| /* |
| * Copyright © 2003 Rick Bronson |
| * |
| * Derived from drivers/mtd/nand/autcpu12.c |
| * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) |
| * |
| * Derived from drivers/mtd/spia.c |
| * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) |
| * |
| * |
| * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 |
| * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 |
| * |
| * Derived from Das U-Boot source code |
| * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) |
| * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
| * |
| * Add Programmable Multibit ECC support for various AT91 SoC |
| * © Copyright 2012 ATMEL, Hong Xu |
| * |
| * Add Nand Flash Controller support for SAMA5 SoC |
| * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/of_mtd.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/gpio.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/platform_data/atmel.h> |
| |
| static int use_dma = 1; |
| module_param(use_dma, int, 0); |
| |
| static int on_flash_bbt = 0; |
| module_param(on_flash_bbt, int, 0); |
| |
| /* Register access macros */ |
| #define ecc_readl(add, reg) \ |
| __raw_readl(add + ATMEL_ECC_##reg) |
| #define ecc_writel(add, reg, value) \ |
| __raw_writel((value), add + ATMEL_ECC_##reg) |
| |
| #include "atmel_nand_ecc.h" /* Hardware ECC registers */ |
| #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */ |
| |
| /* oob layout for large page size |
| * bad block info is on bytes 0 and 1 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_large = { |
| .eccbytes = 4, |
| .eccpos = {60, 61, 62, 63}, |
| .oobfree = { |
| {2, 58} |
| }, |
| }; |
| |
| /* oob layout for small page size |
| * bad block info is on bytes 4 and 5 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_small = { |
| .eccbytes = 4, |
| .eccpos = {0, 1, 2, 3}, |
| .oobfree = { |
| {6, 10} |
| }, |
| }; |
| |
| struct atmel_nfc { |
| void __iomem *base_cmd_regs; |
| void __iomem *hsmc_regs; |
| void __iomem *sram_bank0; |
| dma_addr_t sram_bank0_phys; |
| bool use_nfc_sram; |
| bool write_by_sram; |
| |
| bool is_initialized; |
| struct completion comp_ready; |
| struct completion comp_cmd_done; |
| struct completion comp_xfer_done; |
| |
| /* Point to the sram bank which include readed data via NFC */ |
| void __iomem *data_in_sram; |
| bool will_write_sram; |
| }; |
| static struct atmel_nfc nand_nfc; |
| |
| struct atmel_nand_host { |
| struct nand_chip nand_chip; |
| struct mtd_info mtd; |
| void __iomem *io_base; |
| dma_addr_t io_phys; |
| struct atmel_nand_data board; |
| struct device *dev; |
| void __iomem *ecc; |
| |
| struct completion comp; |
| struct dma_chan *dma_chan; |
| |
| struct atmel_nfc *nfc; |
| |
| bool has_pmecc; |
| u8 pmecc_corr_cap; |
| u16 pmecc_sector_size; |
| u32 pmecc_lookup_table_offset; |
| u32 pmecc_lookup_table_offset_512; |
| u32 pmecc_lookup_table_offset_1024; |
| |
| int pmecc_bytes_per_sector; |
| int pmecc_sector_number; |
| int pmecc_degree; /* Degree of remainders */ |
| int pmecc_cw_len; /* Length of codeword */ |
| |
| void __iomem *pmerrloc_base; |
| void __iomem *pmecc_rom_base; |
| |
| /* lookup table for alpha_to and index_of */ |
| void __iomem *pmecc_alpha_to; |
| void __iomem *pmecc_index_of; |
| |
| /* data for pmecc computation */ |
| int16_t *pmecc_partial_syn; |
| int16_t *pmecc_si; |
| int16_t *pmecc_smu; /* Sigma table */ |
| int16_t *pmecc_lmu; /* polynomal order */ |
| int *pmecc_mu; |
| int *pmecc_dmu; |
| int *pmecc_delta; |
| }; |
| |
| static struct nand_ecclayout atmel_pmecc_oobinfo; |
| |
| /* |
| * Enable NAND. |
| */ |
| static void atmel_nand_enable(struct atmel_nand_host *host) |
| { |
| if (gpio_is_valid(host->board.enable_pin)) |
| gpio_set_value(host->board.enable_pin, 0); |
| } |
| |
| /* |
| * Disable NAND. |
| */ |
| static void atmel_nand_disable(struct atmel_nand_host *host) |
| { |
| if (gpio_is_valid(host->board.enable_pin)) |
| gpio_set_value(host->board.enable_pin, 1); |
| } |
| |
| /* |
| * Hardware specific access to control-lines |
| */ |
| static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| if (ctrl & NAND_NCE) |
| atmel_nand_enable(host); |
| else |
| atmel_nand_disable(host); |
| } |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writeb(cmd, host->io_base + (1 << host->board.cle)); |
| else |
| writeb(cmd, host->io_base + (1 << host->board.ale)); |
| } |
| |
| /* |
| * Read the Device Ready pin. |
| */ |
| static int atmel_nand_device_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| return gpio_get_value(host->board.rdy_pin) ^ |
| !!host->board.rdy_pin_active_low; |
| } |
| |
| /* Set up for hardware ready pin and enable pin. */ |
| static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| int res = 0; |
| |
| if (gpio_is_valid(host->board.rdy_pin)) { |
| res = devm_gpio_request(host->dev, |
| host->board.rdy_pin, "nand_rdy"); |
| if (res < 0) { |
| dev_err(host->dev, |
| "can't request rdy gpio %d\n", |
| host->board.rdy_pin); |
| return res; |
| } |
| |
| res = gpio_direction_input(host->board.rdy_pin); |
| if (res < 0) { |
| dev_err(host->dev, |
| "can't request input direction rdy gpio %d\n", |
| host->board.rdy_pin); |
| return res; |
| } |
| |
| chip->dev_ready = atmel_nand_device_ready; |
| } |
| |
| if (gpio_is_valid(host->board.enable_pin)) { |
| res = devm_gpio_request(host->dev, |
| host->board.enable_pin, "nand_enable"); |
| if (res < 0) { |
| dev_err(host->dev, |
| "can't request enable gpio %d\n", |
| host->board.enable_pin); |
| return res; |
| } |
| |
| res = gpio_direction_output(host->board.enable_pin, 1); |
| if (res < 0) { |
| dev_err(host->dev, |
| "can't request output direction enable gpio %d\n", |
| host->board.enable_pin); |
| return res; |
| } |
| } |
| |
| return res; |
| } |
| |
| static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) |
| { |
| int i; |
| u32 *t = trg; |
| const __iomem u32 *s = src; |
| |
| for (i = 0; i < (size >> 2); i++) |
| *t++ = readl_relaxed(s++); |
| } |
| |
| static void memcpy32_toio(void __iomem *trg, const void *src, int size) |
| { |
| int i; |
| u32 __iomem *t = trg; |
| const u32 *s = src; |
| |
| for (i = 0; i < (size >> 2); i++) |
| writel_relaxed(*s++, t++); |
| } |
| |
| /* |
| * Minimal-overhead PIO for data access. |
| */ |
| static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { |
| memcpy32_fromio(buf, host->nfc->data_in_sram, len); |
| host->nfc->data_in_sram += len; |
| } else { |
| __raw_readsb(nand_chip->IO_ADDR_R, buf, len); |
| } |
| } |
| |
| static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { |
| memcpy32_fromio(buf, host->nfc->data_in_sram, len); |
| host->nfc->data_in_sram += len; |
| } else { |
| __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); |
| } |
| } |
| |
| static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| |
| __raw_writesb(nand_chip->IO_ADDR_W, buf, len); |
| } |
| |
| static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| |
| __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); |
| } |
| |
| static void dma_complete_func(void *completion) |
| { |
| complete(completion); |
| } |
| |
| static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank) |
| { |
| /* NFC only has two banks. Must be 0 or 1 */ |
| if (bank > 1) |
| return -EINVAL; |
| |
| if (bank) { |
| /* Only for a 2k-page or lower flash, NFC can handle 2 banks */ |
| if (host->mtd.writesize > 2048) |
| return -EINVAL; |
| nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1); |
| } else { |
| nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0); |
| } |
| |
| return 0; |
| } |
| |
| static uint nfc_get_sram_off(struct atmel_nand_host *host) |
| { |
| if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) |
| return NFC_SRAM_BANK1_OFFSET; |
| else |
| return 0; |
| } |
| |
| static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host) |
| { |
| if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) |
| return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET; |
| else |
| return host->nfc->sram_bank0_phys; |
| } |
| |
| static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, |
| int is_read) |
| { |
| struct dma_device *dma_dev; |
| enum dma_ctrl_flags flags; |
| dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; |
| struct dma_async_tx_descriptor *tx = NULL; |
| dma_cookie_t cookie; |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| void *p = buf; |
| int err = -EIO; |
| enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; |
| struct atmel_nfc *nfc = host->nfc; |
| |
| if (buf >= high_memory) |
| goto err_buf; |
| |
| dma_dev = host->dma_chan->device; |
| |
| flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| |
| phys_addr = dma_map_single(dma_dev->dev, p, len, dir); |
| if (dma_mapping_error(dma_dev->dev, phys_addr)) { |
| dev_err(host->dev, "Failed to dma_map_single\n"); |
| goto err_buf; |
| } |
| |
| if (is_read) { |
| if (nfc && nfc->data_in_sram) |
| dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram |
| - (nfc->sram_bank0 + nfc_get_sram_off(host))); |
| else |
| dma_src_addr = host->io_phys; |
| |
| dma_dst_addr = phys_addr; |
| } else { |
| dma_src_addr = phys_addr; |
| |
| if (nfc && nfc->write_by_sram) |
| dma_dst_addr = nfc_sram_phys(host); |
| else |
| dma_dst_addr = host->io_phys; |
| } |
| |
| tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, |
| dma_src_addr, len, flags); |
| if (!tx) { |
| dev_err(host->dev, "Failed to prepare DMA memcpy\n"); |
| goto err_dma; |
| } |
| |
| init_completion(&host->comp); |
| tx->callback = dma_complete_func; |
| tx->callback_param = &host->comp; |
| |
| cookie = tx->tx_submit(tx); |
| if (dma_submit_error(cookie)) { |
| dev_err(host->dev, "Failed to do DMA tx_submit\n"); |
| goto err_dma; |
| } |
| |
| dma_async_issue_pending(host->dma_chan); |
| wait_for_completion(&host->comp); |
| |
| if (is_read && nfc && nfc->data_in_sram) |
| /* After read data from SRAM, need to increase the position */ |
| nfc->data_in_sram += len; |
| |
| err = 0; |
| |
| err_dma: |
| dma_unmap_single(dma_dev->dev, phys_addr, len, dir); |
| err_buf: |
| if (err != 0) |
| dev_dbg(host->dev, "Fall back to CPU I/O\n"); |
| return err; |
| } |
| |
| static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| |
| if (use_dma && len > mtd->oobsize) |
| /* only use DMA for bigger than oob size: better performances */ |
| if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) |
| return; |
| |
| if (host->board.bus_width_16) |
| atmel_read_buf16(mtd, buf, len); |
| else |
| atmel_read_buf8(mtd, buf, len); |
| } |
| |
| static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| |
| if (use_dma && len > mtd->oobsize) |
| /* only use DMA for bigger than oob size: better performances */ |
| if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) |
| return; |
| |
| if (host->board.bus_width_16) |
| atmel_write_buf16(mtd, buf, len); |
| else |
| atmel_write_buf8(mtd, buf, len); |
| } |
| |
| /* |
| * Return number of ecc bytes per sector according to sector size and |
| * correction capability |
| * |
| * Following table shows what at91 PMECC supported: |
| * Correction Capability Sector_512_bytes Sector_1024_bytes |
| * ===================== ================ ================= |
| * 2-bits 4-bytes 4-bytes |
| * 4-bits 7-bytes 7-bytes |
| * 8-bits 13-bytes 14-bytes |
| * 12-bits 20-bytes 21-bytes |
| * 24-bits 39-bytes 42-bytes |
| */ |
| static int pmecc_get_ecc_bytes(int cap, int sector_size) |
| { |
| int m = 12 + sector_size / 512; |
| return (m * cap + 7) / 8; |
| } |
| |
| static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, |
| int oobsize, int ecc_len) |
| { |
| int i; |
| |
| layout->eccbytes = ecc_len; |
| |
| /* ECC will occupy the last ecc_len bytes continuously */ |
| for (i = 0; i < ecc_len; i++) |
| layout->eccpos[i] = oobsize - ecc_len + i; |
| |
| layout->oobfree[0].offset = 2; |
| layout->oobfree[0].length = |
| oobsize - ecc_len - layout->oobfree[0].offset; |
| } |
| |
| static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) |
| { |
| int table_size; |
| |
| table_size = host->pmecc_sector_size == 512 ? |
| PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; |
| |
| return host->pmecc_rom_base + host->pmecc_lookup_table_offset + |
| table_size * sizeof(int16_t); |
| } |
| |
| static int pmecc_data_alloc(struct atmel_nand_host *host) |
| { |
| const int cap = host->pmecc_corr_cap; |
| int size; |
| |
| size = (2 * cap + 1) * sizeof(int16_t); |
| host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL); |
| host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL); |
| host->pmecc_lmu = devm_kzalloc(host->dev, |
| (cap + 1) * sizeof(int16_t), GFP_KERNEL); |
| host->pmecc_smu = devm_kzalloc(host->dev, |
| (cap + 2) * size, GFP_KERNEL); |
| |
| size = (cap + 1) * sizeof(int); |
| host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL); |
| host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL); |
| host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL); |
| |
| if (!host->pmecc_partial_syn || |
| !host->pmecc_si || |
| !host->pmecc_lmu || |
| !host->pmecc_smu || |
| !host->pmecc_mu || |
| !host->pmecc_dmu || |
| !host->pmecc_delta) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i; |
| uint32_t value; |
| |
| /* Fill odd syndromes */ |
| for (i = 0; i < host->pmecc_corr_cap; i++) { |
| value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); |
| if (i & 1) |
| value >>= 16; |
| value &= 0xffff; |
| host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; |
| } |
| } |
| |
| static void pmecc_substitute(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t *partial_syn = host->pmecc_partial_syn; |
| const int cap = host->pmecc_corr_cap; |
| int16_t *si; |
| int i, j; |
| |
| /* si[] is a table that holds the current syndrome value, |
| * an element of that table belongs to the field |
| */ |
| si = host->pmecc_si; |
| |
| memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); |
| |
| /* Computation 2t syndromes based on S(x) */ |
| /* Odd syndromes */ |
| for (i = 1; i < 2 * cap; i += 2) { |
| for (j = 0; j < host->pmecc_degree; j++) { |
| if (partial_syn[i] & ((unsigned short)0x1 << j)) |
| si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; |
| } |
| } |
| /* Even syndrome = (Odd syndrome) ** 2 */ |
| for (i = 2, j = 1; j <= cap; i = ++j << 1) { |
| if (si[j] == 0) { |
| si[i] = 0; |
| } else { |
| int16_t tmp; |
| |
| tmp = readw_relaxed(index_of + si[j]); |
| tmp = (tmp * 2) % host->pmecc_cw_len; |
| si[i] = readw_relaxed(alpha_to + tmp); |
| } |
| } |
| |
| return; |
| } |
| |
| static void pmecc_get_sigma(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| int16_t *lmu = host->pmecc_lmu; |
| int16_t *si = host->pmecc_si; |
| int *mu = host->pmecc_mu; |
| int *dmu = host->pmecc_dmu; /* Discrepancy */ |
| int *delta = host->pmecc_delta; /* Delta order */ |
| int cw_len = host->pmecc_cw_len; |
| const int16_t cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int i, j, k; |
| uint32_t dmu_0_count, tmp; |
| int16_t *smu = host->pmecc_smu; |
| |
| /* index of largest delta */ |
| int ro; |
| int largest; |
| int diff; |
| |
| dmu_0_count = 0; |
| |
| /* First Row */ |
| |
| /* Mu */ |
| mu[0] = -1; |
| |
| memset(smu, 0, sizeof(int16_t) * num); |
| smu[0] = 1; |
| |
| /* discrepancy set to 1 */ |
| dmu[0] = 1; |
| /* polynom order set to 0 */ |
| lmu[0] = 0; |
| delta[0] = (mu[0] * 2 - lmu[0]) >> 1; |
| |
| /* Second Row */ |
| |
| /* Mu */ |
| mu[1] = 0; |
| /* Sigma(x) set to 1 */ |
| memset(&smu[num], 0, sizeof(int16_t) * num); |
| smu[num] = 1; |
| |
| /* discrepancy set to S1 */ |
| dmu[1] = si[1]; |
| |
| /* polynom order set to 0 */ |
| lmu[1] = 0; |
| |
| delta[1] = (mu[1] * 2 - lmu[1]) >> 1; |
| |
| /* Init the Sigma(x) last row */ |
| memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); |
| |
| for (i = 1; i <= cap; i++) { |
| mu[i + 1] = i << 1; |
| /* Begin Computing Sigma (Mu+1) and L(mu) */ |
| /* check if discrepancy is set to 0 */ |
| if (dmu[i] == 0) { |
| dmu_0_count++; |
| |
| tmp = ((cap - (lmu[i] >> 1) - 1) / 2); |
| if ((cap - (lmu[i] >> 1) - 1) & 0x1) |
| tmp += 2; |
| else |
| tmp += 1; |
| |
| if (dmu_0_count == tmp) { |
| for (j = 0; j <= (lmu[i] >> 1) + 1; j++) |
| smu[(cap + 1) * num + j] = |
| smu[i * num + j]; |
| |
| lmu[cap + 1] = lmu[i]; |
| return; |
| } |
| |
| /* copy polynom */ |
| for (j = 0; j <= lmu[i] >> 1; j++) |
| smu[(i + 1) * num + j] = smu[i * num + j]; |
| |
| /* copy previous polynom order to the next */ |
| lmu[i + 1] = lmu[i]; |
| } else { |
| ro = 0; |
| largest = -1; |
| /* find largest delta with dmu != 0 */ |
| for (j = 0; j < i; j++) { |
| if ((dmu[j]) && (delta[j] > largest)) { |
| largest = delta[j]; |
| ro = j; |
| } |
| } |
| |
| /* compute difference */ |
| diff = (mu[i] - mu[ro]); |
| |
| /* Compute degree of the new smu polynomial */ |
| if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) |
| lmu[i + 1] = lmu[i]; |
| else |
| lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; |
| |
| /* Init smu[i+1] with 0 */ |
| for (k = 0; k < num; k++) |
| smu[(i + 1) * num + k] = 0; |
| |
| /* Compute smu[i+1] */ |
| for (k = 0; k <= lmu[ro] >> 1; k++) { |
| int16_t a, b, c; |
| |
| if (!(smu[ro * num + k] && dmu[i])) |
| continue; |
| a = readw_relaxed(index_of + dmu[i]); |
| b = readw_relaxed(index_of + dmu[ro]); |
| c = readw_relaxed(index_of + smu[ro * num + k]); |
| tmp = a + (cw_len - b) + c; |
| a = readw_relaxed(alpha_to + tmp % cw_len); |
| smu[(i + 1) * num + (k + diff)] = a; |
| } |
| |
| for (k = 0; k <= lmu[i] >> 1; k++) |
| smu[(i + 1) * num + k] ^= smu[i * num + k]; |
| } |
| |
| /* End Computing Sigma (Mu+1) and L(mu) */ |
| /* In either case compute delta */ |
| delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; |
| |
| /* Do not compute discrepancy for the last iteration */ |
| if (i >= cap) |
| continue; |
| |
| for (k = 0; k <= (lmu[i + 1] >> 1); k++) { |
| tmp = 2 * (i - 1); |
| if (k == 0) { |
| dmu[i + 1] = si[tmp + 3]; |
| } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { |
| int16_t a, b, c; |
| a = readw_relaxed(index_of + |
| smu[(i + 1) * num + k]); |
| b = si[2 * (i - 1) + 3 - k]; |
| c = readw_relaxed(index_of + b); |
| tmp = a + c; |
| tmp %= cw_len; |
| dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ |
| dmu[i + 1]; |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| static int pmecc_err_location(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| unsigned long end_time; |
| const int cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int sector_size = host->pmecc_sector_size; |
| int err_nbr = 0; /* number of error */ |
| int roots_nbr; /* number of roots */ |
| int i; |
| uint32_t val; |
| int16_t *smu = host->pmecc_smu; |
| |
| pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); |
| |
| for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { |
| pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, |
| smu[(cap + 1) * num + i]); |
| err_nbr++; |
| } |
| |
| val = (err_nbr - 1) << 16; |
| if (sector_size == 1024) |
| val |= 1; |
| |
| pmerrloc_writel(host->pmerrloc_base, ELCFG, val); |
| pmerrloc_writel(host->pmerrloc_base, ELEN, |
| sector_size * 8 + host->pmecc_degree * cap); |
| |
| end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); |
| while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) |
| & PMERRLOC_CALC_DONE)) { |
| if (unlikely(time_after(jiffies, end_time))) { |
| dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); |
| return -1; |
| } |
| cpu_relax(); |
| } |
| |
| roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) |
| & PMERRLOC_ERR_NUM_MASK) >> 8; |
| /* Number of roots == degree of smu hence <= cap */ |
| if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) |
| return err_nbr - 1; |
| |
| /* Number of roots does not match the degree of smu |
| * unable to correct error */ |
| return -1; |
| } |
| |
| static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, |
| int sector_num, int extra_bytes, int err_nbr) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i = 0; |
| int byte_pos, bit_pos, sector_size, pos; |
| uint32_t tmp; |
| uint8_t err_byte; |
| |
| sector_size = host->pmecc_sector_size; |
| |
| while (err_nbr) { |
| tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1; |
| byte_pos = tmp / 8; |
| bit_pos = tmp % 8; |
| |
| if (byte_pos >= (sector_size + extra_bytes)) |
| BUG(); /* should never happen */ |
| |
| if (byte_pos < sector_size) { |
| err_byte = *(buf + byte_pos); |
| *(buf + byte_pos) ^= (1 << bit_pos); |
| |
| pos = sector_num * host->pmecc_sector_size + byte_pos; |
| dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, *(buf + byte_pos)); |
| } else { |
| /* Bit flip in OOB area */ |
| tmp = sector_num * host->pmecc_bytes_per_sector |
| + (byte_pos - sector_size); |
| err_byte = ecc[tmp]; |
| ecc[tmp] ^= (1 << bit_pos); |
| |
| pos = tmp + nand_chip->ecc.layout->eccpos[0]; |
| dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, ecc[tmp]); |
| } |
| |
| i++; |
| err_nbr--; |
| } |
| |
| return; |
| } |
| |
| static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, |
| u8 *ecc) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i, err_nbr; |
| uint8_t *buf_pos; |
| int total_err = 0; |
| |
| for (i = 0; i < nand_chip->ecc.total; i++) |
| if (ecc[i] != 0xff) |
| goto normal_check; |
| /* Erased page, return OK */ |
| return 0; |
| |
| normal_check: |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| err_nbr = 0; |
| if (pmecc_stat & 0x1) { |
| buf_pos = buf + i * host->pmecc_sector_size; |
| |
| pmecc_gen_syndrome(mtd, i); |
| pmecc_substitute(mtd); |
| pmecc_get_sigma(mtd); |
| |
| err_nbr = pmecc_err_location(mtd); |
| if (err_nbr == -1) { |
| dev_err(host->dev, "PMECC: Too many errors\n"); |
| mtd->ecc_stats.failed++; |
| return -EIO; |
| } else { |
| pmecc_correct_data(mtd, buf_pos, ecc, i, |
| host->pmecc_bytes_per_sector, err_nbr); |
| mtd->ecc_stats.corrected += err_nbr; |
| total_err += err_nbr; |
| } |
| } |
| pmecc_stat >>= 1; |
| } |
| |
| return total_err; |
| } |
| |
| static void pmecc_enable(struct atmel_nand_host *host, int ecc_op) |
| { |
| u32 val; |
| |
| if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) { |
| dev_err(host->dev, "atmel_nand: wrong pmecc operation type!"); |
| return; |
| } |
| |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); |
| val = pmecc_readl_relaxed(host->ecc, CFG); |
| |
| if (ecc_op == NAND_ECC_READ) |
| pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP) |
| | PMECC_CFG_AUTO_ENABLE); |
| else |
| pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP) |
| & ~PMECC_CFG_AUTO_ENABLE); |
| |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); |
| } |
| |
| static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, int page) |
| { |
| struct atmel_nand_host *host = chip->priv; |
| int eccsize = chip->ecc.size * chip->ecc.steps; |
| uint8_t *oob = chip->oob_poi; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint32_t stat; |
| unsigned long end_time; |
| int bitflips = 0; |
| |
| if (!host->nfc || !host->nfc->use_nfc_sram) |
| pmecc_enable(host, NAND_ECC_READ); |
| |
| chip->read_buf(mtd, buf, eccsize); |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); |
| while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { |
| if (unlikely(time_after(jiffies, end_time))) { |
| dev_err(host->dev, "PMECC: Timeout to get error status.\n"); |
| return -EIO; |
| } |
| cpu_relax(); |
| } |
| |
| stat = pmecc_readl_relaxed(host->ecc, ISR); |
| if (stat != 0) { |
| bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]); |
| if (bitflips < 0) |
| /* uncorrectable errors */ |
| return 0; |
| } |
| |
| return bitflips; |
| } |
| |
| static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required) |
| { |
| struct atmel_nand_host *host = chip->priv; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| int i, j; |
| unsigned long end_time; |
| |
| if (!host->nfc || !host->nfc->write_by_sram) { |
| pmecc_enable(host, NAND_ECC_WRITE); |
| chip->write_buf(mtd, (u8 *)buf, mtd->writesize); |
| } |
| |
| end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); |
| while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { |
| if (unlikely(time_after(jiffies, end_time))) { |
| dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); |
| return -EIO; |
| } |
| cpu_relax(); |
| } |
| |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| for (j = 0; j < host->pmecc_bytes_per_sector; j++) { |
| int pos; |
| |
| pos = i * host->pmecc_bytes_per_sector + j; |
| chip->oob_poi[eccpos[pos]] = |
| pmecc_readb_ecc_relaxed(host->ecc, i, j); |
| } |
| } |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static void atmel_pmecc_core_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| uint32_t val = 0; |
| struct nand_ecclayout *ecc_layout; |
| |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); |
| |
| switch (host->pmecc_corr_cap) { |
| case 2: |
| val = PMECC_CFG_BCH_ERR2; |
| break; |
| case 4: |
| val = PMECC_CFG_BCH_ERR4; |
| break; |
| case 8: |
| val = PMECC_CFG_BCH_ERR8; |
| break; |
| case 12: |
| val = PMECC_CFG_BCH_ERR12; |
| break; |
| case 24: |
| val = PMECC_CFG_BCH_ERR24; |
| break; |
| } |
| |
| if (host->pmecc_sector_size == 512) |
| val |= PMECC_CFG_SECTOR512; |
| else if (host->pmecc_sector_size == 1024) |
| val |= PMECC_CFG_SECTOR1024; |
| |
| switch (host->pmecc_sector_number) { |
| case 1: |
| val |= PMECC_CFG_PAGE_1SECTOR; |
| break; |
| case 2: |
| val |= PMECC_CFG_PAGE_2SECTORS; |
| break; |
| case 4: |
| val |= PMECC_CFG_PAGE_4SECTORS; |
| break; |
| case 8: |
| val |= PMECC_CFG_PAGE_8SECTORS; |
| break; |
| } |
| |
| val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE |
| | PMECC_CFG_AUTO_DISABLE); |
| pmecc_writel(host->ecc, CFG, val); |
| |
| ecc_layout = nand_chip->ecc.layout; |
| pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); |
| pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]); |
| pmecc_writel(host->ecc, EADDR, |
| ecc_layout->eccpos[ecc_layout->eccbytes - 1]); |
| /* See datasheet about PMECC Clock Control Register */ |
| pmecc_writel(host->ecc, CLK, 2); |
| pmecc_writel(host->ecc, IDR, 0xff); |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); |
| } |
| |
| /* |
| * Get minimum ecc requirements from NAND. |
| * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function |
| * will set them according to minimum ecc requirement. Otherwise, use the |
| * value in DTS file. |
| * return 0 if success. otherwise return error code. |
| */ |
| static int pmecc_choose_ecc(struct atmel_nand_host *host, |
| int *cap, int *sector_size) |
| { |
| /* Get minimum ECC requirements */ |
| if (host->nand_chip.ecc_strength_ds) { |
| *cap = host->nand_chip.ecc_strength_ds; |
| *sector_size = host->nand_chip.ecc_step_ds; |
| dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n", |
| *cap, *sector_size); |
| } else { |
| *cap = 2; |
| *sector_size = 512; |
| dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n"); |
| } |
| |
| /* If device tree doesn't specify, use NAND's minimum ECC parameters */ |
| if (host->pmecc_corr_cap == 0) { |
| /* use the most fitable ecc bits (the near bigger one ) */ |
| if (*cap <= 2) |
| host->pmecc_corr_cap = 2; |
| else if (*cap <= 4) |
| host->pmecc_corr_cap = 4; |
| else if (*cap <= 8) |
| host->pmecc_corr_cap = 8; |
| else if (*cap <= 12) |
| host->pmecc_corr_cap = 12; |
| else if (*cap <= 24) |
| host->pmecc_corr_cap = 24; |
| else |
| return -EINVAL; |
| } |
| if (host->pmecc_sector_size == 0) { |
| /* use the most fitable sector size (the near smaller one ) */ |
| if (*sector_size >= 1024) |
| host->pmecc_sector_size = 1024; |
| else if (*sector_size >= 512) |
| host->pmecc_sector_size = 512; |
| else |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int atmel_pmecc_nand_init_params(struct platform_device *pdev, |
| struct atmel_nand_host *host) |
| { |
| struct mtd_info *mtd = &host->mtd; |
| struct nand_chip *nand_chip = &host->nand_chip; |
| struct resource *regs, *regs_pmerr, *regs_rom; |
| int cap, sector_size, err_no; |
| |
| err_no = pmecc_choose_ecc(host, &cap, §or_size); |
| if (err_no) { |
| dev_err(host->dev, "The NAND flash's ECC requirement are not support!"); |
| return err_no; |
| } |
| |
| if (cap > host->pmecc_corr_cap || |
| sector_size != host->pmecc_sector_size) |
| dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n"); |
| |
| cap = host->pmecc_corr_cap; |
| sector_size = host->pmecc_sector_size; |
| host->pmecc_lookup_table_offset = (sector_size == 512) ? |
| host->pmecc_lookup_table_offset_512 : |
| host->pmecc_lookup_table_offset_1024; |
| |
| dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", |
| cap, sector_size); |
| |
| regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!regs) { |
| dev_warn(host->dev, |
| "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); |
| nand_chip->ecc.mode = NAND_ECC_SOFT; |
| return 0; |
| } |
| |
| host->ecc = devm_ioremap_resource(&pdev->dev, regs); |
| if (IS_ERR(host->ecc)) { |
| dev_err(host->dev, "ioremap failed\n"); |
| err_no = PTR_ERR(host->ecc); |
| goto err; |
| } |
| |
| regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); |
| host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr); |
| if (IS_ERR(host->pmerrloc_base)) { |
| dev_err(host->dev, |
| "Can not get I/O resource for PMECC ERRLOC controller!\n"); |
| err_no = PTR_ERR(host->pmerrloc_base); |
| goto err; |
| } |
| |
| regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); |
| host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom); |
| if (IS_ERR(host->pmecc_rom_base)) { |
| dev_err(host->dev, "Can not get I/O resource for ROM!\n"); |
| err_no = PTR_ERR(host->pmecc_rom_base); |
| goto err; |
| } |
| |
| nand_chip->ecc.size = sector_size; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 2048: |
| host->pmecc_degree = (sector_size == 512) ? |
| PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; |
| host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; |
| host->pmecc_sector_number = mtd->writesize / sector_size; |
| host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( |
| cap, sector_size); |
| host->pmecc_alpha_to = pmecc_get_alpha_to(host); |
| host->pmecc_index_of = host->pmecc_rom_base + |
| host->pmecc_lookup_table_offset; |
| |
| nand_chip->ecc.steps = host->pmecc_sector_number; |
| nand_chip->ecc.strength = cap; |
| nand_chip->ecc.bytes = host->pmecc_bytes_per_sector; |
| nand_chip->ecc.total = host->pmecc_bytes_per_sector * |
| host->pmecc_sector_number; |
| if (nand_chip->ecc.total > mtd->oobsize - 2) { |
| dev_err(host->dev, "No room for ECC bytes\n"); |
| err_no = -EINVAL; |
| goto err; |
| } |
| pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, |
| mtd->oobsize, |
| nand_chip->ecc.total); |
| |
| nand_chip->ecc.layout = &atmel_pmecc_oobinfo; |
| break; |
| case 512: |
| case 1024: |
| case 4096: |
| /* TODO */ |
| dev_warn(host->dev, |
| "Unsupported page size for PMECC, use Software ECC\n"); |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand_chip->ecc.mode = NAND_ECC_SOFT; |
| return 0; |
| } |
| |
| /* Allocate data for PMECC computation */ |
| err_no = pmecc_data_alloc(host); |
| if (err_no) { |
| dev_err(host->dev, |
| "Cannot allocate memory for PMECC computation!\n"); |
| goto err; |
| } |
| |
| nand_chip->options |= NAND_NO_SUBPAGE_WRITE; |
| nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; |
| nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; |
| |
| atmel_pmecc_core_init(mtd); |
| |
| return 0; |
| |
| err: |
| return err_no; |
| } |
| |
| /* |
| * Calculate HW ECC |
| * |
| * function called after a write |
| * |
| * mtd: MTD block structure |
| * dat: raw data (unused) |
| * ecc_code: buffer for ECC |
| */ |
| static int atmel_nand_calculate(struct mtd_info *mtd, |
| const u_char *dat, unsigned char *ecc_code) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| unsigned int ecc_value; |
| |
| /* get the first 2 ECC bytes */ |
| ecc_value = ecc_readl(host->ecc, PR); |
| |
| ecc_code[0] = ecc_value & 0xFF; |
| ecc_code[1] = (ecc_value >> 8) & 0xFF; |
| |
| /* get the last 2 ECC bytes */ |
| ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; |
| |
| ecc_code[2] = ecc_value & 0xFF; |
| ecc_code[3] = (ecc_value >> 8) & 0xFF; |
| |
| return 0; |
| } |
| |
| /* |
| * HW ECC read page function |
| * |
| * mtd: mtd info structure |
| * chip: nand chip info structure |
| * buf: buffer to store read data |
| * oob_required: caller expects OOB data read to chip->oob_poi |
| */ |
| static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| uint8_t *ecc_pos; |
| int stat; |
| unsigned int max_bitflips = 0; |
| |
| /* |
| * Errata: ALE is incorrectly wired up to the ECC controller |
| * on the AP7000, so it will include the address cycles in the |
| * ECC calculation. |
| * |
| * Workaround: Reset the parity registers before reading the |
| * actual data. |
| */ |
| struct atmel_nand_host *host = chip->priv; |
| if (host->board.need_reset_workaround) |
| ecc_writel(host->ecc, CR, ATMEL_ECC_RST); |
| |
| /* read the page */ |
| chip->read_buf(mtd, p, eccsize); |
| |
| /* move to ECC position if needed */ |
| if (eccpos[0] != 0) { |
| /* This only works on large pages |
| * because the ECC controller waits for |
| * NAND_CMD_RNDOUTSTART after the |
| * NAND_CMD_RNDOUT. |
| * anyway, for small pages, the eccpos[0] == 0 |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| mtd->writesize + eccpos[0], -1); |
| } |
| |
| /* the ECC controller needs to read the ECC just after the data */ |
| ecc_pos = oob + eccpos[0]; |
| chip->read_buf(mtd, ecc_pos, eccbytes); |
| |
| /* check if there's an error */ |
| stat = chip->ecc.correct(mtd, p, oob, NULL); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| |
| /* get back to oob start (end of page) */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); |
| |
| /* read the oob */ |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * HW ECC Correction |
| * |
| * function called after a read |
| * |
| * mtd: MTD block structure |
| * dat: raw data read from the chip |
| * read_ecc: ECC from the chip (unused) |
| * isnull: unused |
| * |
| * Detect and correct a 1 bit error for a page |
| */ |
| static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *isnull) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| unsigned int ecc_status; |
| unsigned int ecc_word, ecc_bit; |
| |
| /* get the status from the Status Register */ |
| ecc_status = ecc_readl(host->ecc, SR); |
| |
| /* if there's no error */ |
| if (likely(!(ecc_status & ATMEL_ECC_RECERR))) |
| return 0; |
| |
| /* get error bit offset (4 bits) */ |
| ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR; |
| /* get word address (12 bits) */ |
| ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR; |
| ecc_word >>= 4; |
| |
| /* if there are multiple errors */ |
| if (ecc_status & ATMEL_ECC_MULERR) { |
| /* check if it is a freshly erased block |
| * (filled with 0xff) */ |
| if ((ecc_bit == ATMEL_ECC_BITADDR) |
| && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { |
| /* the block has just been erased, return OK */ |
| return 0; |
| } |
| /* it doesn't seems to be a freshly |
| * erased block. |
| * We can't correct so many errors */ |
| dev_dbg(host->dev, "atmel_nand : multiple errors detected." |
| " Unable to correct.\n"); |
| return -EIO; |
| } |
| |
| /* if there's a single bit error : we can correct it */ |
| if (ecc_status & ATMEL_ECC_ECCERR) { |
| /* there's nothing much to do here. |
| * the bit error is on the ECC itself. |
| */ |
| dev_dbg(host->dev, "atmel_nand : one bit error on ECC code." |
| " Nothing to correct\n"); |
| return 0; |
| } |
| |
| dev_dbg(host->dev, "atmel_nand : one bit error on data." |
| " (word offset in the page :" |
| " 0x%x bit offset : 0x%x)\n", |
| ecc_word, ecc_bit); |
| /* correct the error */ |
| if (nand_chip->options & NAND_BUSWIDTH_16) { |
| /* 16 bits words */ |
| ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); |
| } else { |
| /* 8 bits words */ |
| dat[ecc_word] ^= (1 << ecc_bit); |
| } |
| dev_dbg(host->dev, "atmel_nand : error corrected\n"); |
| return 1; |
| } |
| |
| /* |
| * Enable HW ECC : unused on most chips |
| */ |
| static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| if (host->board.need_reset_workaround) |
| ecc_writel(host->ecc, CR, ATMEL_ECC_RST); |
| } |
| |
| static int atmel_of_init_port(struct atmel_nand_host *host, |
| struct device_node *np) |
| { |
| u32 val; |
| u32 offset[2]; |
| int ecc_mode; |
| struct atmel_nand_data *board = &host->board; |
| enum of_gpio_flags flags = 0; |
| |
| if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) { |
| if (val >= 32) { |
| dev_err(host->dev, "invalid addr-offset %u\n", val); |
| return -EINVAL; |
| } |
| board->ale = val; |
| } |
| |
| if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) { |
| if (val >= 32) { |
| dev_err(host->dev, "invalid cmd-offset %u\n", val); |
| return -EINVAL; |
| } |
| board->cle = val; |
| } |
| |
| ecc_mode = of_get_nand_ecc_mode(np); |
| |
| board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode; |
| |
| board->on_flash_bbt = of_get_nand_on_flash_bbt(np); |
| |
| board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma"); |
| |
| if (of_get_nand_bus_width(np) == 16) |
| board->bus_width_16 = 1; |
| |
| board->rdy_pin = of_get_gpio_flags(np, 0, &flags); |
| board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW); |
| |
| board->enable_pin = of_get_gpio(np, 1); |
| board->det_pin = of_get_gpio(np, 2); |
| |
| host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); |
| |
| /* load the nfc driver if there is */ |
| of_platform_populate(np, NULL, NULL, host->dev); |
| |
| if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc) |
| return 0; /* Not using PMECC */ |
| |
| /* use PMECC, get correction capability, sector size and lookup |
| * table offset. |
| * If correction bits and sector size are not specified, then find |
| * them from NAND ONFI parameters. |
| */ |
| if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) { |
| if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && |
| (val != 24)) { |
| dev_err(host->dev, |
| "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n", |
| val); |
| return -EINVAL; |
| } |
| host->pmecc_corr_cap = (u8)val; |
| } |
| |
| if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) { |
| if ((val != 512) && (val != 1024)) { |
| dev_err(host->dev, |
| "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n", |
| val); |
| return -EINVAL; |
| } |
| host->pmecc_sector_size = (u16)val; |
| } |
| |
| if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", |
| offset, 2) != 0) { |
| dev_err(host->dev, "Cannot get PMECC lookup table offset\n"); |
| return -EINVAL; |
| } |
| if (!offset[0] && !offset[1]) { |
| dev_err(host->dev, "Invalid PMECC lookup table offset\n"); |
| return -EINVAL; |
| } |
| host->pmecc_lookup_table_offset_512 = offset[0]; |
| host->pmecc_lookup_table_offset_1024 = offset[1]; |
| |
| return 0; |
| } |
| |
| static int atmel_hw_nand_init_params(struct platform_device *pdev, |
| struct atmel_nand_host *host) |
| { |
| struct mtd_info *mtd = &host->mtd; |
| struct nand_chip *nand_chip = &host->nand_chip; |
| struct resource *regs; |
| |
| regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!regs) { |
| dev_err(host->dev, |
| "Can't get I/O resource regs, use software ECC\n"); |
| nand_chip->ecc.mode = NAND_ECC_SOFT; |
| return 0; |
| } |
| |
| host->ecc = devm_ioremap_resource(&pdev->dev, regs); |
| if (IS_ERR(host->ecc)) { |
| dev_err(host->dev, "ioremap failed\n"); |
| return PTR_ERR(host->ecc); |
| } |
| |
| /* ECC is calculated for the whole page (1 step) */ |
| nand_chip->ecc.size = mtd->writesize; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 512: |
| nand_chip->ecc.layout = &atmel_oobinfo_small; |
| ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); |
| break; |
| case 1024: |
| nand_chip->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); |
| break; |
| case 2048: |
| nand_chip->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); |
| break; |
| case 4096: |
| nand_chip->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); |
| break; |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand_chip->ecc.mode = NAND_ECC_SOFT; |
| return 0; |
| } |
| |
| /* set up for HW ECC */ |
| nand_chip->ecc.calculate = atmel_nand_calculate; |
| nand_chip->ecc.correct = atmel_nand_correct; |
| nand_chip->ecc.hwctl = atmel_nand_hwctl; |
| nand_chip->ecc.read_page = atmel_nand_read_page; |
| nand_chip->ecc.bytes = 4; |
| nand_chip->ecc.strength = 1; |
| |
| return 0; |
| } |
| |
| static inline u32 nfc_read_status(struct atmel_nand_host *host) |
| { |
| u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE; |
| u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR); |
| |
| if (unlikely(nfc_status & err_flags)) { |
| if (nfc_status & NFC_SR_DTOE) |
| dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n"); |
| else if (nfc_status & NFC_SR_UNDEF) |
| dev_err(host->dev, "NFC: Access Undefined Area Error\n"); |
| else if (nfc_status & NFC_SR_AWB) |
| dev_err(host->dev, "NFC: Access memory While NFC is busy\n"); |
| else if (nfc_status & NFC_SR_ASE) |
| dev_err(host->dev, "NFC: Access memory Size Error\n"); |
| } |
| |
| return nfc_status; |
| } |
| |
| /* SMC interrupt service routine */ |
| static irqreturn_t hsmc_interrupt(int irq, void *dev_id) |
| { |
| struct atmel_nand_host *host = dev_id; |
| u32 status, mask, pending; |
| irqreturn_t ret = IRQ_NONE; |
| |
| status = nfc_read_status(host); |
| mask = nfc_readl(host->nfc->hsmc_regs, IMR); |
| pending = status & mask; |
| |
| if (pending & NFC_SR_XFR_DONE) { |
| complete(&host->nfc->comp_xfer_done); |
| nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE); |
| ret = IRQ_HANDLED; |
| } |
| if (pending & NFC_SR_RB_EDGE) { |
| complete(&host->nfc->comp_ready); |
| nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE); |
| ret = IRQ_HANDLED; |
| } |
| if (pending & NFC_SR_CMD_DONE) { |
| complete(&host->nfc->comp_cmd_done); |
| nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE); |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| /* NFC(Nand Flash Controller) related functions */ |
| static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag) |
| { |
| if (flag & NFC_SR_XFR_DONE) |
| init_completion(&host->nfc->comp_xfer_done); |
| |
| if (flag & NFC_SR_RB_EDGE) |
| init_completion(&host->nfc->comp_ready); |
| |
| if (flag & NFC_SR_CMD_DONE) |
| init_completion(&host->nfc->comp_cmd_done); |
| |
| /* Enable interrupt that need to wait for */ |
| nfc_writel(host->nfc->hsmc_regs, IER, flag); |
| } |
| |
| static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag) |
| { |
| int i, index = 0; |
| struct completion *comp[3]; /* Support 3 interrupt completion */ |
| |
| if (flag & NFC_SR_XFR_DONE) |
| comp[index++] = &host->nfc->comp_xfer_done; |
| |
| if (flag & NFC_SR_RB_EDGE) |
| comp[index++] = &host->nfc->comp_ready; |
| |
| if (flag & NFC_SR_CMD_DONE) |
| comp[index++] = &host->nfc->comp_cmd_done; |
| |
| if (index == 0) { |
| dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < index; i++) { |
| if (wait_for_completion_timeout(comp[i], |
| msecs_to_jiffies(NFC_TIME_OUT_MS))) |
| continue; /* wait for next completion */ |
| else |
| goto err_timeout; |
| } |
| |
| return 0; |
| |
| err_timeout: |
| dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag); |
| /* Disable the interrupt as it is not handled by interrupt handler */ |
| nfc_writel(host->nfc->hsmc_regs, IDR, flag); |
| return -ETIMEDOUT; |
| } |
| |
| static int nfc_send_command(struct atmel_nand_host *host, |
| unsigned int cmd, unsigned int addr, unsigned char cycle0) |
| { |
| unsigned long timeout; |
| u32 flag = NFC_SR_CMD_DONE; |
| flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0; |
| |
| dev_dbg(host->dev, |
| "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n", |
| cmd, addr, cycle0); |
| |
| timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); |
| while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs) |
| & NFCADDR_CMD_NFCBUSY) { |
| if (time_after(jiffies, timeout)) { |
| dev_err(host->dev, |
| "Time out to wait CMD_NFCBUSY ready!\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| nfc_prepare_interrupt(host, flag); |
| nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0); |
| nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs); |
| return nfc_wait_interrupt(host, flag); |
| } |
| |
| static int nfc_device_ready(struct mtd_info *mtd) |
| { |
| u32 status, mask; |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| status = nfc_read_status(host); |
| mask = nfc_readl(host->nfc->hsmc_regs, IMR); |
| |
| /* The mask should be 0. If not we may lost interrupts */ |
| if (unlikely(mask & status)) |
| dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n", |
| mask & status); |
| |
| return status & NFC_SR_RB_EDGE; |
| } |
| |
| static void nfc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| if (chip == -1) |
| nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE); |
| else |
| nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE); |
| } |
| |
| static int nfc_make_addr(struct mtd_info *mtd, int command, int column, |
| int page_addr, unsigned int *addr1234, unsigned int *cycle0) |
| { |
| struct nand_chip *chip = mtd->priv; |
| |
| int acycle = 0; |
| unsigned char addr_bytes[8]; |
| int index = 0, bit_shift; |
| |
| BUG_ON(addr1234 == NULL || cycle0 == NULL); |
| |
| *cycle0 = 0; |
| *addr1234 = 0; |
| |
| if (column != -1) { |
| if (chip->options & NAND_BUSWIDTH_16 && |
| !nand_opcode_8bits(command)) |
| column >>= 1; |
| addr_bytes[acycle++] = column & 0xff; |
| if (mtd->writesize > 512) |
| addr_bytes[acycle++] = (column >> 8) & 0xff; |
| } |
| |
| if (page_addr != -1) { |
| addr_bytes[acycle++] = page_addr & 0xff; |
| addr_bytes[acycle++] = (page_addr >> 8) & 0xff; |
| if (chip->chipsize > (128 << 20)) |
| addr_bytes[acycle++] = (page_addr >> 16) & 0xff; |
| } |
| |
| if (acycle > 4) |
| *cycle0 = addr_bytes[index++]; |
| |
| for (bit_shift = 0; index < acycle; bit_shift += 8) |
| *addr1234 += addr_bytes[index++] << bit_shift; |
| |
| /* return acycle in cmd register */ |
| return acycle << NFCADDR_CMD_ACYCLE_BIT_POS; |
| } |
| |
| static void nfc_nand_command(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| unsigned long timeout; |
| unsigned int nfc_addr_cmd = 0; |
| |
| unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; |
| |
| /* Set default settings: no cmd2, no addr cycle. read from nand */ |
| unsigned int cmd2 = 0; |
| unsigned int vcmd2 = 0; |
| int acycle = NFCADDR_CMD_ACYCLE_NONE; |
| int csid = NFCADDR_CMD_CSID_3; |
| int dataen = NFCADDR_CMD_DATADIS; |
| int nfcwr = NFCADDR_CMD_NFCRD; |
| unsigned int addr1234 = 0; |
| unsigned int cycle0 = 0; |
| bool do_addr = true; |
| host->nfc->data_in_sram = NULL; |
| |
| dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n", |
| __func__, command, column, page_addr); |
| |
| switch (command) { |
| case NAND_CMD_RESET: |
| nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr; |
| nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); |
| udelay(chip->chip_delay); |
| |
| nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); |
| timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); |
| while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) { |
| if (time_after(jiffies, timeout)) { |
| dev_err(host->dev, |
| "Time out to wait status ready!\n"); |
| break; |
| } |
| } |
| return; |
| case NAND_CMD_STATUS: |
| do_addr = false; |
| break; |
| case NAND_CMD_PARAM: |
| case NAND_CMD_READID: |
| do_addr = false; |
| acycle = NFCADDR_CMD_ACYCLE_1; |
| if (column != -1) |
| addr1234 = column; |
| break; |
| case NAND_CMD_RNDOUT: |
| cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS; |
| vcmd2 = NFCADDR_CMD_VCMD2; |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_READOOB: |
| if (command == NAND_CMD_READOOB) { |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; /* only READ0 is valid */ |
| cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; |
| } |
| if (host->nfc->use_nfc_sram) { |
| /* Enable Data transfer to sram */ |
| dataen = NFCADDR_CMD_DATAEN; |
| |
| /* Need enable PMECC now, since NFC will transfer |
| * data in bus after sending nfc read command. |
| */ |
| if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) |
| pmecc_enable(host, NAND_ECC_READ); |
| } |
| |
| cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS; |
| vcmd2 = NFCADDR_CMD_VCMD2; |
| break; |
| /* For prgramming command, the cmd need set to write enable */ |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_RNDIN: |
| nfcwr = NFCADDR_CMD_NFCWR; |
| if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN) |
| dataen = NFCADDR_CMD_DATAEN; |
| break; |
| default: |
| break; |
| } |
| |
| if (do_addr) |
| acycle = nfc_make_addr(mtd, command, column, page_addr, |
| &addr1234, &cycle0); |
| |
| nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr; |
| nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); |
| |
| /* |
| * Program and erase have their own busy handlers status, sequential |
| * in, and deplete1 need no delay. |
| */ |
| switch (command) { |
| case NAND_CMD_CACHEDPROG: |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_RNDIN: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_RNDOUT: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_READID: |
| return; |
| |
| case NAND_CMD_READ0: |
| if (dataen == NFCADDR_CMD_DATAEN) { |
| host->nfc->data_in_sram = host->nfc->sram_bank0 + |
| nfc_get_sram_off(host); |
| return; |
| } |
| /* fall through */ |
| default: |
| nfc_prepare_interrupt(host, NFC_SR_RB_EDGE); |
| nfc_wait_interrupt(host, NFC_SR_RB_EDGE); |
| } |
| } |
| |
| static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint32_t offset, int data_len, const uint8_t *buf, |
| int oob_required, int page, int cached, int raw) |
| { |
| int cfg, len; |
| int status = 0; |
| struct atmel_nand_host *host = chip->priv; |
| void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); |
| |
| /* Subpage write is not supported */ |
| if (offset || (data_len < mtd->writesize)) |
| return -EINVAL; |
| |
| cfg = nfc_readl(host->nfc->hsmc_regs, CFG); |
| len = mtd->writesize; |
| |
| if (unlikely(raw)) { |
| len += mtd->oobsize; |
| nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE); |
| } else |
| nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE); |
| |
| /* Copy page data to sram that will write to nand via NFC */ |
| if (use_dma) { |
| if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0) |
| /* Fall back to use cpu copy */ |
| memcpy32_toio(sram, buf, len); |
| } else { |
| memcpy32_toio(sram, buf, len); |
| } |
| |
| if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) |
| /* |
| * When use NFC sram, need set up PMECC before send |
| * NAND_CMD_SEQIN command. Since when the nand command |
| * is sent, nfc will do transfer from sram and nand. |
| */ |
| pmecc_enable(host, NAND_ECC_WRITE); |
| |
| host->nfc->will_write_sram = true; |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| host->nfc->will_write_sram = false; |
| |
| if (likely(!raw)) |
| /* Need to write ecc into oob */ |
| status = chip->ecc.write_page(mtd, chip, buf, oob_required); |
| |
| if (status < 0) |
| return status; |
| |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| |
| if ((status & NAND_STATUS_FAIL) && (chip->errstat)) |
| status = chip->errstat(mtd, chip, FL_WRITING, status, page); |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int nfc_sram_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct atmel_nand_host *host = chip->priv; |
| int res = 0; |
| |
| /* Initialize the NFC CFG register */ |
| unsigned int cfg_nfc = 0; |
| |
| /* set page size and oob layout */ |
| switch (mtd->writesize) { |
| case 512: |
| cfg_nfc = NFC_CFG_PAGESIZE_512; |
| break; |
| case 1024: |
| cfg_nfc = NFC_CFG_PAGESIZE_1024; |
| break; |
| case 2048: |
| cfg_nfc = NFC_CFG_PAGESIZE_2048; |
| break; |
| case 4096: |
| cfg_nfc = NFC_CFG_PAGESIZE_4096; |
| break; |
| case 8192: |
| cfg_nfc = NFC_CFG_PAGESIZE_8192; |
| break; |
| default: |
| dev_err(host->dev, "Unsupported page size for NFC.\n"); |
| res = -ENXIO; |
| return res; |
| } |
| |
| /* oob bytes size = (NFCSPARESIZE + 1) * 4 |
| * Max support spare size is 512 bytes. */ |
| cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS |
| & NFC_CFG_NFC_SPARESIZE); |
| /* default set a max timeout */ |
| cfg_nfc |= NFC_CFG_RSPARE | |
| NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL; |
| |
| nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc); |
| |
| host->nfc->will_write_sram = false; |
| nfc_set_sram_bank(host, 0); |
| |
| /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */ |
| if (host->nfc->write_by_sram) { |
| if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) || |
| chip->ecc.mode == NAND_ECC_NONE) |
| chip->write_page = nfc_sram_write_page; |
| else |
| host->nfc->write_by_sram = false; |
| } |
| |
| dev_info(host->dev, "Using NFC Sram read %s\n", |
| host->nfc->write_by_sram ? "and write" : ""); |
| return 0; |
| } |
| |
| static struct platform_driver atmel_nand_nfc_driver; |
| /* |
| * Probe for the NAND device. |
| */ |
| static int atmel_nand_probe(struct platform_device *pdev) |
| { |
| struct atmel_nand_host *host; |
| struct mtd_info *mtd; |
| struct nand_chip *nand_chip; |
| struct resource *mem; |
| struct mtd_part_parser_data ppdata = {}; |
| int res, irq; |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| if (!host) |
| return -ENOMEM; |
| |
| res = platform_driver_register(&atmel_nand_nfc_driver); |
| if (res) |
| dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n"); |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| host->io_base = devm_ioremap_resource(&pdev->dev, mem); |
| if (IS_ERR(host->io_base)) { |
| dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n"); |
| res = PTR_ERR(host->io_base); |
| goto err_nand_ioremap; |
| } |
| host->io_phys = (dma_addr_t)mem->start; |
| |
| mtd = &host->mtd; |
| nand_chip = &host->nand_chip; |
| host->dev = &pdev->dev; |
| if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { |
| /* Only when CONFIG_OF is enabled of_node can be parsed */ |
| res = atmel_of_init_port(host, pdev->dev.of_node); |
| if (res) |
| goto err_nand_ioremap; |
| } else { |
| memcpy(&host->board, dev_get_platdata(&pdev->dev), |
| sizeof(struct atmel_nand_data)); |
| } |
| |
| nand_chip->priv = host; /* link the private data structures */ |
| mtd->priv = nand_chip; |
| mtd->owner = THIS_MODULE; |
| |
| /* Set address of NAND IO lines */ |
| nand_chip->IO_ADDR_R = host->io_base; |
| nand_chip->IO_ADDR_W = host->io_base; |
| |
| if (nand_nfc.is_initialized) { |
| /* NFC driver is probed and initialized */ |
| host->nfc = &nand_nfc; |
| |
| nand_chip->select_chip = nfc_select_chip; |
| nand_chip->dev_ready = nfc_device_ready; |
| nand_chip->cmdfunc = nfc_nand_command; |
| |
| /* Initialize the interrupt for NFC */ |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(host->dev, "Cannot get HSMC irq!\n"); |
| res = irq; |
| goto err_nand_ioremap; |
| } |
| |
| res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt, |
| 0, "hsmc", host); |
| if (res) { |
| dev_err(&pdev->dev, "Unable to request HSMC irq %d\n", |
| irq); |
| goto err_nand_ioremap; |
| } |
| } else { |
| res = atmel_nand_set_enable_ready_pins(mtd); |
| if (res) |
| goto err_nand_ioremap; |
| |
| nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; |
| } |
| |
| nand_chip->ecc.mode = host->board.ecc_mode; |
| nand_chip->chip_delay = 20; /* 20us command delay time */ |
| |
| if (host->board.bus_width_16) /* 16-bit bus width */ |
| nand_chip->options |= NAND_BUSWIDTH_16; |
| |
| nand_chip->read_buf = atmel_read_buf; |
| nand_chip->write_buf = atmel_write_buf; |
| |
| platform_set_drvdata(pdev, host); |
| atmel_nand_enable(host); |
| |
| if (gpio_is_valid(host->board.det_pin)) { |
| res = devm_gpio_request(&pdev->dev, |
| host->board.det_pin, "nand_det"); |
| if (res < 0) { |
| dev_err(&pdev->dev, |
| "can't request det gpio %d\n", |
| host->board.det_pin); |
| goto err_no_card; |
| } |
| |
| res = gpio_direction_input(host->board.det_pin); |
| if (res < 0) { |
| dev_err(&pdev->dev, |
| "can't request input direction det gpio %d\n", |
| host->board.det_pin); |
| goto err_no_card; |
| } |
| |
| if (gpio_get_value(host->board.det_pin)) { |
| dev_info(&pdev->dev, "No SmartMedia card inserted.\n"); |
| res = -ENXIO; |
| goto err_no_card; |
| } |
| } |
| |
| if (host->board.on_flash_bbt || on_flash_bbt) { |
| dev_info(&pdev->dev, "Use On Flash BBT\n"); |
| nand_chip->bbt_options |= NAND_BBT_USE_FLASH; |
| } |
| |
| if (!host->board.has_dma) |
| use_dma = 0; |
| |
| if (use_dma) { |
| dma_cap_mask_t mask; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| host->dma_chan = dma_request_channel(mask, NULL, NULL); |
| if (!host->dma_chan) { |
| dev_err(host->dev, "Failed to request DMA channel\n"); |
| use_dma = 0; |
| } |
| } |
| if (use_dma) |
| dev_info(host->dev, "Using %s for DMA transfers.\n", |
| dma_chan_name(host->dma_chan)); |
| else |
| dev_info(host->dev, "No DMA support for NAND access.\n"); |
| |
| /* first scan to find the device and get the page size */ |
| if (nand_scan_ident(mtd, 1, NULL)) { |
| res = -ENXIO; |
| goto err_scan_ident; |
| } |
| |
| if (nand_chip->ecc.mode == NAND_ECC_HW) { |
| if (host->has_pmecc) |
| res = atmel_pmecc_nand_init_params(pdev, host); |
| else |
| res = atmel_hw_nand_init_params(pdev, host); |
| |
| if (res != 0) |
| goto err_hw_ecc; |
| } |
| |
| /* initialize the nfc configuration register */ |
| if (host->nfc && host->nfc->use_nfc_sram) { |
| res = nfc_sram_init(mtd); |
| if (res) { |
| host->nfc->use_nfc_sram = false; |
| dev_err(host->dev, "Disable use nfc sram for data transfer.\n"); |
| } |
| } |
| |
| /* second phase scan */ |
| if (nand_scan_tail(mtd)) { |
| res = -ENXIO; |
| goto err_scan_tail; |
| } |
| |
| mtd->name = "atmel_nand"; |
| ppdata.of_node = pdev->dev.of_node; |
| res = mtd_device_parse_register(mtd, NULL, &ppdata, |
| host->board.parts, host->board.num_parts); |
| if (!res) |
| return res; |
| |
| err_scan_tail: |
| if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); |
| err_hw_ecc: |
| err_scan_ident: |
| err_no_card: |
| atmel_nand_disable(host); |
| if (host->dma_chan) |
| dma_release_channel(host->dma_chan); |
| err_nand_ioremap: |
| return res; |
| } |
| |
| /* |
| * Remove a NAND device. |
| */ |
| static int atmel_nand_remove(struct platform_device *pdev) |
| { |
| struct atmel_nand_host *host = platform_get_drvdata(pdev); |
| struct mtd_info *mtd = &host->mtd; |
| |
| nand_release(mtd); |
| |
| atmel_nand_disable(host); |
| |
| if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { |
| pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); |
| pmerrloc_writel(host->pmerrloc_base, ELDIS, |
| PMERRLOC_DISABLE); |
| } |
| |
| if (host->dma_chan) |
| dma_release_channel(host->dma_chan); |
| |
| platform_driver_unregister(&atmel_nand_nfc_driver); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id atmel_nand_dt_ids[] = { |
| { .compatible = "atmel,at91rm9200-nand" }, |
| { /* sentinel */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids); |
| |
| static int atmel_nand_nfc_probe(struct platform_device *pdev) |
| { |
| struct atmel_nfc *nfc = &nand_nfc; |
| struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram; |
| |
| nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs); |
| if (IS_ERR(nfc->base_cmd_regs)) |
| return PTR_ERR(nfc->base_cmd_regs); |
| |
| nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs); |
| if (IS_ERR(nfc->hsmc_regs)) |
| return PTR_ERR(nfc->hsmc_regs); |
| |
| nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2); |
| if (nfc_sram) { |
| nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram); |
| if (IS_ERR(nfc->sram_bank0)) { |
| dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n", |
| PTR_ERR(nfc->sram_bank0)); |
| } else { |
| nfc->use_nfc_sram = true; |
| nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start; |
| |
| if (pdev->dev.of_node) |
| nfc->write_by_sram = of_property_read_bool( |
| pdev->dev.of_node, |
| "atmel,write-by-sram"); |
| } |
| } |
| |
| nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff); |
| nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */ |
| |
| nfc->is_initialized = true; |
| dev_info(&pdev->dev, "NFC is probed.\n"); |
| return 0; |
| } |
| |
| static const struct of_device_id atmel_nand_nfc_match[] = { |
| { .compatible = "atmel,sama5d3-nfc" }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match); |
| |
| static struct platform_driver atmel_nand_nfc_driver = { |
| .driver = { |
| .name = "atmel_nand_nfc", |
| .owner = THIS_MODULE, |
| .of_match_table = of_match_ptr(atmel_nand_nfc_match), |
| }, |
| .probe = atmel_nand_nfc_probe, |
| }; |
| |
| static struct platform_driver atmel_nand_driver = { |
| .probe = atmel_nand_probe, |
| .remove = atmel_nand_remove, |
| .driver = { |
| .name = "atmel_nand", |
| .owner = THIS_MODULE, |
| .of_match_table = of_match_ptr(atmel_nand_dt_ids), |
| }, |
| }; |
| |
| module_platform_driver(atmel_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Rick Bronson"); |
| MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32"); |
| MODULE_ALIAS("platform:atmel_nand"); |