blob: 505266a568d4221d9305c9e4ef1b0e99cc3ffc88 [file] [log] [blame]
/*
* SPU file system -- file contents
*
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#undef DEBUG
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
#include <asm/spu_info.h>
#include <asm/uaccess.h>
#include "spufs.h"
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
ctx->local_store = inode->i_mapping;
smp_wmb();
return 0;
}
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
size_t size, loff_t *pos)
{
char *local_store = ctx->ops->get_ls(ctx);
return simple_read_from_buffer(buffer, size, pos, local_store,
LS_SIZE);
}
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
ssize_t ret;
spu_acquire(ctx);
ret = __spufs_mem_read(ctx, buffer, size, pos);
spu_release(ctx);
return ret;
}
static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
size_t size, loff_t *ppos)
{
struct spu_context *ctx = file->private_data;
char *local_store;
loff_t pos = *ppos;
int ret;
if (pos < 0)
return -EINVAL;
if (pos > LS_SIZE)
return -EFBIG;
if (size > LS_SIZE - pos)
size = LS_SIZE - pos;
spu_acquire(ctx);
local_store = ctx->ops->get_ls(ctx);
ret = copy_from_user(local_store + pos, buffer, size);
spu_release(ctx);
if (ret)
return -EFAULT;
*ppos = pos + size;
return size;
}
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
struct spu_context *ctx = vma->vm_file->private_data;
unsigned long pfn, offset = address - vma->vm_start;
offset += vma->vm_pgoff << PAGE_SHIFT;
if (offset >= LS_SIZE)
return NOPFN_SIGBUS;
spu_acquire(ctx);
if (ctx->state == SPU_STATE_SAVED) {
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
& ~_PAGE_NO_CACHE);
pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
} else {
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE);
pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
}
vm_insert_pfn(vma, address, pfn);
spu_release(ctx);
return NOPFN_REFAULT;
}
static struct vm_operations_struct spufs_mem_mmap_vmops = {
.nopfn = spufs_mem_mmap_nopfn,
};
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE);
vma->vm_ops = &spufs_mem_mmap_vmops;
return 0;
}
static const struct file_operations spufs_mem_fops = {
.open = spufs_mem_open,
.read = spufs_mem_read,
.write = spufs_mem_write,
.llseek = generic_file_llseek,
.mmap = spufs_mem_mmap,
};
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
unsigned long address,
unsigned long ps_offs,
unsigned long ps_size)
{
struct spu_context *ctx = vma->vm_file->private_data;
unsigned long area, offset = address - vma->vm_start;
int ret;
offset += vma->vm_pgoff << PAGE_SHIFT;
if (offset >= ps_size)
return NOPFN_SIGBUS;
/* error here usually means a signal.. we might want to test
* the error code more precisely though
*/
ret = spu_acquire_runnable(ctx, 0);
if (ret)
return NOPFN_REFAULT;
area = ctx->spu->problem_phys + ps_offs;
vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
spu_release(ctx);
return NOPFN_REFAULT;
}
#if SPUFS_MMAP_4K
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
}
static struct vm_operations_struct spufs_cntl_mmap_vmops = {
.nopfn = spufs_cntl_mmap_nopfn,
};
/*
* mmap support for problem state control area [0x4000 - 0x4fff].
*/
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_cntl_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static u64 spufs_cntl_get(void *data)
{
struct spu_context *ctx = data;
u64 val;
spu_acquire(ctx);
val = ctx->ops->status_read(ctx);
spu_release(ctx);
return val;
}
static void spufs_cntl_set(void *data, u64 val)
{
struct spu_context *ctx = data;
spu_acquire(ctx);
ctx->ops->runcntl_write(ctx, val);
spu_release(ctx);
}
static int spufs_cntl_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
ctx->cntl = inode->i_mapping;
smp_wmb();
return simple_attr_open(inode, file, spufs_cntl_get,
spufs_cntl_set, "0x%08lx");
}
static const struct file_operations spufs_cntl_fops = {
.open = spufs_cntl_open,
.release = simple_attr_close,
.read = simple_attr_read,
.write = simple_attr_write,
.mmap = spufs_cntl_mmap,
};
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
file->private_data = i->i_ctx;
return 0;
}
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return simple_read_from_buffer(buffer, size, pos,
lscsa->gprs, sizeof lscsa->gprs);
}
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
int ret;
struct spu_context *ctx = file->private_data;
spu_acquire_saved(ctx);
ret = __spufs_regs_read(ctx, buffer, size, pos);
spu_release(ctx);
return ret;
}
static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
if (size <= 0)
return -EFBIG;
*pos += size;
spu_acquire_saved(ctx);
ret = copy_from_user(lscsa->gprs + *pos - size,
buffer, size) ? -EFAULT : size;
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_regs_fops = {
.open = spufs_regs_open,
.read = spufs_regs_read,
.write = spufs_regs_write,
.llseek = generic_file_llseek,
};
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
size_t size, loff_t * pos)
{
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return simple_read_from_buffer(buffer, size, pos,
&lscsa->fpcr, sizeof(lscsa->fpcr));
}
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
size_t size, loff_t * pos)
{
int ret;
struct spu_context *ctx = file->private_data;
spu_acquire_saved(ctx);
ret = __spufs_fpcr_read(ctx, buffer, size, pos);
spu_release(ctx);
return ret;
}
static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
size_t size, loff_t * pos)
{
struct spu_context *ctx = file->private_data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
if (size <= 0)
return -EFBIG;
*pos += size;
spu_acquire_saved(ctx);
ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
buffer, size) ? -EFAULT : size;
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_fpcr_fops = {
.open = spufs_regs_open,
.read = spufs_fpcr_read,
.write = spufs_fpcr_write,
.llseek = generic_file_llseek,
};
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
file->private_data = i->i_ctx;
return nonseekable_open(inode, file);
}
/*
* Read as many bytes from the mailbox as possible, until
* one of the conditions becomes true:
*
* - no more data available in the mailbox
* - end of the user provided buffer
* - end of the mapped area
*/
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 mbox_data, __user *udata;
ssize_t count;
if (len < 4)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
udata = (void __user *)buf;
spu_acquire(ctx);
for (count = 0; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = ctx->ops->mbox_read(ctx, &mbox_data);
if (ret == 0)
break;
/*
* at the end of the mapped area, we can fault
* but still need to return the data we have
* read successfully so far.
*/
ret = __put_user(mbox_data, udata);
if (ret) {
if (!count)
count = -EFAULT;
break;
}
}
spu_release(ctx);
if (!count)
count = -EAGAIN;
return count;
}
static const struct file_operations spufs_mbox_fops = {
.open = spufs_pipe_open,
.read = spufs_mbox_read,
};
static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 mbox_stat;
if (len < 4)
return -EINVAL;
spu_acquire(ctx);
mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_mbox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_mbox_stat_read,
};
/* low-level ibox access function */
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
{
return ctx->ops->ibox_read(ctx, data);
}
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
struct spu_context *ctx = file->private_data;
return fasync_helper(fd, file, on, &ctx->ibox_fasync);
}
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
wake_up_all(&ctx->ibox_wq);
kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
}
/*
* Read as many bytes from the interrupt mailbox as possible, until
* one of the conditions becomes true:
*
* - no more data available in the mailbox
* - end of the user provided buffer
* - end of the mapped area
*
* If the file is opened without O_NONBLOCK, we wait here until
* any data is available, but return when we have been able to
* read something.
*/
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 ibox_data, __user *udata;
ssize_t count;
if (len < 4)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
udata = (void __user *)buf;
spu_acquire(ctx);
/* wait only for the first element */
count = 0;
if (file->f_flags & O_NONBLOCK) {
if (!spu_ibox_read(ctx, &ibox_data))
count = -EAGAIN;
} else {
count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
}
if (count)
goto out;
/* if we can't write at all, return -EFAULT */
count = __put_user(ibox_data, udata);
if (count)
goto out;
for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = ctx->ops->ibox_read(ctx, &ibox_data);
if (ret == 0)
break;
/*
* at the end of the mapped area, we can fault
* but still need to return the data we have
* read successfully so far.
*/
ret = __put_user(ibox_data, udata);
if (ret)
break;
}
out:
spu_release(ctx);
return count;
}
static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
struct spu_context *ctx = file->private_data;
unsigned int mask;
poll_wait(file, &ctx->ibox_wq, wait);
spu_acquire(ctx);
mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
spu_release(ctx);
return mask;
}
static const struct file_operations spufs_ibox_fops = {
.open = spufs_pipe_open,
.read = spufs_ibox_read,
.poll = spufs_ibox_poll,
.fasync = spufs_ibox_fasync,
};
static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 ibox_stat;
if (len < 4)
return -EINVAL;
spu_acquire(ctx);
ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_ibox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_ibox_stat_read,
};
/* low-level mailbox write */
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
{
return ctx->ops->wbox_write(ctx, data);
}
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
struct spu_context *ctx = file->private_data;
int ret;
ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
return ret;
}
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
wake_up_all(&ctx->wbox_wq);
kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
}
/*
* Write as many bytes to the interrupt mailbox as possible, until
* one of the conditions becomes true:
*
* - the mailbox is full
* - end of the user provided buffer
* - end of the mapped area
*
* If the file is opened without O_NONBLOCK, we wait here until
* space is availabyl, but return when we have been able to
* write something.
*/
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 wbox_data, __user *udata;
ssize_t count;
if (len < 4)
return -EINVAL;
udata = (void __user *)buf;
if (!access_ok(VERIFY_READ, buf, len))
return -EFAULT;
if (__get_user(wbox_data, udata))
return -EFAULT;
spu_acquire(ctx);
/*
* make sure we can at least write one element, by waiting
* in case of !O_NONBLOCK
*/
count = 0;
if (file->f_flags & O_NONBLOCK) {
if (!spu_wbox_write(ctx, wbox_data))
count = -EAGAIN;
} else {
count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
}
if (count)
goto out;
/* write aѕ much as possible */
for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = __get_user(wbox_data, udata);
if (ret)
break;
ret = spu_wbox_write(ctx, wbox_data);
if (ret == 0)
break;
}
out:
spu_release(ctx);
return count;
}
static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
struct spu_context *ctx = file->private_data;
unsigned int mask;
poll_wait(file, &ctx->wbox_wq, wait);
spu_acquire(ctx);
mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
spu_release(ctx);
return mask;
}
static const struct file_operations spufs_wbox_fops = {
.open = spufs_pipe_open,
.write = spufs_wbox_write,
.poll = spufs_wbox_poll,
.fasync = spufs_wbox_fasync,
};
static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 wbox_stat;
if (len < 4)
return -EINVAL;
spu_acquire(ctx);
wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_wbox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_wbox_stat_read,
};
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
ctx->signal1 = inode->i_mapping;
smp_wmb();
return nonseekable_open(inode, file);
}
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
size_t len, loff_t *pos)
{
int ret = 0;
u32 data;
if (len < 4)
return -EINVAL;
if (ctx->csa.spu_chnlcnt_RW[3]) {
data = ctx->csa.spu_chnldata_RW[3];
ret = 4;
}
if (!ret)
goto out;
if (copy_to_user(buf, &data, 4))
return -EFAULT;
out:
return ret;
}
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
int ret;
struct spu_context *ctx = file->private_data;
spu_acquire_saved(ctx);
ret = __spufs_signal1_read(ctx, buf, len, pos);
spu_release(ctx);
return ret;
}
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx;
u32 data;
ctx = file->private_data;
if (len < 4)
return -EINVAL;
if (copy_from_user(&data, buf, 4))
return -EFAULT;
spu_acquire(ctx);
ctx->ops->signal1_write(ctx, data);
spu_release(ctx);
return 4;
}
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
#if PAGE_SIZE == 0x1000
return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
#elif PAGE_SIZE == 0x10000
/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
* signal 1 and 2 area
*/
return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
}
static struct vm_operations_struct spufs_signal1_mmap_vmops = {
.nopfn = spufs_signal1_mmap_nopfn,
};
static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_signal1_mmap_vmops;
return 0;
}
static const struct file_operations spufs_signal1_fops = {
.open = spufs_signal1_open,
.read = spufs_signal1_read,
.write = spufs_signal1_write,
.mmap = spufs_signal1_mmap,
};
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
ctx->signal2 = inode->i_mapping;
smp_wmb();
return nonseekable_open(inode, file);
}
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
size_t len, loff_t *pos)
{
int ret = 0;
u32 data;
if (len < 4)
return -EINVAL;
if (ctx->csa.spu_chnlcnt_RW[4]) {
data = ctx->csa.spu_chnldata_RW[4];
ret = 4;
}
if (!ret)
goto out;
if (copy_to_user(buf, &data, 4))
return -EFAULT;
out:
return ret;
}
static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
spu_acquire_saved(ctx);
ret = __spufs_signal2_read(ctx, buf, len, pos);
spu_release(ctx);
return ret;
}
static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx;
u32 data;
ctx = file->private_data;
if (len < 4)
return -EINVAL;
if (copy_from_user(&data, buf, 4))
return -EFAULT;
spu_acquire(ctx);
ctx->ops->signal2_write(ctx, data);
spu_release(ctx);
return 4;
}
#if SPUFS_MMAP_4K
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
#if PAGE_SIZE == 0x1000
return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
#elif PAGE_SIZE == 0x10000
/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
* signal 1 and 2 area
*/
return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
}
static struct vm_operations_struct spufs_signal2_mmap_vmops = {
.nopfn = spufs_signal2_mmap_nopfn,
};
static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_signal2_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static const struct file_operations spufs_signal2_fops = {
.open = spufs_signal2_open,
.read = spufs_signal2_read,
.write = spufs_signal2_write,
.mmap = spufs_signal2_mmap,
};
static void spufs_signal1_type_set(void *data, u64 val)
{
struct spu_context *ctx = data;
spu_acquire(ctx);
ctx->ops->signal1_type_set(ctx, val);
spu_release(ctx);
}
static u64 __spufs_signal1_type_get(void *data)
{
struct spu_context *ctx = data;
return ctx->ops->signal1_type_get(ctx);
}
static u64 spufs_signal1_type_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire(ctx);
ret = __spufs_signal1_type_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
spufs_signal1_type_set, "%llu");
static void spufs_signal2_type_set(void *data, u64 val)
{
struct spu_context *ctx = data;
spu_acquire(ctx);
ctx->ops->signal2_type_set(ctx, val);
spu_release(ctx);
}
static u64 __spufs_signal2_type_get(void *data)
{
struct spu_context *ctx = data;
return ctx->ops->signal2_type_get(ctx);
}
static u64 spufs_signal2_type_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire(ctx);
ret = __spufs_signal2_type_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
spufs_signal2_type_set, "%llu");
#if SPUFS_MMAP_4K
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
}
static struct vm_operations_struct spufs_mss_mmap_vmops = {
.nopfn = spufs_mss_mmap_nopfn,
};
/*
* mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
*/
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_mss_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static int spufs_mss_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = i->i_ctx;
ctx->mss = inode->i_mapping;
smp_wmb();
return nonseekable_open(inode, file);
}
static const struct file_operations spufs_mss_fops = {
.open = spufs_mss_open,
.mmap = spufs_mss_mmap,
};
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
}
static struct vm_operations_struct spufs_psmap_mmap_vmops = {
.nopfn = spufs_psmap_mmap_nopfn,
};
/*
* mmap support for full problem state area [0x00000 - 0x1ffff].
*/
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_psmap_mmap_vmops;
return 0;
}
static int spufs_psmap_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = i->i_ctx;
ctx->psmap = inode->i_mapping;
smp_wmb();
return nonseekable_open(inode, file);
}
static const struct file_operations spufs_psmap_fops = {
.open = spufs_psmap_open,
.mmap = spufs_psmap_mmap,
};
#if SPUFS_MMAP_4K
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
unsigned long address)
{
return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
}
static struct vm_operations_struct spufs_mfc_mmap_vmops = {
.nopfn = spufs_mfc_mmap_nopfn,
};
/*
* mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
*/
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
| _PAGE_NO_CACHE | _PAGE_GUARDED);
vma->vm_ops = &spufs_mfc_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static int spufs_mfc_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
/* we don't want to deal with DMA into other processes */
if (ctx->owner != current->mm)
return -EINVAL;
if (atomic_read(&inode->i_count) != 1)
return -EBUSY;
file->private_data = ctx;
ctx->mfc = inode->i_mapping;
smp_wmb();
return nonseekable_open(inode, file);
}
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
wake_up_all(&ctx->mfc_wq);
pr_debug("%s %s\n", __FUNCTION__, spu->name);
if (ctx->mfc_fasync) {
u32 free_elements, tagstatus;
unsigned int mask;
/* no need for spu_acquire in interrupt context */
free_elements = ctx->ops->get_mfc_free_elements(ctx);
tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
mask = 0;
if (free_elements & 0xffff)
mask |= POLLOUT;
if (tagstatus & ctx->tagwait)
mask |= POLLIN;
kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
}
}
static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
/* See if there is one tag group is complete */
/* FIXME we need locking around tagwait */
*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
ctx->tagwait &= ~*status;
if (*status)
return 1;
/* enable interrupt waiting for any tag group,
may silently fail if interrupts are already enabled */
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
return 0;
}
static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret = -EINVAL;
u32 status;
if (size != 4)
goto out;
spu_acquire(ctx);
if (file->f_flags & O_NONBLOCK) {
status = ctx->ops->read_mfc_tagstatus(ctx);
if (!(status & ctx->tagwait))
ret = -EAGAIN;
else
ctx->tagwait &= ~status;
} else {
ret = spufs_wait(ctx->mfc_wq,
spufs_read_mfc_tagstatus(ctx, &status));
}
spu_release(ctx);
if (ret)
goto out;
ret = 4;
if (copy_to_user(buffer, &status, 4))
ret = -EFAULT;
out:
return ret;
}
static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
cmd->ea, cmd->size, cmd->tag, cmd->cmd);
switch (cmd->cmd) {
case MFC_PUT_CMD:
case MFC_PUTF_CMD:
case MFC_PUTB_CMD:
case MFC_GET_CMD:
case MFC_GETF_CMD:
case MFC_GETB_CMD:
break;
default:
pr_debug("invalid DMA opcode %x\n", cmd->cmd);
return -EIO;
}
if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
cmd->ea, cmd->lsa);
return -EIO;
}
switch (cmd->size & 0xf) {
case 1:
break;
case 2:
if (cmd->lsa & 1)
goto error;
break;
case 4:
if (cmd->lsa & 3)
goto error;
break;
case 8:
if (cmd->lsa & 7)
goto error;
break;
case 0:
if (cmd->lsa & 15)
goto error;
break;
error:
default:
pr_debug("invalid DMA alignment %x for size %x\n",
cmd->lsa & 0xf, cmd->size);
return -EIO;
}
if (cmd->size > 16 * 1024) {
pr_debug("invalid DMA size %x\n", cmd->size);
return -EIO;
}
if (cmd->tag & 0xfff0) {
/* we reserve the higher tag numbers for kernel use */
pr_debug("invalid DMA tag\n");
return -EIO;
}
if (cmd->class) {
/* not supported in this version */
pr_debug("invalid DMA class\n");
return -EIO;
}
return 0;
}
static int spu_send_mfc_command(struct spu_context *ctx,
struct mfc_dma_command cmd,
int *error)
{
*error = ctx->ops->send_mfc_command(ctx, &cmd);
if (*error == -EAGAIN) {
/* wait for any tag group to complete
so we have space for the new command */
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
/* try again, because the queue might be
empty again */
*error = ctx->ops->send_mfc_command(ctx, &cmd);
if (*error == -EAGAIN)
return 0;
}
return 1;
}
static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct mfc_dma_command cmd;
int ret = -EINVAL;
if (size != sizeof cmd)
goto out;
ret = -EFAULT;
if (copy_from_user(&cmd, buffer, sizeof cmd))
goto out;
ret = spufs_check_valid_dma(&cmd);
if (ret)
goto out;
spu_acquire_runnable(ctx, 0);
if (file->f_flags & O_NONBLOCK) {
ret = ctx->ops->send_mfc_command(ctx, &cmd);
} else {
int status;
ret = spufs_wait(ctx->mfc_wq,
spu_send_mfc_command(ctx, cmd, &status));
if (status)
ret = status;
}
spu_release(ctx);
if (ret)
goto out;
ctx->tagwait |= 1 << cmd.tag;
ret = size;
out:
return ret;
}
static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
struct spu_context *ctx = file->private_data;
u32 free_elements, tagstatus;
unsigned int mask;
spu_acquire(ctx);
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
free_elements = ctx->ops->get_mfc_free_elements(ctx);
tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
spu_release(ctx);
poll_wait(file, &ctx->mfc_wq, wait);
mask = 0;
if (free_elements & 0xffff)
mask |= POLLOUT | POLLWRNORM;
if (tagstatus & ctx->tagwait)
mask |= POLLIN | POLLRDNORM;
pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
free_elements, tagstatus, ctx->tagwait);
return mask;
}
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
{
struct spu_context *ctx = file->private_data;
int ret;
spu_acquire(ctx);
#if 0
/* this currently hangs */
ret = spufs_wait(ctx->mfc_wq,
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
if (ret)
goto out;
ret = spufs_wait(ctx->mfc_wq,
ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
ret = 0;
#endif
spu_release(ctx);
return ret;
}
static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
int datasync)
{
return spufs_mfc_flush(file, NULL);
}
static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
struct spu_context *ctx = file->private_data;
return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}
static const struct file_operations spufs_mfc_fops = {
.open = spufs_mfc_open,
.read = spufs_mfc_read,
.write = spufs_mfc_write,
.poll = spufs_mfc_poll,
.flush = spufs_mfc_flush,
.fsync = spufs_mfc_fsync,
.fasync = spufs_mfc_fasync,
.mmap = spufs_mfc_mmap,
};
static void spufs_npc_set(void *data, u64 val)
{
struct spu_context *ctx = data;
spu_acquire(ctx);
ctx->ops->npc_write(ctx, val);
spu_release(ctx);
}
static u64 spufs_npc_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire(ctx);
ret = ctx->ops->npc_read(ctx);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
"0x%llx\n")
static void spufs_decr_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
spu_acquire_saved(ctx);
lscsa->decr.slot[0] = (u32) val;
spu_release(ctx);
}
static u64 __spufs_decr_get(void *data)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->decr.slot[0];
}
static u64 spufs_decr_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire_saved(ctx);
ret = __spufs_decr_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
"0x%llx\n")
static void spufs_decr_status_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
spu_acquire_saved(ctx);
lscsa->decr_status.slot[0] = (u32) val;
spu_release(ctx);
}
static u64 __spufs_decr_status_get(void *data)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->decr_status.slot[0];
}
static u64 spufs_decr_status_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire_saved(ctx);
ret = __spufs_decr_status_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
spufs_decr_status_set, "0x%llx\n")
static void spufs_event_mask_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
spu_acquire_saved(ctx);
lscsa->event_mask.slot[0] = (u32) val;
spu_release(ctx);
}
static u64 __spufs_event_mask_get(void *data)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->event_mask.slot[0];
}
static u64 spufs_event_mask_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire_saved(ctx);
ret = __spufs_event_mask_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
spufs_event_mask_set, "0x%llx\n")
static u64 __spufs_event_status_get(void *data)
{
struct spu_context *ctx = data;
struct spu_state *state = &ctx->csa;
u64 stat;
stat = state->spu_chnlcnt_RW[0];
if (stat)
return state->spu_chnldata_RW[0];
return 0;
}
static u64 spufs_event_status_get(void *data)
{
struct spu_context *ctx = data;
u64 ret = 0;
spu_acquire_saved(ctx);
ret = __spufs_event_status_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
NULL, "0x%llx\n")
static void spufs_srr0_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
spu_acquire_saved(ctx);
lscsa->srr0.slot[0] = (u32) val;
spu_release(ctx);
}
static u64 spufs_srr0_get(void *data)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
u64 ret;
spu_acquire_saved(ctx);
ret = lscsa->srr0.slot[0];
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
"0x%llx\n")
static u64 spufs_id_get(void *data)
{
struct spu_context *ctx = data;
u64 num;
spu_acquire(ctx);
if (ctx->state == SPU_STATE_RUNNABLE)
num = ctx->spu->number;
else
num = (unsigned int)-1;
spu_release(ctx);
return num;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
static u64 __spufs_object_id_get(void *data)
{
struct spu_context *ctx = data;
return ctx->object_id;
}
static u64 spufs_object_id_get(void *data)
{
/* FIXME: Should there really be no locking here? */
return __spufs_object_id_get(data);
}
static void spufs_object_id_set(void *data, u64 id)
{
struct spu_context *ctx = data;
ctx->object_id = id;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
spufs_object_id_set, "0x%llx\n");
static u64 __spufs_lslr_get(void *data)
{
struct spu_context *ctx = data;
return ctx->csa.priv2.spu_lslr_RW;
}
static u64 spufs_lslr_get(void *data)
{
struct spu_context *ctx = data;
u64 ret;
spu_acquire_saved(ctx);
ret = __spufs_lslr_get(data);
spu_release(ctx);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
static int spufs_info_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
return 0;
}
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
char __user *buf, size_t len, loff_t *pos)
{
u32 mbox_stat;
u32 data;
mbox_stat = ctx->csa.prob.mb_stat_R;
if (mbox_stat & 0x0000ff) {
data = ctx->csa.prob.pu_mb_R;
}
return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
int ret;
struct spu_context *ctx = file->private_data;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
spu_acquire_saved(ctx);
spin_lock(&ctx->csa.register_lock);
ret = __spufs_mbox_info_read(ctx, buf, len, pos);
spin_unlock(&ctx->csa.register_lock);
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_mbox_info_fops = {
.open = spufs_info_open,
.read = spufs_mbox_info_read,
.llseek = generic_file_llseek,
};
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
char __user *buf, size_t len, loff_t *pos)
{
u32 ibox_stat;
u32 data;
ibox_stat = ctx->csa.prob.mb_stat_R;
if (ibox_stat & 0xff0000) {
data = ctx->csa.priv2.puint_mb_R;
}
return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
spu_acquire_saved(ctx);
spin_lock(&ctx->csa.register_lock);
ret = __spufs_ibox_info_read(ctx, buf, len, pos);
spin_unlock(&ctx->csa.register_lock);
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_ibox_info_fops = {
.open = spufs_info_open,
.read = spufs_ibox_info_read,
.llseek = generic_file_llseek,
};
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
char __user *buf, size_t len, loff_t *pos)
{
int i, cnt;
u32 data[4];
u32 wbox_stat;
wbox_stat = ctx->csa.prob.mb_stat_R;
cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
for (i = 0; i < cnt; i++) {
data[i] = ctx->csa.spu_mailbox_data[i];
}
return simple_read_from_buffer(buf, len, pos, &data,
cnt * sizeof(u32));
}
static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
spu_acquire_saved(ctx);
spin_lock(&ctx->csa.register_lock);
ret = __spufs_wbox_info_read(ctx, buf, len, pos);
spin_unlock(&ctx->csa.register_lock);
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_wbox_info_fops = {
.open = spufs_info_open,
.read = spufs_wbox_info_read,
.llseek = generic_file_llseek,
};
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
char __user *buf, size_t len, loff_t *pos)
{
struct spu_dma_info info;
struct mfc_cq_sr *qp, *spuqp;
int i;
info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
for (i = 0; i < 16; i++) {
qp = &info.dma_info_command_data[i];
spuqp = &ctx->csa.priv2.spuq[i];
qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
}
return simple_read_from_buffer(buf, len, pos, &info,
sizeof info);
}
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
spu_acquire_saved(ctx);
spin_lock(&ctx->csa.register_lock);
ret = __spufs_dma_info_read(ctx, buf, len, pos);
spin_unlock(&ctx->csa.register_lock);
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_dma_info_fops = {
.open = spufs_info_open,
.read = spufs_dma_info_read,
};
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
char __user *buf, size_t len, loff_t *pos)
{
struct spu_proxydma_info info;
struct mfc_cq_sr *qp, *puqp;
int ret = sizeof info;
int i;
if (len < ret)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
for (i = 0; i < 8; i++) {
qp = &info.proxydma_info_command_data[i];
puqp = &ctx->csa.priv2.puq[i];
qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
}
return simple_read_from_buffer(buf, len, pos, &info,
sizeof info);
}
static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
spu_acquire_saved(ctx);
spin_lock(&ctx->csa.register_lock);
ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
spin_unlock(&ctx->csa.register_lock);
spu_release(ctx);
return ret;
}
static const struct file_operations spufs_proxydma_info_fops = {
.open = spufs_info_open,
.read = spufs_proxydma_info_read,
};
struct tree_descr spufs_dir_contents[] = {
{ "mem", &spufs_mem_fops, 0666, },
{ "regs", &spufs_regs_fops, 0666, },
{ "mbox", &spufs_mbox_fops, 0444, },
{ "ibox", &spufs_ibox_fops, 0444, },
{ "wbox", &spufs_wbox_fops, 0222, },
{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
{ "signal1", &spufs_signal1_fops, 0666, },
{ "signal2", &spufs_signal2_fops, 0666, },
{ "signal1_type", &spufs_signal1_type, 0666, },
{ "signal2_type", &spufs_signal2_type, 0666, },
{ "cntl", &spufs_cntl_fops, 0666, },
{ "fpcr", &spufs_fpcr_fops, 0666, },
{ "lslr", &spufs_lslr_ops, 0444, },
{ "mfc", &spufs_mfc_fops, 0666, },
{ "mss", &spufs_mss_fops, 0666, },
{ "npc", &spufs_npc_ops, 0666, },
{ "srr0", &spufs_srr0_ops, 0666, },
{ "decr", &spufs_decr_ops, 0666, },
{ "decr_status", &spufs_decr_status_ops, 0666, },
{ "event_mask", &spufs_event_mask_ops, 0666, },
{ "event_status", &spufs_event_status_ops, 0444, },
{ "psmap", &spufs_psmap_fops, 0666, },
{ "phys-id", &spufs_id_ops, 0666, },
{ "object-id", &spufs_object_id_ops, 0666, },
{ "mbox_info", &spufs_mbox_info_fops, 0444, },
{ "ibox_info", &spufs_ibox_info_fops, 0444, },
{ "wbox_info", &spufs_wbox_info_fops, 0444, },
{ "dma_info", &spufs_dma_info_fops, 0444, },
{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
{},
};
struct tree_descr spufs_dir_nosched_contents[] = {
{ "mem", &spufs_mem_fops, 0666, },
{ "mbox", &spufs_mbox_fops, 0444, },
{ "ibox", &spufs_ibox_fops, 0444, },
{ "wbox", &spufs_wbox_fops, 0222, },
{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
{ "signal1", &spufs_signal1_fops, 0666, },
{ "signal2", &spufs_signal2_fops, 0666, },
{ "signal1_type", &spufs_signal1_type, 0666, },
{ "signal2_type", &spufs_signal2_type, 0666, },
{ "mss", &spufs_mss_fops, 0666, },
{ "mfc", &spufs_mfc_fops, 0666, },
{ "cntl", &spufs_cntl_fops, 0666, },
{ "npc", &spufs_npc_ops, 0666, },
{ "psmap", &spufs_psmap_fops, 0666, },
{ "phys-id", &spufs_id_ops, 0666, },
{ "object-id", &spufs_object_id_ops, 0666, },
{},
};
struct spufs_coredump_reader spufs_coredump_read[] = {
{ "regs", __spufs_regs_read, NULL, 128 * 16 },
{ "fpcr", __spufs_fpcr_read, NULL, 16 },
{ "lslr", NULL, __spufs_lslr_get, 11 },
{ "decr", NULL, __spufs_decr_get, 11 },
{ "decr_status", NULL, __spufs_decr_status_get, 11 },
{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
{ "signal1", __spufs_signal1_read, NULL, 4 },
{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
{ "signal2", __spufs_signal2_read, NULL, 4 },
{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
{ "event_mask", NULL, __spufs_event_mask_get, 8 },
{ "event_status", NULL, __spufs_event_status_get, 8 },
{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
{ "object-id", NULL, __spufs_object_id_get, 19 },
{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;