteen or greater, and a device |
| * server returns less than eithteen bytes of data, the application |
| * client should assume that the bytes not transferred would have been |
| * zeroes had the device server returned those bytes.'' |
| * |
| * We zero sense for all commands so that when a packet request |
| * fails it does not return a stale sense. |
| */ |
| memset(&sc->top_sense, 0, UB_SENSE_SIZE); |
| |
| /* set up the command wrapper */ |
| bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); |
| bcb->Tag = cmd->tag; /* Endianness is not important */ |
| bcb->DataTransferLength = cpu_to_le32(cmd->len); |
| bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0; |
| bcb->Lun = 0; /* No multi-LUN yet */ |
| bcb->Length = cmd->cdb_len; |
| |
| /* copy the command payload */ |
| memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE); |
| |
| UB_INIT_COMPLETION(sc->work_done); |
| |
| sc->last_pipe = sc->send_bulk_pipe; |
| usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe, |
| bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc); |
| sc->work_urb.transfer_flags = URB_ASYNC_UNLINK; |
| |
| /* Fill what we shouldn't be filling, because usb-storage did so. */ |
| sc->work_urb.actual_length = 0; |
| sc->work_urb.error_count = 0; |
| sc->work_urb.status = 0; |
| |
| if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
| /* XXX Clear stalls */ |
| printk("ub: cmd #%d start failed (%d)\n", cmd->tag, rc); /* P3 */ |
| ub_complete(&sc->work_done); |
| return rc; |
| } |
| |
| sc->work_timer.expires = jiffies + UB_URB_TIMEOUT; |
| add_timer(&sc->work_timer); |
| |
| cmd->state = UB_CMDST_CMD; |
| ub_cmdtr_state(sc, cmd); |
| return 0; |
| } |
| |
| /* |
| * Timeout handler. |
| */ |
| static void ub_urb_timeout(unsigned long arg) |
| { |
| struct ub_dev *sc = (struct ub_dev *) arg; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sc->lock, flags); |
| usb_unlink_urb(&sc->work_urb); |
| spin_unlock_irqrestore(&sc->lock, flags); |
| } |
| |
| /* |
| * Completion routine for the work URB. |
| * |
| * This can be called directly from usb_submit_urb (while we have |
| * the sc->lock taken) and from an interrupt (while we do NOT have |
| * the sc->lock taken). Therefore, bounce this off to a tasklet. |
| */ |
| static void ub_urb_complete(struct urb *urb, struct pt_regs *pt) |
| { |
| struct ub_dev *sc = urb->context; |
| |
| ub_complete(&sc->work_done); |
| tasklet_schedule(&sc->tasklet); |
| } |
| |
| static void ub_scsi_action(unsigned long _dev) |
| { |
| struct ub_dev *sc = (struct ub_dev *) _dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sc->lock, flags); |
| del_timer(&sc->work_timer); |
| ub_scsi_dispatch(sc); |
| spin_unlock_irqrestore(&sc->lock, flags); |
| } |
| |
| static void ub_scsi_dispatch(struct ub_dev *sc) |
| { |
| struct ub_scsi_cmd *cmd; |
| int rc; |
| |
| while ((cmd = ub_cmdq_peek(sc)) != NULL) { |
| if (cmd->state == UB_CMDST_DONE) { |
| ub_cmdq_pop(sc); |
| (*cmd->done)(sc, cmd); |
| } else if (cmd->state == UB_CMDST_INIT) { |
| ub_cmdtr_new(sc, cmd); |
| if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0) |
| break; |
| cmd->error = rc; |
| cmd->state = UB_CMDST_DONE; |
| ub_cmdtr_state(sc, cmd); |
| } else { |
| if (!ub_is_completed(&sc->work_done)) |
| break; |
| ub_scsi_urb_compl(sc, cmd); |
| } |
| } |
| } |
| |
| static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct urb *urb = &sc->work_urb; |
| struct bulk_cs_wrap *bcs; |
| int pipe; |
| int rc; |
| |
| if (atomic_read(&sc->poison)) { |
| /* A little too simplistic, I feel... */ |
| goto Bad_End; |
| } |
| |
| if (cmd->state == UB_CMDST_CLEAR) { |
| if (urb->status == -EPIPE) { |
| /* |
| * STALL while clearning STALL. |
| * The control pipe clears itself - nothing to do. |
| * XXX Might try to reset the device here and retry. |
| */ |
| printk(KERN_NOTICE "%s: " |
| "stall on control pipe for device %u\n", |
| sc->name, sc->dev->devnum); |
| goto Bad_End; |
| } |
| |
| /* |
| * We ignore the result for the halt clear. |
| */ |
| |
| /* reset the endpoint toggle */ |
| usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe), |
| usb_pipeout(sc->last_pipe), 0); |
| |
| ub_state_sense(sc, cmd); |
| |
| } else if (cmd->state == UB_CMDST_CLR2STS) { |
| if (urb->status == -EPIPE) { |
| /* |
| * STALL while clearning STALL. |
| * The control pipe clears itself - nothing to do. |
| * XXX Might try to reset the device here and retry. |
| */ |
| printk(KERN_NOTICE "%s: " |
| "stall on control pipe for device %u\n", |
| sc->name, sc->dev->devnum); |
| goto Bad_End; |
| } |
| |
| /* |
| * We ignore the result for the halt clear. |
| */ |
| |
| /* reset the endpoint toggle */ |
| usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe), |
| usb_pipeout(sc->last_pipe), 0); |
| |
| ub_state_stat(sc, cmd); |
| |
| } else if (cmd->state == UB_CMDST_CMD) { |
| if (urb->status == -EPIPE) { |
| rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
| if (rc != 0) { |
| printk(KERN_NOTICE "%s: " |
| "unable to submit clear for device %u" |
| " (code %d)\n", |
| sc->name, sc->dev->devnum, rc); |
| /* |
| * This is typically ENOMEM or some other such shit. |
| * Retrying is pointless. Just do Bad End on it... |
| */ |
| goto Bad_End; |
| } |
| cmd->state = UB_CMDST_CLEAR; |
| ub_cmdtr_state(sc, cmd); |
| return; |
| } |
| if (urb->status != 0) { |
| printk("ub: cmd #%d cmd status (%d)\n", cmd->tag, urb->status); /* P3 */ |
| goto Bad_End; |
| } |
| if (urb->actual_length != US_BULK_CB_WRAP_LEN) { |
| printk("ub: cmd #%d xferred %d\n", cmd->tag, urb->actual_length); /* P3 */ |
| /* XXX Must do reset here to unconfuse the device */ |
| goto Bad_End; |
| } |
| |
| if (cmd->dir == UB_DIR_NONE) { |
| ub_state_stat(sc, cmd); |
| return; |
| } |
| |
| UB_INIT_COMPLETION(sc->work_done); |
| |
| if (cmd->dir == UB_DIR_READ) |
| pipe = sc->recv_bulk_pipe; |
| else |
| pipe = sc->send_bulk_pipe; |
| sc->last_pipe = pipe; |
| usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, |
| cmd->data, cmd->len, ub_urb_complete, sc); |
| sc->work_urb.transfer_flags = URB_ASYNC_UNLINK; |
| sc->work_urb.actual_length = 0; |
| sc->work_urb.error_count = 0; |
| sc->work_urb.status = 0; |
| |
| if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
| /* XXX Clear stalls */ |
| printk("ub: data #%d submit failed (%d)\n", cmd->tag, rc); /* P3 */ |
| ub_complete(&sc->work_done); |
| ub_state_done(sc, cmd, rc); |
| return; |
| } |
| |
| sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT; |
| add_timer(&sc->work_timer); |
| |
| cmd->state = UB_CMDST_DATA; |
| ub_cmdtr_state(sc, cmd); |
| |
| } else if (cmd->state == UB_CMDST_DATA) { |
| if (urb->status == -EPIPE) { |
| rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
| if (rc != 0) { |
| printk(KERN_NOTICE "%s: " |
| "unable to submit clear for device %u" |
| " (code %d)\n", |
| sc->name, sc->dev->devnum, rc); |
| /* |
| * This is typically ENOMEM or some other such shit. |
| * Retrying is pointless. Just do Bad End on it... |
| */ |
| goto Bad_End; |
| } |
| cmd->state = UB_CMDST_CLR2STS; |
| ub_cmdtr_state(sc, cmd); |
| return; |
| } |
| if (urb->status == -EOVERFLOW) { |
| /* |
| * A babble? Failure, but we must transfer CSW now. |
| */ |
| cmd->error = -EOVERFLOW; /* A cheap trick... */ |
| } else { |
| if (urb->status != 0) |
| goto Bad_End; |
| } |
| |
| cmd->act_len = urb->actual_length; |
| ub_cmdtr_act_len(sc, cmd); |
| |
| ub_state_stat(sc, cmd); |
| |
| } else if (cmd->state == UB_CMDST_STAT) { |
| if (urb->status == -EPIPE) { |
| rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
| if (rc != 0) { |
| printk(KERN_NOTICE "%s: " |
| "unable to submit clear for device %u" |
| " (code %d)\n", |
| sc->name, sc->dev->devnum, rc); |
| /* |
| * This is typically ENOMEM or some other such shit. |
| * Retrying is pointless. Just do Bad End on it... |
| */ |
| goto Bad_End; |
| } |
| cmd->state = UB_CMDST_CLEAR; |
| ub_cmdtr_state(sc, cmd); |
| return; |
| } |
| if (urb->status != 0) |
| goto Bad_End; |
| |
| if (urb->actual_length == 0) { |
| /* |
| * Some broken devices add unnecessary zero-length |
| * packets to the end of their data transfers. |
| * Such packets show up as 0-length CSWs. If we |
| * encounter such a thing, try to read the CSW again. |
| */ |
| if (++cmd->stat_count >= 4) { |
| printk(KERN_NOTICE "%s: " |
| "unable to get CSW on device %u\n", |
| sc->name, sc->dev->devnum); |
| goto Bad_End; |
| } |
| __ub_state_stat(sc, cmd); |
| return; |
| } |
| |
| /* |
| * Check the returned Bulk protocol status. |
| */ |
| |
| bcs = &sc->work_bcs; |
| rc = le32_to_cpu(bcs->Residue); |
| if (rc != cmd->len - cmd->act_len) { |
| /* |
| * It is all right to transfer less, the caller has |
| * to check. But it's not all right if the device |
| * counts disagree with our counts. |
| */ |
| /* P3 */ printk("%s: resid %d len %d act %d\n", |
| sc->name, rc, cmd->len, cmd->act_len); |
| goto Bad_End; |
| } |
| |
| #if 0 |
| if (bcs->Signature != cpu_to_le32(US_BULK_CS_SIGN) && |
| bcs->Signature != cpu_to_le32(US_BULK_CS_OLYMPUS_SIGN)) { |
| /* Windows ignores signatures, so do we. */ |
| } |
| #endif |
| |
| if (bcs->Tag != cmd->tag) { |
| /* |
| * This usually happens when we disagree with the |
| * device's microcode about something. For instance, |
| * a few of them throw this after timeouts. They buffer |
| * commands and reply at commands we timed out before. |
| * Without flushing these replies we loop forever. |
| */ |
| if (++cmd->stat_count >= 4) { |
| printk(KERN_NOTICE "%s: " |
| "tag mismatch orig 0x%x reply 0x%x " |
| "on device %u\n", |
| sc->name, cmd->tag, bcs->Tag, |
| sc->dev->devnum); |
| goto Bad_End; |
| } |
| __ub_state_stat(sc, cmd); |
| return; |
| } |
| |
| switch (bcs->Status) { |
| case US_BULK_STAT_OK: |
| break; |
| case US_BULK_STAT_FAIL: |
| ub_state_sense(sc, cmd); |
| return; |
| case US_BULK_STAT_PHASE: |
| /* XXX We must reset the transport here */ |
| /* P3 */ printk("%s: status PHASE\n", sc->name); |
| goto Bad_End; |
| default: |
| printk(KERN_INFO "%s: unknown CSW status 0x%x\n", |
| sc->name, bcs->Status); |
| goto Bad_End; |
| } |
| |
| /* Not zeroing error to preserve a babble indicator */ |
| cmd->state = UB_CMDST_DONE; |
| ub_cmdtr_state(sc, cmd); |
| ub_cmdq_pop(sc); |
| (*cmd->done)(sc, cmd); |
| |
| } else if (cmd->state == UB_CMDST_SENSE) { |
| ub_state_done(sc, cmd, -EIO); |
| |
| } else { |
| printk(KERN_WARNING "%s: " |
| "wrong command state %d on device %u\n", |
| sc->name, cmd->state, sc->dev->devnum); |
| goto Bad_End; |
| } |
| return; |
| |
| Bad_End: /* Little Excel is dead */ |
| ub_state_done(sc, cmd, -EIO); |
| } |
| |
| /* |
| * Factorization helper for the command state machine: |
| * Finish the command. |
| */ |
| static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc) |
| { |
| |
| cmd->error = rc; |
| cmd->state = UB_CMDST_DONE; |
| ub_cmdtr_state(sc, cmd); |
| ub_cmdq_pop(sc); |
| (*cmd->done)(sc, cmd); |
| } |
| |
| /* |
| * Factorization helper for the command state machine: |
| * Submit a CSW read. |
| */ |
| static void __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| int rc; |
| |
| UB_INIT_COMPLETION(sc->work_done); |
| |
| sc->last_pipe = sc->recv_bulk_pipe; |
| usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe, |
| &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc); |
| sc->work_urb.transfer_flags = URB_ASYNC_UNLINK; |
| sc->work_urb.actual_length = 0; |
| sc->work_urb.error_count = 0; |
| sc->work_urb.status = 0; |
| |
| if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
| /* XXX Clear stalls */ |
| printk("%s: CSW #%d submit failed (%d)\n", sc->name, cmd->tag, rc); /* P3 */ |
| ub_complete(&sc->work_done); |
| ub_state_done(sc, cmd, rc); |
| return; |
| } |
| |
| sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT; |
| add_timer(&sc->work_timer); |
| } |
| |
| /* |
| * Factorization helper for the command state machine: |
| * Submit a CSW read and go to STAT state. |
| */ |
| static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| __ub_state_stat(sc, cmd); |
| |
| cmd->stat_count = 0; |
| cmd->state = UB_CMDST_STAT; |
| ub_cmdtr_state(sc, cmd); |
| } |
| |
| /* |
| * Factorization helper for the command state machine: |
| * Submit a REQUEST SENSE and go to SENSE state. |
| */ |
| static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct ub_scsi_cmd *scmd; |
| int rc; |
| |
| if (cmd->cdb[0] == REQUEST_SENSE) { |
| rc = -EPIPE; |
| goto error; |
| } |
| |
| scmd = &sc->top_rqs_cmd; |
| scmd->cdb[0] = REQUEST_SENSE; |
| scmd->cdb[4] = UB_SENSE_SIZE; |
| scmd->cdb_len = 6; |
| scmd->dir = UB_DIR_READ; |
| scmd->state = UB_CMDST_INIT; |
| scmd->data = sc->top_sense; |
| scmd->len = UB_SENSE_SIZE; |
| scmd->done = ub_top_sense_done; |
| scmd->back = cmd; |
| |
| scmd->tag = sc->tagcnt++; |
| |
| cmd->state = UB_CMDST_SENSE; |
| ub_cmdtr_state(sc, cmd); |
| |
| ub_cmdq_insert(sc, scmd); |
| return; |
| |
| error: |
| ub_state_done(sc, cmd, rc); |
| } |
| |
| /* |
| * A helper for the command's state machine: |
| * Submit a stall clear. |
| */ |
| static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
| int stalled_pipe) |
| { |
| int endp; |
| struct usb_ctrlrequest *cr; |
| int rc; |
| |
| endp = usb_pipeendpoint(stalled_pipe); |
| if (usb_pipein (stalled_pipe)) |
| endp |= USB_DIR_IN; |
| |
| cr = &sc->work_cr; |
| cr->bRequestType = USB_RECIP_ENDPOINT; |
| cr->bRequest = USB_REQ_CLEAR_FEATURE; |
| cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); |
| cr->wIndex = cpu_to_le16(endp); |
| cr->wLength = cpu_to_le16(0); |
| |
| UB_INIT_COMPLETION(sc->work_done); |
| |
| usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, |
| (unsigned char*) cr, NULL, 0, ub_urb_complete, sc); |
| sc->work_urb.transfer_flags = URB_ASYNC_UNLINK; |
| sc->work_urb.actual_length = 0; |
| sc->work_urb.error_count = 0; |
| sc->work_urb.status = 0; |
| |
| if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
| ub_complete(&sc->work_done); |
| return rc; |
| } |
| |
| sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT; |
| add_timer(&sc->work_timer); |
| return 0; |
| } |
| |
| /* |
| */ |
| static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd) |
| { |
| unsigned char *sense = scmd->data; |
| struct ub_scsi_cmd *cmd; |
| |
| /* |
| * Ignoring scmd->act_len, because the buffer was pre-zeroed. |
| */ |
| ub_cmdtr_sense(sc, scmd, sense); |
| |
| /* |
| * Find the command which triggered the unit attention or a check, |
| * save the sense into it, and advance its state machine. |
| */ |
| if ((cmd = ub_cmdq_peek(sc)) == NULL) { |
| printk(KERN_WARNING "%s: sense done while idle\n", sc->name); |
| return; |
| } |
| if (cmd != scmd->back) { |
| printk(KERN_WARNING "%s: " |
| "sense done for wrong command 0x%x on device %u\n", |
| sc->name, cmd->tag, sc->dev->devnum); |
| return; |
| } |
| if (cmd->state != UB_CMDST_SENSE) { |
| printk(KERN_WARNING "%s: " |
| "sense done with bad cmd state %d on device %u\n", |
| sc->name, cmd->state, sc->dev->devnum); |
| return; |
| } |
| |
| cmd->key = sense[2] & 0x0F; |
| cmd->asc = sense[12]; |
| cmd->ascq = sense[13]; |
| |
| ub_scsi_urb_compl(sc, cmd); |
| } |
| |
| #if 0 |
| /* Determine what the maximum LUN supported is */ |
| int usb_stor_Bulk_max_lun(struct us_data *us) |
| { |
| int result; |
| |
| /* issue the command */ |
| result = usb_stor_control_msg(us, us->recv_ctrl_pipe, |
| US_BULK_GET_MAX_LUN, |
| USB_DIR_IN | USB_TYPE_CLASS | |
| USB_RECIP_INTERFACE, |
| 0, us->ifnum, us->iobuf, 1, HZ); |
| |
| /* |
| * Some devices (i.e. Iomega Zip100) need this -- apparently |
| * the bulk pipes get STALLed when the GetMaxLUN request is |
| * processed. This is, in theory, harmless to all other devices |
| * (regardless of if they stall or not). |
| */ |
| if (result < 0) { |
| usb_stor_clear_halt(us, us->recv_bulk_pipe); |
| usb_stor_clear_halt(us, us->send_bulk_pipe); |
| } |
| |
| US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", |
| result, us->iobuf[0]); |
| |
| /* if we have a successful request, return the result */ |
| if (result == 1) |
| return us->iobuf[0]; |
| |
| /* return the default -- no LUNs */ |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This is called from a process context. |
| */ |
| static void ub_revalidate(struct ub_dev *sc) |
| { |
| |
| sc->readonly = 0; /* XXX Query this from the device */ |
| |
| sc->capacity.nsec = 0; |
| sc->capacity.bsize = 512; |
| sc->capacity.bshift = 0; |
| |
| if (ub_sync_tur(sc) != 0) |
| return; /* Not ready */ |
| sc->changed = 0; |
| |
| if (ub_sync_read_cap(sc, &sc->capacity) != 0) { |
| /* |
| * The retry here means something is wrong, either with the |
| * device, with the transport, or with our code. |
| * We keep this because sd.c has retries for capacity. |
| */ |
| if (ub_sync_read_cap(sc, &sc->capacity) != 0) { |
| sc->capacity.nsec = 0; |
| sc->capacity.bsize = 512; |
| sc->capacity.bshift = 0; |
| } |
| } |
| } |
| |
| /* |
| * The open funcion. |
| * This is mostly needed to keep refcounting, but also to support |
| * media checks on removable media drives. |
| */ |
| static int ub_bd_open(struct inode *inode, struct file *filp) |
| { |
| struct gendisk *disk = inode->i_bdev->bd_disk; |
| struct ub_dev *sc; |
| unsigned long flags; |
| int rc; |
| |
| if ((sc = disk->private_data) == NULL) |
| return -ENXIO; |
| spin_lock_irqsave(&ub_lock, flags); |
| if (atomic_read(&sc->poison)) { |
| spin_unlock_irqrestore(&ub_lock, flags); |
| return -ENXIO; |
| } |
| sc->openc++; |
| spin_unlock_irqrestore(&ub_lock, flags); |
| |
| /* |
| * This is a workaround for a specific problem in our block layer. |
| * In 2.6.9, register_disk duplicates the code from rescan_partitions. |
| * However, if we do add_disk with a device which persistently reports |
| * a changed media, add_disk calls register_disk, which does do_open, |
| * which will call rescan_paritions for changed media. After that, |
| * register_disk attempts to do it all again and causes double kobject |
| * registration and a eventually an oops on module removal. |
| * |
| * The bottom line is, Al Viro says that we should not allow |
| * bdev->bd_invalidated to be set when doing add_disk no matter what. |
| */ |
| if (sc->first_open) { |
| if (sc->changed) { |
| sc->first_open = 0; |
| rc = -ENOMEDIUM; |
| goto err_open; |
| } |
| } |
| |
| if (sc->removable || sc->readonly) |
| check_disk_change(inode->i_bdev); |
| |
| /* |
| * The sd.c considers ->media_present and ->changed not equivalent, |
| * under some pretty murky conditions (a failure of READ CAPACITY). |
| * We may need it one day. |
| */ |
| if (sc->removable && sc->changed && !(filp->f_flags & O_NDELAY)) { |
| rc = -ENOMEDIUM; |
| goto err_open; |
| } |
| |
| if (sc->readonly && (filp->f_mode & FMODE_WRITE)) { |
| rc = -EROFS; |
| goto err_open; |
| } |
| |
| return 0; |
| |
| err_open: |
| ub_put(sc); |
| return rc; |
| } |
| |
| /* |
| */ |
| static int ub_bd_release(struct inode *inode, struct file *filp) |
| { |
| struct gendisk *disk = inode->i_bdev->bd_disk; |
| struct ub_dev *sc = disk->private_data; |
| |
| ub_put(sc); |
| return 0; |
| } |
| |
| /* |
| * The ioctl interface. |
| */ |
| static int ub_bd_ioctl(struct inode *inode, struct file *filp, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct gendisk *disk = inode->i_bdev->bd_disk; |
| void __user *usermem = (void __user *) arg; |
| |
| return scsi_cmd_ioctl(filp, disk, cmd, usermem); |
| } |
| |
| /* |
| * This is called once a new disk was seen by the block layer or by ub_probe(). |
| * The main onjective here is to discover the features of the media such as |
| * the capacity, read-only status, etc. USB storage generally does not |
| * need to be spun up, but if we needed it, this would be the place. |
| * |
| * This call can sleep. |
| * |
| * The return code is not used. |
| */ |
| static int ub_bd_revalidate(struct gendisk *disk) |
| { |
| struct ub_dev *sc = disk->private_data; |
| |
| ub_revalidate(sc); |
| /* This is pretty much a long term P3 */ |
| if (!atomic_read(&sc->poison)) { /* Cover sc->dev */ |
| printk(KERN_INFO "%s: device %u capacity nsec %ld bsize %u\n", |
| sc->name, sc->dev->devnum, |
| sc->capacity.nsec, sc->capacity.bsize); |
| } |
| |
| /* XXX Support sector size switching like in sr.c */ |
| blk_queue_hardsect_size(disk->queue, sc->capacity.bsize); |
| set_capacity(disk, sc->capacity.nsec); |
| // set_disk_ro(sdkp->disk, sc->readonly); |
| |
| return 0; |
| } |
| |
| /* |
| * The check is called by the block layer to verify if the media |
| * is still available. It is supposed to be harmless, lightweight and |
| * non-intrusive in case the media was not changed. |
| * |
| * This call can sleep. |
| * |
| * The return code is bool! |
| */ |
| static int ub_bd_media_changed(struct gendisk *disk) |
| { |
| struct ub_dev *sc = disk->private_data; |
| |
| if (!sc->removable) |
| return 0; |
| |
| /* |
| * We clean checks always after every command, so this is not |
| * as dangerous as it looks. If the TEST_UNIT_READY fails here, |
| * the device is actually not ready with operator or software |
| * intervention required. One dangerous item might be a drive which |
| * spins itself down, and come the time to write dirty pages, this |
| * will fail, then block layer discards the data. Since we never |
| * spin drives up, such devices simply cannot be used with ub anyway. |
| */ |
| if (ub_sync_tur(sc) != 0) { |
| sc->changed = 1; |
| return 1; |
| } |
| |
| return sc->changed; |
| } |
| |
| static struct block_device_operations ub_bd_fops = { |
| .owner = THIS_MODULE, |
| .open = ub_bd_open, |
| .release = ub_bd_release, |
| .ioctl = ub_bd_ioctl, |
| .media_changed = ub_bd_media_changed, |
| .revalidate_disk = ub_bd_revalidate, |
| }; |
| |
| /* |
| * Common ->done routine for commands executed synchronously. |
| */ |
| static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
| { |
| struct completion *cop = cmd->back; |
| complete(cop); |
| } |
| |
| /* |
| * Test if the device has a check condition on it, synchronously. |
| */ |
| static int ub_sync_tur(struct ub_dev *sc) |
| { |
| struct ub_scsi_cmd *cmd; |
| enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) }; |
| unsigned long flags; |
| struct completion compl; |
| int rc; |
| |
| init_completion(&compl); |
| |
| rc = -ENOMEM; |
| if ((cmd = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) |
| goto err_alloc; |
| memset(cmd, 0, ALLOC_SIZE); |
| |
| cmd->cdb[0] = TEST_UNIT_READY; |
| cmd->cdb_len = 6; |
| cmd->dir = UB_DIR_NONE; |
| cmd->state = UB_CMDST_INIT; |
| cmd->done = ub_probe_done; |
| cmd->back = &compl; |
| |
| spin_lock_irqsave(&sc->lock, flags); |
| cmd->tag = sc->tagcnt++; |
| |
| rc = ub_submit_scsi(sc, cmd); |
| spin_unlock_irqrestore(&sc->lock, flags); |
| |
| if (rc != 0) { |
| printk("ub: testing ready: submit error (%d)\n", rc); /* P3 */ |
| goto err_submit; |
| } |
| |
| wait_for_completion(&compl); |
| |
| rc = cmd->error; |
| |
| if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */ |
| rc = cmd->key; |
| |
| err_submit: |
| kfree(cmd); |
| err_alloc: |
| return rc; |
| } |
| |
| /* |
| * Read the SCSI capacity synchronously (for probing). |
| */ |
| static int ub_sync_read_cap(struct ub_dev *sc, struct ub_capacity *ret) |
| { |
| struct ub_scsi_cmd *cmd; |
| char *p; |
| enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 }; |
| unsigned long flags; |
| unsigned int bsize, shift; |
| unsigned long nsec; |
| struct completion compl; |
| int rc; |
| |
| init_completion(&compl); |
| |
| rc = -ENOMEM; |
| if ((cmd = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) |
| goto err_alloc; |
| memset(cmd, 0, ALLOC_SIZE); |
| p = (char *)cmd + sizeof(struct ub_scsi_cmd); |
| |
| cmd->cdb[0] = 0x25; |
| cmd->cdb_len = 10; |
| cmd->dir = UB_DIR_READ; |
| cmd->state = UB_CMDST_INIT; |
| cmd->data = p; |
| cmd->len = 8; |
| cmd->done = ub_probe_done; |
| cmd->back = &compl; |
| |
| spin_lock_irqsave(&sc->lock, flags); |
| cmd->tag = sc->tagcnt++; |
| |
| rc = ub_submit_scsi(sc, cmd); |
| spin_unlock_irqrestore(&sc->lock, flags); |
| |
| if (rc != 0) { |
| printk("ub: reading capacity: submit error (%d)\n", rc); /* P3 */ |
| goto err_submit; |
| } |
| |
| wait_for_completion(&compl); |
| |
| if (cmd->error != 0) { |
| printk("ub: reading capacity: error %d\n", cmd->error); /* P3 */ |
| rc = -EIO; |
| goto err_read; |
| } |
| if (cmd->act_len != 8) { |
| printk("ub: reading capacity: size %d\n", cmd->act_len); /* P3 */ |
| rc = -EIO; |
| goto err_read; |
| } |
| |
| /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */ |
| nsec = be32_to_cpu(*(__be32 *)p) + 1; |
| bsize = be32_to_cpu(*(__be32 *)(p + 4)); |
| switch (bsize) { |
| case 512: shift = 0; break; |
| case 1024: shift = 1; break; |
| case 2048: shift = 2; break; |
| case 4096: shift = 3; break; |
| default: |
| printk("ub: Bad sector size %u\n", bsize); /* P3 */ |
| rc = -EDOM; |
| goto err_inv_bsize; |
| } |
| |
| ret->bsize = bsize; |
| ret->bshift = shift; |
| ret->nsec = nsec << shift; |
| rc = 0; |
| |
| err_inv_bsize: |
| err_read: |
| err_submit: |
| kfree(cmd); |
| err_alloc: |
| return rc; |
| } |
| |
| /* |
| */ |
| static void ub_probe_urb_complete(struct urb *urb, struct pt_regs *pt) |
| { |
| struct completion *cop = urb->context; |
| complete(cop); |
| } |
| |
| static void ub_probe_timeout(unsigned long arg) |
| { |
| struct completion *cop = (struct completion *) arg; |
| complete(cop); |
| } |
| |
| /* |
| * Clear initial stalls. |
| */ |
| static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe) |
| { |
| int endp; |
| struct usb_ctrlrequest *cr; |
| struct completion compl; |
| struct timer_list timer; |
| int rc; |
| |
| init_completion(&compl); |
| |
| endp = usb_pipeendpoint(stalled_pipe); |
| if (usb_pipein (stalled_pipe)) |
| endp |= USB_DIR_IN; |
| |
| cr = &sc->work_cr; |
| cr->bRequestType = USB_RECIP_ENDPOINT; |
| cr->bRequest = USB_REQ_CLEAR_FEATURE; |
| cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); |
| cr->wIndex = cpu_to_le16(endp); |
| cr->wLength = cpu_to_le16(0); |
| |
| usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, |
| (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); |
| sc->work_urb.transfer_flags = 0; |
| sc->work_urb.actual_length = 0; |
| sc->work_urb.error_count = 0; |
| sc->work_urb.status = 0; |
| |
| if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { |
| printk(KERN_WARNING |
| "%s: Unable to submit a probe clear (%d)\n", sc->name, rc); |
| return rc; |
| } |
| |
| init_timer(&timer); |
| timer.function = ub_probe_timeout; |
| timer.data = (unsigned long) &compl; |
| timer.expires = jiffies + UB_CTRL_TIMEOUT; |
| add_timer(&timer); |
| |
| wait_for_completion(&compl); |
| |
| del_timer_sync(&timer); |
| usb_kill_urb(&sc->work_urb); |
| |
| /* reset the endpoint toggle */ |
| usb_settoggle(sc->dev, endp, usb_pipeout(sc->last_pipe), 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Get the pipe settings. |
| */ |
| static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev, |
| struct usb_interface *intf) |
| { |
| struct usb_host_interface *altsetting = intf->cur_altsetting; |
| struct usb_endpoint_descriptor *ep_in = NULL; |
| struct usb_endpoint_descriptor *ep_out = NULL; |
| struct usb_endpoint_descriptor *ep; |
| int i; |
| |
| /* |
| * Find the endpoints we need. |
| * We are expecting a minimum of 2 endpoints - in and out (bulk). |
| * We will ignore any others. |
| */ |
| for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { |
| ep = &altsetting->endpoint[i].desc; |
| |
| /* Is it a BULK endpoint? */ |
| if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) |
| == USB_ENDPOINT_XFER_BULK) { |
| /* BULK in or out? */ |
| if (ep->bEndpointAddress & USB_DIR_IN) |
| ep_in = ep; |
| else |
| ep_out = ep; |
| } |
| } |
| |
| if (ep_in == NULL || ep_out == NULL) { |
| printk(KERN_NOTICE "%s: device %u failed endpoint check\n", |
| sc->name, sc->dev->devnum); |
| return -EIO; |
| } |
| |
| /* Calculate and store the pipe values */ |
| sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0); |
| sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0); |
| sc->send_bulk_pipe = usb_sndbulkpipe(dev, |
| ep_out->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); |
| sc->recv_bulk_pipe = usb_rcvbulkpipe(dev, |
| ep_in->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); |
| |
| return 0; |
| } |
| |
| /* |
| * Probing is done in the process context, which allows us to cheat |
| * and not to build a state machine for the discovery. |
| */ |
| static int ub_probe(struct usb_interface *intf, |
| const struct usb_device_id *dev_id) |
| { |
| struct ub_dev *sc; |
| request_queue_t *q; |
| struct gendisk *disk; |
| int rc; |
| int i; |
| |
| rc = -ENOMEM; |
| if ((sc = kmalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL) |
| goto err_core; |
| memset(sc, 0, sizeof(struct ub_dev)); |
| spin_lock_init(&sc->lock); |
| usb_init_urb(&sc->work_urb); |
| tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc); |
| atomic_set(&sc->poison, 0); |
| |
| init_timer(&sc->work_timer); |
| sc->work_timer.data = (unsigned long) sc; |
| sc->work_timer.function = ub_urb_timeout; |
| |
| ub_init_completion(&sc->work_done); |
| sc->work_done.done = 1; /* A little yuk, but oh well... */ |
| |
| rc = -ENOSR; |
| if ((sc->id = ub_id_get()) == -1) |
| goto err_id; |
| snprintf(sc->name, 8, DRV_NAME "%c", sc->id + 'a'); |
| |
| sc->dev = interface_to_usbdev(intf); |
| sc->intf = intf; |
| // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber; |
| |
| usb_set_intfdata(intf, sc); |
| usb_get_dev(sc->dev); |
| // usb_get_intf(sc->intf); /* Do we need this? */ |
| |
| /* XXX Verify that we can handle the device (from descriptors) */ |
| |
| ub_get_pipes(sc, sc->dev, intf); |
| |
| if (device_create_file(&sc->intf->dev, &dev_attr_diag) != 0) |
| goto err_diag; |
| |
| /* |
| * At this point, all USB initialization is done, do upper layer. |
| * We really hate halfway initialized structures, so from the |
| * invariants perspective, this ub_dev is fully constructed at |
| * this point. |
| */ |
| |
| /* |
| * This is needed to clear toggles. It is a problem only if we do |
| * `rmmod ub && modprobe ub` without disconnects, but we like that. |
| */ |
| ub_probe_clear_stall(sc, sc->recv_bulk_pipe); |
| ub_probe_clear_stall(sc, sc->send_bulk_pipe); |
| |
| /* |
| * The way this is used by the startup code is a little specific. |
| * A SCSI check causes a USB stall. Our common case code sees it |
| * and clears the check, after which the device is ready for use. |
| * But if a check was not present, any command other than |
| * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE). |
| * |
| * If we neglect to clear the SCSI check, the first real command fails |
| * (which is the capacity readout). We clear that and retry, but why |
| * causing spurious retries for no reason. |
| * |
| * Revalidation may start with its own TEST_UNIT_READY, but that one |
| * has to succeed, so we clear checks with an additional one here. |
| * In any case it's not our business how revaliadation is implemented. |
| */ |
| for (i = 0; i < 3; i++) { /* Retries for benh's key */ |
| if ((rc = ub_sync_tur(sc)) <= 0) break; |
| if (rc != 0x6) break; |
| msleep(10); |
| } |
| |
| sc->removable = 1; /* XXX Query this from the device */ |
| sc->changed = 1; /* ub_revalidate clears only */ |
| sc->first_open = 1; |
| |
| ub_revalidate(sc); |
| /* This is pretty much a long term P3 */ |
| printk(KERN_INFO "%s: device %u capacity nsec %ld bsize %u\n", |
| sc->name, sc->dev->devnum, sc->capacity.nsec, sc->capacity.bsize); |
| |
| /* |
| * Just one disk per sc currently, but maybe more. |
| */ |
| rc = -ENOMEM; |
| if ((disk = alloc_disk(UB_MINORS_PER_MAJOR)) == NULL) |
| goto err_diskalloc; |
| |
| sc->disk = disk; |
| sprintf(disk->disk_name, DRV_NAME "%c", sc->id + 'a'); |
| sprintf(disk->devfs_name, DEVFS_NAME "/%c", sc->id + 'a'); |
| disk->major = UB_MAJOR; |
| disk->first_minor = sc->id * UB_MINORS_PER_MAJOR; |
| disk->fops = &ub_bd_fops; |
| disk->private_data = sc; |
| disk->driverfs_dev = &intf->dev; |
| |
| rc = -ENOMEM; |
| if ((q = blk_init_queue(ub_bd_rq_fn, &sc->lock)) == NULL) |
| goto err_blkqinit; |
| |
| disk->queue = q; |
| |
| // blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask); |
| blk_queue_max_hw_segments(q, UB_MAX_REQ_SG); |
| blk_queue_max_phys_segments(q, UB_MAX_REQ_SG); |
| // blk_queue_segment_boundary(q, CARM_SG_BOUNDARY); |
| blk_queue_max_sectors(q, UB_MAX_SECTORS); |
| blk_queue_hardsect_size(q, sc->capacity.bsize); |
| |
| /* |
| * This is a serious infraction, caused by a deficiency in the |
| * USB sg interface (usb_sg_wait()). We plan to remove this once |
| * we get mileage on the driver and can justify a change to USB API. |
| * See blk_queue_bounce_limit() to understand this part. |
| * |
| * XXX And I still need to be aware of the DMA mask in the HC. |
| */ |
| q->bounce_pfn = blk_max_low_pfn; |
| q->bounce_gfp = GFP_NOIO; |
| |
| q->queuedata = sc; |
| |
| set_capacity(disk, sc->capacity.nsec); |
| if (sc->removable) |
| disk->flags |= GENHD_FL_REMOVABLE; |
| |
| add_disk(disk); |
| |
| return 0; |
| |
| err_blkqinit: |
| put_disk(disk); |
| err_diskalloc: |
| device_remove_file(&sc->intf->dev, &dev_attr_diag); |
| err_diag: |
| usb_set_intfdata(intf, NULL); |
| // usb_put_intf(sc->intf); |
| usb_put_dev(sc->dev); |
| ub_id_put(sc->id); |
| err_id: |
| kfree(sc); |
| err_core: |
| return rc; |
| } |
| |
| static void ub_disconnect(struct usb_interface *intf) |
| { |
| struct ub_dev *sc = usb_get_intfdata(intf); |
| struct gendisk *disk = sc->disk; |
| unsigned long flags; |
| |
| /* |
| * Prevent ub_bd_release from pulling the rug from under us. |
| * XXX This is starting to look like a kref. |
| * XXX Why not to take this ref at probe time? |
| */ |
| spin_lock_irqsave(&ub_lock, flags); |
| sc->openc++; |
| spin_unlock_irqrestore(&ub_lock, flags); |
| |
| /* |
| * Fence stall clearnings, operations triggered by unlinkings and so on. |
| * We do not attempt to unlink any URBs, because we do not trust the |
| * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway. |
| */ |
| atomic_set(&sc->poison, 1); |
| |
| /* |
| * Blow away queued commands. |
| * |
| * Actually, this never works, because before we get here |
| * the HCD terminates outstanding URB(s). It causes our |
| * SCSI command queue to advance, commands fail to submit, |
| * and the whole queue drains. So, we just use this code to |
| * print warnings. |
| */ |
| spin_lock_irqsave(&sc->lock, flags); |
| { |
| struct ub_scsi_cmd *cmd; |
| int cnt = 0; |
| while ((cmd = ub_cmdq_pop(sc)) != NULL) { |
| cmd->error = -ENOTCONN; |
| cmd->state = UB_CMDST_DONE; |
| ub_cmdtr_state(sc, cmd); |
| ub_cmdq_pop(sc); |
| (*cmd->done)(sc, cmd); |
| cnt++; |
| } |
| if (cnt != 0) { |
| printk(KERN_WARNING "%s: " |
| "%d was queued after shutdown\n", sc->name, cnt); |
| } |
| } |
| spin_unlock_irqrestore(&sc->lock, flags); |
| |
| /* |
| * Unregister the upper layer. |
| */ |
| if (disk->flags & GENHD_FL_UP) |
| del_gendisk(disk); |
| /* |
| * I wish I could do: |
| * set_bit(QUEUE_FLAG_DEAD, &q->queue_flags); |
| * As it is, we rely on our internal poisoning and let |
| * the upper levels to spin furiously failing all the I/O. |
| */ |
| |
| /* |
| * Taking a lock on a structure which is about to be freed |
| * is very nonsensual. Here it is largely a way to do a debug freeze, |
| * and a bracket which shows where the nonsensual code segment ends. |
| * |
| * Testing for -EINPROGRESS is always a bug, so we are bending |
| * the rules a little. |
| */ |
| spin_lock_irqsave(&sc->lock, flags); |
| if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */ |
| printk(KERN_WARNING "%s: " |
| "URB is active after disconnect\n", sc->name); |
| } |
| spin_unlock_irqrestore(&sc->lock, flags); |
| |
| /* |
| * There is virtually no chance that other CPU runs times so long |
| * after ub_urb_complete should have called del_timer, but only if HCD |
| * didn't forget to deliver a callback on unlink. |
| */ |
| del_timer_sync(&sc->work_timer); |
| |
| /* |
| * At this point there must be no commands coming from anyone |
| * and no URBs left in transit. |
| */ |
| |
| device_remove_file(&sc->intf->dev, &dev_attr_diag); |
| usb_set_intfdata(intf, NULL); |
| // usb_put_intf(sc->intf); |
| sc->intf = NULL; |
| usb_put_dev(sc->dev); |
| sc->dev = NULL; |
| |
| ub_put(sc); |
| } |
| |
| static struct usb_driver ub_driver = { |
| .owner = THIS_MODULE, |
| .name = "ub", |
| .probe = ub_probe, |
| .disconnect = ub_disconnect, |
| .id_table = ub_usb_ids, |
| }; |
| |
| static int __init ub_init(void) |
| { |
| int rc; |
| |
| /* P3 */ printk("ub: sizeof ub_scsi_cmd %zu ub_dev %zu\n", |
| sizeof(struct ub_scsi_cmd), sizeof(struct ub_dev)); |
| |
| if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0) |
| goto err_regblkdev; |
| devfs_mk_dir(DEVFS_NAME); |
| |
| if ((rc = usb_register(&ub_driver)) != 0) |
| goto err_register; |
| |
| return 0; |
| |
| err_register: |
| devfs_remove(DEVFS_NAME); |
| unregister_blkdev(UB_MAJOR, DRV_NAME); |
| err_regblkdev: |
| return rc; |
| } |
| |
| static void __exit ub_exit(void) |
| { |
| usb_deregister(&ub_driver); |
| |
| devfs_remove(DEVFS_NAME); |
| unregister_blkdev(UB_MAJOR, DRV_NAME); |
| } |
| |
| module_init(ub_init); |
| module_exit(ub_exit); |
| |
| MODULE_LICENSE("GPL"); |