| /* |
| * linux/fs/mbcache.c |
| * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> |
| */ |
| |
| /* |
| * Filesystem Meta Information Block Cache (mbcache) |
| * |
| * The mbcache caches blocks of block devices that need to be located |
| * by their device/block number, as well as by other criteria (such |
| * as the block's contents). |
| * |
| * There can only be one cache entry in a cache per device and block number. |
| * Additional indexes need not be unique in this sense. The number of |
| * additional indexes (=other criteria) can be hardwired at compile time |
| * or specified at cache create time. |
| * |
| * Each cache entry is of fixed size. An entry may be `valid' or `invalid' |
| * in the cache. A valid entry is in the main hash tables of the cache, |
| * and may also be in the lru list. An invalid entry is not in any hashes |
| * or lists. |
| * |
| * A valid cache entry is only in the lru list if no handles refer to it. |
| * Invalid cache entries will be freed when the last handle to the cache |
| * entry is released. Entries that cannot be freed immediately are put |
| * back on the lru list. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| |
| #include <linux/hash.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/mbcache.h> |
| |
| |
| #ifdef MB_CACHE_DEBUG |
| # define mb_debug(f...) do { \ |
| printk(KERN_DEBUG f); \ |
| printk("\n"); \ |
| } while (0) |
| #define mb_assert(c) do { if (!(c)) \ |
| printk(KERN_ERR "assertion " #c " failed\n"); \ |
| } while(0) |
| #else |
| # define mb_debug(f...) do { } while(0) |
| # define mb_assert(c) do { } while(0) |
| #endif |
| #define mb_error(f...) do { \ |
| printk(KERN_ERR f); \ |
| printk("\n"); \ |
| } while(0) |
| |
| #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) |
| |
| static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); |
| |
| MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); |
| MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(mb_cache_create); |
| EXPORT_SYMBOL(mb_cache_shrink); |
| EXPORT_SYMBOL(mb_cache_destroy); |
| EXPORT_SYMBOL(mb_cache_entry_alloc); |
| EXPORT_SYMBOL(mb_cache_entry_insert); |
| EXPORT_SYMBOL(mb_cache_entry_release); |
| EXPORT_SYMBOL(mb_cache_entry_free); |
| EXPORT_SYMBOL(mb_cache_entry_get); |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| EXPORT_SYMBOL(mb_cache_entry_find_first); |
| EXPORT_SYMBOL(mb_cache_entry_find_next); |
| #endif |
| |
| struct mb_cache { |
| struct list_head c_cache_list; |
| const char *c_name; |
| struct mb_cache_op c_op; |
| atomic_t c_entry_count; |
| int c_bucket_bits; |
| #ifndef MB_CACHE_INDEXES_COUNT |
| int c_indexes_count; |
| #endif |
| struct kmem_cache *c_entry_cache; |
| struct list_head *c_block_hash; |
| struct list_head *c_indexes_hash[0]; |
| }; |
| |
| |
| /* |
| * Global data: list of all mbcache's, lru list, and a spinlock for |
| * accessing cache data structures on SMP machines. The lru list is |
| * global across all mbcaches. |
| */ |
| |
| static LIST_HEAD(mb_cache_list); |
| static LIST_HEAD(mb_cache_lru_list); |
| static DEFINE_SPINLOCK(mb_cache_spinlock); |
| |
| static inline int |
| mb_cache_indexes(struct mb_cache *cache) |
| { |
| #ifdef MB_CACHE_INDEXES_COUNT |
| return MB_CACHE_INDEXES_COUNT; |
| #else |
| return cache->c_indexes_count; |
| #endif |
| } |
| |
| /* |
| * What the mbcache registers as to get shrunk dynamically. |
| */ |
| |
| static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask); |
| |
| static struct shrinker mb_cache_shrinker = { |
| .shrink = mb_cache_shrink_fn, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| static inline int |
| __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) |
| { |
| return !list_empty(&ce->e_block_list); |
| } |
| |
| |
| static void |
| __mb_cache_entry_unhash(struct mb_cache_entry *ce) |
| { |
| int n; |
| |
| if (__mb_cache_entry_is_hashed(ce)) { |
| list_del_init(&ce->e_block_list); |
| for (n=0; n<mb_cache_indexes(ce->e_cache); n++) |
| list_del(&ce->e_indexes[n].o_list); |
| } |
| } |
| |
| |
| static void |
| __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) |
| { |
| struct mb_cache *cache = ce->e_cache; |
| |
| mb_assert(!(ce->e_used || ce->e_queued)); |
| if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { |
| /* free failed -- put back on the lru list |
| for freeing later. */ |
| spin_lock(&mb_cache_spinlock); |
| list_add(&ce->e_lru_list, &mb_cache_lru_list); |
| spin_unlock(&mb_cache_spinlock); |
| } else { |
| kmem_cache_free(cache->c_entry_cache, ce); |
| atomic_dec(&cache->c_entry_count); |
| } |
| } |
| |
| |
| static void |
| __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) |
| __releases(mb_cache_spinlock) |
| { |
| /* Wake up all processes queuing for this cache entry. */ |
| if (ce->e_queued) |
| wake_up_all(&mb_cache_queue); |
| if (ce->e_used >= MB_CACHE_WRITER) |
| ce->e_used -= MB_CACHE_WRITER; |
| ce->e_used--; |
| if (!(ce->e_used || ce->e_queued)) { |
| if (!__mb_cache_entry_is_hashed(ce)) |
| goto forget; |
| mb_assert(list_empty(&ce->e_lru_list)); |
| list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); |
| } |
| spin_unlock(&mb_cache_spinlock); |
| return; |
| forget: |
| spin_unlock(&mb_cache_spinlock); |
| __mb_cache_entry_forget(ce, GFP_KERNEL); |
| } |
| |
| |
| /* |
| * mb_cache_shrink_fn() memory pressure callback |
| * |
| * This function is called by the kernel memory management when memory |
| * gets low. |
| * |
| * @nr_to_scan: Number of objects to scan |
| * @gfp_mask: (ignored) |
| * |
| * Returns the number of objects which are present in the cache. |
| */ |
| static int |
| mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask) |
| { |
| LIST_HEAD(free_list); |
| struct list_head *l, *ltmp; |
| int count = 0; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_for_each(l, &mb_cache_list) { |
| struct mb_cache *cache = |
| list_entry(l, struct mb_cache, c_cache_list); |
| mb_debug("cache %s (%d)", cache->c_name, |
| atomic_read(&cache->c_entry_count)); |
| count += atomic_read(&cache->c_entry_count); |
| } |
| mb_debug("trying to free %d entries", nr_to_scan); |
| if (nr_to_scan == 0) { |
| spin_unlock(&mb_cache_spinlock); |
| goto out; |
| } |
| while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { |
| struct mb_cache_entry *ce = |
| list_entry(mb_cache_lru_list.next, |
| struct mb_cache_entry, e_lru_list); |
| list_move_tail(&ce->e_lru_list, &free_list); |
| __mb_cache_entry_unhash(ce); |
| } |
| spin_unlock(&mb_cache_spinlock); |
| list_for_each_safe(l, ltmp, &free_list) { |
| __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| e_lru_list), gfp_mask); |
| } |
| out: |
| return (count / 100) * sysctl_vfs_cache_pressure; |
| } |
| |
| |
| /* |
| * mb_cache_create() create a new cache |
| * |
| * All entries in one cache are equal size. Cache entries may be from |
| * multiple devices. If this is the first mbcache created, registers |
| * the cache with kernel memory management. Returns NULL if no more |
| * memory was available. |
| * |
| * @name: name of the cache (informal) |
| * @cache_op: contains the callback called when freeing a cache entry |
| * @entry_size: The size of a cache entry, including |
| * struct mb_cache_entry |
| * @indexes_count: number of additional indexes in the cache. Must equal |
| * MB_CACHE_INDEXES_COUNT if the number of indexes is |
| * hardwired. |
| * @bucket_bits: log2(number of hash buckets) |
| */ |
| struct mb_cache * |
| mb_cache_create(const char *name, struct mb_cache_op *cache_op, |
| size_t entry_size, int indexes_count, int bucket_bits) |
| { |
| int m=0, n, bucket_count = 1 << bucket_bits; |
| struct mb_cache *cache = NULL; |
| |
| if(entry_size < sizeof(struct mb_cache_entry) + |
| indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) |
| return NULL; |
| |
| cache = kmalloc(sizeof(struct mb_cache) + |
| indexes_count * sizeof(struct list_head), GFP_KERNEL); |
| if (!cache) |
| goto fail; |
| cache->c_name = name; |
| cache->c_op.free = NULL; |
| if (cache_op) |
| cache->c_op.free = cache_op->free; |
| atomic_set(&cache->c_entry_count, 0); |
| cache->c_bucket_bits = bucket_bits; |
| #ifdef MB_CACHE_INDEXES_COUNT |
| mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); |
| #else |
| cache->c_indexes_count = indexes_count; |
| #endif |
| cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), |
| GFP_KERNEL); |
| if (!cache->c_block_hash) |
| goto fail; |
| for (n=0; n<bucket_count; n++) |
| INIT_LIST_HEAD(&cache->c_block_hash[n]); |
| for (m=0; m<indexes_count; m++) { |
| cache->c_indexes_hash[m] = kmalloc(bucket_count * |
| sizeof(struct list_head), |
| GFP_KERNEL); |
| if (!cache->c_indexes_hash[m]) |
| goto fail; |
| for (n=0; n<bucket_count; n++) |
| INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); |
| } |
| cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL, NULL); |
| if (!cache->c_entry_cache) |
| goto fail; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_add(&cache->c_cache_list, &mb_cache_list); |
| spin_unlock(&mb_cache_spinlock); |
| return cache; |
| |
| fail: |
| if (cache) { |
| while (--m >= 0) |
| kfree(cache->c_indexes_hash[m]); |
| kfree(cache->c_block_hash); |
| kfree(cache); |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * mb_cache_shrink() |
| * |
| * Removes all cache entries of a device from the cache. All cache entries |
| * currently in use cannot be freed, and thus remain in the cache. All others |
| * are freed. |
| * |
| * @bdev: which device's cache entries to shrink |
| */ |
| void |
| mb_cache_shrink(struct block_device *bdev) |
| { |
| LIST_HEAD(free_list); |
| struct list_head *l, *ltmp; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_for_each_safe(l, ltmp, &mb_cache_lru_list) { |
| struct mb_cache_entry *ce = |
| list_entry(l, struct mb_cache_entry, e_lru_list); |
| if (ce->e_bdev == bdev) { |
| list_move_tail(&ce->e_lru_list, &free_list); |
| __mb_cache_entry_unhash(ce); |
| } |
| } |
| spin_unlock(&mb_cache_spinlock); |
| list_for_each_safe(l, ltmp, &free_list) { |
| __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| e_lru_list), GFP_KERNEL); |
| } |
| } |
| |
| |
| /* |
| * mb_cache_destroy() |
| * |
| * Shrinks the cache to its minimum possible size (hopefully 0 entries), |
| * and then destroys it. If this was the last mbcache, un-registers the |
| * mbcache from kernel memory management. |
| */ |
| void |
| mb_cache_destroy(struct mb_cache *cache) |
| { |
| LIST_HEAD(free_list); |
| struct list_head *l, *ltmp; |
| int n; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_for_each_safe(l, ltmp, &mb_cache_lru_list) { |
| struct mb_cache_entry *ce = |
| list_entry(l, struct mb_cache_entry, e_lru_list); |
| if (ce->e_cache == cache) { |
| list_move_tail(&ce->e_lru_list, &free_list); |
| __mb_cache_entry_unhash(ce); |
| } |
| } |
| list_del(&cache->c_cache_list); |
| spin_unlock(&mb_cache_spinlock); |
| |
| list_for_each_safe(l, ltmp, &free_list) { |
| __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| e_lru_list), GFP_KERNEL); |
| } |
| |
| if (atomic_read(&cache->c_entry_count) > 0) { |
| mb_error("cache %s: %d orphaned entries", |
| cache->c_name, |
| atomic_read(&cache->c_entry_count)); |
| } |
| |
| kmem_cache_destroy(cache->c_entry_cache); |
| |
| for (n=0; n < mb_cache_indexes(cache); n++) |
| kfree(cache->c_indexes_hash[n]); |
| kfree(cache->c_block_hash); |
| kfree(cache); |
| } |
| |
| |
| /* |
| * mb_cache_entry_alloc() |
| * |
| * Allocates a new cache entry. The new entry will not be valid initially, |
| * and thus cannot be looked up yet. It should be filled with data, and |
| * then inserted into the cache using mb_cache_entry_insert(). Returns NULL |
| * if no more memory was available. |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_alloc(struct mb_cache *cache) |
| { |
| struct mb_cache_entry *ce; |
| |
| atomic_inc(&cache->c_entry_count); |
| ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL); |
| if (ce) { |
| INIT_LIST_HEAD(&ce->e_lru_list); |
| INIT_LIST_HEAD(&ce->e_block_list); |
| ce->e_cache = cache; |
| ce->e_used = 1 + MB_CACHE_WRITER; |
| ce->e_queued = 0; |
| } |
| return ce; |
| } |
| |
| |
| /* |
| * mb_cache_entry_insert() |
| * |
| * Inserts an entry that was allocated using mb_cache_entry_alloc() into |
| * the cache. After this, the cache entry can be looked up, but is not yet |
| * in the lru list as the caller still holds a handle to it. Returns 0 on |
| * success, or -EBUSY if a cache entry for that device + inode exists |
| * already (this may happen after a failed lookup, but when another process |
| * has inserted the same cache entry in the meantime). |
| * |
| * @bdev: device the cache entry belongs to |
| * @block: block number |
| * @keys: array of additional keys. There must be indexes_count entries |
| * in the array (as specified when creating the cache). |
| */ |
| int |
| mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, |
| sector_t block, unsigned int keys[]) |
| { |
| struct mb_cache *cache = ce->e_cache; |
| unsigned int bucket; |
| struct list_head *l; |
| int error = -EBUSY, n; |
| |
| bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| cache->c_bucket_bits); |
| spin_lock(&mb_cache_spinlock); |
| list_for_each_prev(l, &cache->c_block_hash[bucket]) { |
| struct mb_cache_entry *ce = |
| list_entry(l, struct mb_cache_entry, e_block_list); |
| if (ce->e_bdev == bdev && ce->e_block == block) |
| goto out; |
| } |
| __mb_cache_entry_unhash(ce); |
| ce->e_bdev = bdev; |
| ce->e_block = block; |
| list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); |
| for (n=0; n<mb_cache_indexes(cache); n++) { |
| ce->e_indexes[n].o_key = keys[n]; |
| bucket = hash_long(keys[n], cache->c_bucket_bits); |
| list_add(&ce->e_indexes[n].o_list, |
| &cache->c_indexes_hash[n][bucket]); |
| } |
| error = 0; |
| out: |
| spin_unlock(&mb_cache_spinlock); |
| return error; |
| } |
| |
| |
| /* |
| * mb_cache_entry_release() |
| * |
| * Release a handle to a cache entry. When the last handle to a cache entry |
| * is released it is either freed (if it is invalid) or otherwise inserted |
| * in to the lru list. |
| */ |
| void |
| mb_cache_entry_release(struct mb_cache_entry *ce) |
| { |
| spin_lock(&mb_cache_spinlock); |
| __mb_cache_entry_release_unlock(ce); |
| } |
| |
| |
| /* |
| * mb_cache_entry_free() |
| * |
| * This is equivalent to the sequence mb_cache_entry_takeout() -- |
| * mb_cache_entry_release(). |
| */ |
| void |
| mb_cache_entry_free(struct mb_cache_entry *ce) |
| { |
| spin_lock(&mb_cache_spinlock); |
| mb_assert(list_empty(&ce->e_lru_list)); |
| __mb_cache_entry_unhash(ce); |
| __mb_cache_entry_release_unlock(ce); |
| } |
| |
| |
| /* |
| * mb_cache_entry_get() |
| * |
| * Get a cache entry by device / block number. (There can only be one entry |
| * in the cache per device and block.) Returns NULL if no such cache entry |
| * exists. The returned cache entry is locked for exclusive access ("single |
| * writer"). |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, |
| sector_t block) |
| { |
| unsigned int bucket; |
| struct list_head *l; |
| struct mb_cache_entry *ce; |
| |
| bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| cache->c_bucket_bits); |
| spin_lock(&mb_cache_spinlock); |
| list_for_each(l, &cache->c_block_hash[bucket]) { |
| ce = list_entry(l, struct mb_cache_entry, e_block_list); |
| if (ce->e_bdev == bdev && ce->e_block == block) { |
| DEFINE_WAIT(wait); |
| |
| if (!list_empty(&ce->e_lru_list)) |
| list_del_init(&ce->e_lru_list); |
| |
| while (ce->e_used > 0) { |
| ce->e_queued++; |
| prepare_to_wait(&mb_cache_queue, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_unlock(&mb_cache_spinlock); |
| schedule(); |
| spin_lock(&mb_cache_spinlock); |
| ce->e_queued--; |
| } |
| finish_wait(&mb_cache_queue, &wait); |
| ce->e_used += 1 + MB_CACHE_WRITER; |
| |
| if (!__mb_cache_entry_is_hashed(ce)) { |
| __mb_cache_entry_release_unlock(ce); |
| return NULL; |
| } |
| goto cleanup; |
| } |
| } |
| ce = NULL; |
| |
| cleanup: |
| spin_unlock(&mb_cache_spinlock); |
| return ce; |
| } |
| |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| |
| static struct mb_cache_entry * |
| __mb_cache_entry_find(struct list_head *l, struct list_head *head, |
| int index, struct block_device *bdev, unsigned int key) |
| { |
| while (l != head) { |
| struct mb_cache_entry *ce = |
| list_entry(l, struct mb_cache_entry, |
| e_indexes[index].o_list); |
| if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { |
| DEFINE_WAIT(wait); |
| |
| if (!list_empty(&ce->e_lru_list)) |
| list_del_init(&ce->e_lru_list); |
| |
| /* Incrementing before holding the lock gives readers |
| priority over writers. */ |
| ce->e_used++; |
| while (ce->e_used >= MB_CACHE_WRITER) { |
| ce->e_queued++; |
| prepare_to_wait(&mb_cache_queue, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_unlock(&mb_cache_spinlock); |
| schedule(); |
| spin_lock(&mb_cache_spinlock); |
| ce->e_queued--; |
| } |
| finish_wait(&mb_cache_queue, &wait); |
| |
| if (!__mb_cache_entry_is_hashed(ce)) { |
| __mb_cache_entry_release_unlock(ce); |
| spin_lock(&mb_cache_spinlock); |
| return ERR_PTR(-EAGAIN); |
| } |
| return ce; |
| } |
| l = l->next; |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * mb_cache_entry_find_first() |
| * |
| * Find the first cache entry on a given device with a certain key in |
| * an additional index. Additonal matches can be found with |
| * mb_cache_entry_find_next(). Returns NULL if no match was found. The |
| * returned cache entry is locked for shared access ("multiple readers"). |
| * |
| * @cache: the cache to search |
| * @index: the number of the additonal index to search (0<=index<indexes_count) |
| * @bdev: the device the cache entry should belong to |
| * @key: the key in the index |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_find_first(struct mb_cache *cache, int index, |
| struct block_device *bdev, unsigned int key) |
| { |
| unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| struct list_head *l; |
| struct mb_cache_entry *ce; |
| |
| mb_assert(index < mb_cache_indexes(cache)); |
| spin_lock(&mb_cache_spinlock); |
| l = cache->c_indexes_hash[index][bucket].next; |
| ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], |
| index, bdev, key); |
| spin_unlock(&mb_cache_spinlock); |
| return ce; |
| } |
| |
| |
| /* |
| * mb_cache_entry_find_next() |
| * |
| * Find the next cache entry on a given device with a certain key in an |
| * additional index. Returns NULL if no match could be found. The previous |
| * entry is atomatically released, so that mb_cache_entry_find_next() can |
| * be called like this: |
| * |
| * entry = mb_cache_entry_find_first(); |
| * while (entry) { |
| * ... |
| * entry = mb_cache_entry_find_next(entry, ...); |
| * } |
| * |
| * @prev: The previous match |
| * @index: the number of the additonal index to search (0<=index<indexes_count) |
| * @bdev: the device the cache entry should belong to |
| * @key: the key in the index |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, |
| struct block_device *bdev, unsigned int key) |
| { |
| struct mb_cache *cache = prev->e_cache; |
| unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| struct list_head *l; |
| struct mb_cache_entry *ce; |
| |
| mb_assert(index < mb_cache_indexes(cache)); |
| spin_lock(&mb_cache_spinlock); |
| l = prev->e_indexes[index].o_list.next; |
| ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], |
| index, bdev, key); |
| __mb_cache_entry_release_unlock(prev); |
| return ce; |
| } |
| |
| #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ |
| |
| static int __init init_mbcache(void) |
| { |
| register_shrinker(&mb_cache_shrinker); |
| return 0; |
| } |
| |
| static void __exit exit_mbcache(void) |
| { |
| unregister_shrinker(&mb_cache_shrinker); |
| } |
| |
| module_init(init_mbcache) |
| module_exit(exit_mbcache) |
| |