blob: da9cddb6a921878b0e37dbb43d86a1b50046f7dd [file] [log] [blame]
/*
* linux/drivers/mmc/core/core.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/devfreq.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeup.h>
#include <linux/suspend.h>
#include <linux/fault-inject.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/pm.h>
#include <linux/jiffies.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/slot-gpio.h>
#define CREATE_TRACE_POINTS
#include <trace/events/mmc.h>
#include "core.h"
#include "bus.h"
#include "host.h"
#include "sdio_bus.h"
#include "pwrseq.h"
#include "mmc_ops.h"
#include "sd_ops.h"
#include "sdio_ops.h"
/* If the device is not responding */
#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
/*
* Background operations can take a long time, depending on the housekeeping
* operations the card has to perform.
*/
#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
/* The max erase timeout, used when host->max_busy_timeout isn't specified */
#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
/*
* Enabling software CRCs on the data blocks can be a significant (30%)
* performance cost, and for other reasons may not always be desired.
* So we allow it it to be disabled.
*/
bool use_spi_crc = 1;
module_param(use_spi_crc, bool, 0);
static int mmc_schedule_delayed_work(struct delayed_work *work,
unsigned long delay)
{
/*
* We use the system_freezable_wq, because of two reasons.
* First, it allows several works (not the same work item) to be
* executed simultaneously. Second, the queue becomes frozen when
* userspace becomes frozen during system PM.
*/
return queue_delayed_work(system_freezable_wq, work, delay);
}
#ifdef CONFIG_FAIL_MMC_REQUEST
/*
* Internal function. Inject random data errors.
* If mmc_data is NULL no errors are injected.
*/
static void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
static const int data_errors[] = {
-ETIMEDOUT,
-EILSEQ,
-EIO,
};
if (!data)
return;
if (cmd->error || data->error ||
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
return;
data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
data->fault_injected = true;
}
#else /* CONFIG_FAIL_MMC_REQUEST */
static inline void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
}
#endif /* CONFIG_FAIL_MMC_REQUEST */
static bool mmc_is_data_request(struct mmc_request *mmc_request)
{
switch (mmc_request->cmd->opcode) {
case MMC_READ_SINGLE_BLOCK:
case MMC_READ_MULTIPLE_BLOCK:
case MMC_WRITE_BLOCK:
case MMC_WRITE_MULTIPLE_BLOCK:
return true;
default:
return false;
}
}
static void mmc_clk_scaling_start_busy(struct mmc_host *host, bool lock_needed)
{
struct mmc_devfeq_clk_scaling *clk_scaling = &host->clk_scaling;
if (!clk_scaling->enable)
return;
if (lock_needed)
spin_lock_bh(&clk_scaling->lock);
clk_scaling->start_busy = ktime_get();
clk_scaling->is_busy_started = true;
if (lock_needed)
spin_unlock_bh(&clk_scaling->lock);
}
static void mmc_clk_scaling_stop_busy(struct mmc_host *host, bool lock_needed)
{
struct mmc_devfeq_clk_scaling *clk_scaling = &host->clk_scaling;
if (!clk_scaling->enable)
return;
if (lock_needed)
spin_lock_bh(&clk_scaling->lock);
if (!clk_scaling->is_busy_started) {
WARN_ON(1);
goto out;
}
clk_scaling->total_busy_time_us +=
ktime_to_us(ktime_sub(ktime_get(),
clk_scaling->start_busy));
pr_debug("%s: accumulated busy time is %lu usec\n",
mmc_hostname(host), clk_scaling->total_busy_time_us);
clk_scaling->is_busy_started = false;
out:
if (lock_needed)
spin_unlock_bh(&clk_scaling->lock);
}
/**
* mmc_cmdq_clk_scaling_start_busy() - start busy timer for data requests
* @host: pointer to mmc host structure
* @lock_needed: flag indication if locking is needed
*
* This function starts the busy timer in case it was not already started.
*/
void mmc_cmdq_clk_scaling_start_busy(struct mmc_host *host,
bool lock_needed)
{
if (!host->clk_scaling.enable)
return;
if (lock_needed)
spin_lock_bh(&host->clk_scaling.lock);
if (!host->clk_scaling.is_busy_started &&
!test_bit(CMDQ_STATE_DCMD_ACTIVE,
&host->cmdq_ctx.curr_state)) {
host->clk_scaling.start_busy = ktime_get();
host->clk_scaling.is_busy_started = true;
}
if (lock_needed)
spin_unlock_bh(&host->clk_scaling.lock);
}
EXPORT_SYMBOL(mmc_cmdq_clk_scaling_start_busy);
/**
* mmc_cmdq_clk_scaling_stop_busy() - stop busy timer for last data requests
* @host: pointer to mmc host structure
* @lock_needed: flag indication if locking is needed
*
* This function stops the busy timer in case it is the last data request.
* In case the current request is not the last one, the busy time till
* now will be accumulated and the counter will be restarted.
*/
void mmc_cmdq_clk_scaling_stop_busy(struct mmc_host *host,
bool lock_needed, bool is_cmdq_dcmd)
{
if (!host->clk_scaling.enable)
return;
if (lock_needed)
spin_lock_bh(&host->clk_scaling.lock);
/*
* For CQ mode: In completion of DCMD request, start busy time in
* case of pending data requests
*/
if (is_cmdq_dcmd) {
if (host->cmdq_ctx.data_active_reqs) {
host->clk_scaling.is_busy_started = true;
host->clk_scaling.start_busy = ktime_get();
}
goto out;
}
host->clk_scaling.total_busy_time_us +=
ktime_to_us(ktime_sub(ktime_get(),
host->clk_scaling.start_busy));
if (host->cmdq_ctx.data_active_reqs) {
host->clk_scaling.is_busy_started = true;
host->clk_scaling.start_busy = ktime_get();
} else {
host->clk_scaling.is_busy_started = false;
}
out:
if (lock_needed)
spin_unlock_bh(&host->clk_scaling.lock);
}
EXPORT_SYMBOL(mmc_cmdq_clk_scaling_stop_busy);
/**
* mmc_can_scale_clk() - Check clock scaling capability
* @host: pointer to mmc host structure
*/
bool mmc_can_scale_clk(struct mmc_host *host)
{
if (!host) {
pr_err("bad host parameter\n");
WARN_ON(1);
return false;
}
return host->caps2 & MMC_CAP2_CLK_SCALE;
}
EXPORT_SYMBOL(mmc_can_scale_clk);
static int mmc_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *status)
{
struct mmc_host *host = container_of(dev, struct mmc_host, class_dev);
struct mmc_devfeq_clk_scaling *clk_scaling;
if (!host) {
pr_err("bad host parameter\n");
WARN_ON(1);
return -EINVAL;
}
clk_scaling = &host->clk_scaling;
if (!clk_scaling->enable)
return 0;
spin_lock_bh(&clk_scaling->lock);
/* accumulate the busy time of ongoing work */
memset(status, 0, sizeof(*status));
if (clk_scaling->is_busy_started) {
if (mmc_card_cmdq(host->card)) {
/* the "busy-timer" will be restarted in case there
* are pending data requests */
mmc_cmdq_clk_scaling_stop_busy(host, false, false);
} else {
mmc_clk_scaling_stop_busy(host, false);
mmc_clk_scaling_start_busy(host, false);
}
}
status->busy_time = clk_scaling->total_busy_time_us;
status->total_time = ktime_to_us(ktime_sub(ktime_get(),
clk_scaling->measure_interval_start));
clk_scaling->total_busy_time_us = 0;
status->current_frequency = clk_scaling->curr_freq;
clk_scaling->measure_interval_start = ktime_get();
pr_debug("%s: status: load = %lu%% - total_time=%lu busy_time = %lu, clk=%lu\n",
mmc_hostname(host),
(status->busy_time*100)/status->total_time,
status->total_time, status->busy_time,
status->current_frequency);
spin_unlock_bh(&clk_scaling->lock);
return 0;
}
static bool mmc_is_valid_state_for_clk_scaling(struct mmc_host *host)
{
struct mmc_card *card = host->card;
u32 status;
/*
* If the current partition type is RPMB, clock switching may not
* work properly as sending tuning command (CMD21) is illegal in
* this mode.
*/
if (!card || (mmc_card_mmc(card) &&
(card->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB ||
mmc_card_doing_bkops(card))))
return false;
if (mmc_send_status(card, &status)) {
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
return false;
}
return R1_CURRENT_STATE(status) == R1_STATE_TRAN;
}
int mmc_cmdq_halt_on_empty_queue(struct mmc_host *host)
{
int err = 0;
err = wait_event_interruptible(host->cmdq_ctx.queue_empty_wq,
(!host->cmdq_ctx.active_reqs));
if (host->cmdq_ctx.active_reqs) {
pr_err("%s: %s: unexpected active requests (%lu)\n",
mmc_hostname(host), __func__,
host->cmdq_ctx.active_reqs);
return -EPERM;
}
err = mmc_cmdq_halt(host, true);
if (err) {
pr_err("%s: %s: mmc_cmdq_halt failed (%d)\n",
mmc_hostname(host), __func__, err);
goto out;
}
out:
return err;
}
EXPORT_SYMBOL(mmc_cmdq_halt_on_empty_queue);
int mmc_clk_update_freq(struct mmc_host *host,
unsigned long freq, enum mmc_load state)
{
int err = 0;
bool cmdq_mode;
if (!host) {
pr_err("bad host parameter\n");
WARN_ON(1);
return -EINVAL;
}
mmc_host_clk_hold(host);
cmdq_mode = mmc_card_cmdq(host->card);
/* make sure the card supports the frequency we want */
if (unlikely(freq > host->card->clk_scaling_highest)) {
freq = host->card->clk_scaling_highest;
pr_warn("%s: %s: frequency was overridden to %lu\n",
mmc_hostname(host), __func__,
host->card->clk_scaling_highest);
}
if (unlikely(freq < host->card->clk_scaling_lowest)) {
freq = host->card->clk_scaling_lowest;
pr_warn("%s: %s: frequency was overridden to %lu\n",
mmc_hostname(host), __func__,
host->card->clk_scaling_lowest);
}
if (freq == host->clk_scaling.curr_freq)
goto out;
if (host->ops->notify_load) {
err = host->ops->notify_load(host, state);
if (err) {
pr_err("%s: %s: fail on notify_load\n",
mmc_hostname(host), __func__);
goto out;
}
}
if (cmdq_mode) {
err = mmc_cmdq_halt_on_empty_queue(host);
if (err) {
pr_err("%s: %s: failed halting queue (%d)\n",
mmc_hostname(host), __func__, err);
goto halt_failed;
}
}
if (!mmc_is_valid_state_for_clk_scaling(host)) {
pr_debug("%s: invalid state for clock scaling - skipping",
mmc_hostname(host));
goto invalid_state;
}
err = host->bus_ops->change_bus_speed(host, &freq);
if (!err)
host->clk_scaling.curr_freq = freq;
else
pr_err("%s: %s: failed (%d) at freq=%lu\n",
mmc_hostname(host), __func__, err, freq);
invalid_state:
if (cmdq_mode) {
if (mmc_cmdq_halt(host, false))
pr_err("%s: %s: cmdq unhalt failed\n",
mmc_hostname(host), __func__);
}
halt_failed:
if (err) {
/* restore previous state */
if (host->ops->notify_load)
if (host->ops->notify_load(host,
host->clk_scaling.state))
pr_err("%s: %s: fail on notify_load restore\n",
mmc_hostname(host), __func__);
}
out:
mmc_host_clk_release(host);
return err;
}
EXPORT_SYMBOL(mmc_clk_update_freq);
int mmc_recovery_fallback_lower_speed(struct mmc_host *host)
{
int err = 0;
if (!host->card)
return -EINVAL;
if (host->sdr104_wa && mmc_card_sd(host->card) &&
(host->ios.timing == MMC_TIMING_UHS_SDR104) &&
!host->card->sdr104_blocked) {
pr_err("%s: %s: blocked SDR104, lower the bus-speed (SDR50 / DDR50)\n",
mmc_hostname(host), __func__);
mmc_host_clear_sdr104(host);
err = mmc_hw_reset(host);
host->card->sdr104_blocked = true;
} else {
/* If sdr104_wa is not present, just return status */
err = host->bus_ops->alive(host);
}
if (err)
pr_err("%s: %s: Fallback to lower speed mode failed with err=%d\n",
mmc_hostname(host), __func__, err);
return err;
}
static int mmc_devfreq_set_target(struct device *dev,
unsigned long *freq, u32 devfreq_flags)
{
struct mmc_host *host = container_of(dev, struct mmc_host, class_dev);
struct mmc_devfeq_clk_scaling *clk_scaling;
int err = 0;
int abort;
unsigned long pflags = current->flags;
/* Ensure scaling would happen even in memory pressure conditions */
current->flags |= PF_MEMALLOC;
if (!(host && freq)) {
pr_err("%s: unexpected host/freq parameter\n", __func__);
err = -EINVAL;
goto out;
}
clk_scaling = &host->clk_scaling;
if (!clk_scaling->enable)
goto out;
pr_debug("%s: target freq = %lu (%s)\n", mmc_hostname(host),
*freq, current->comm);
if ((clk_scaling->curr_freq == *freq) ||
clk_scaling->skip_clk_scale_freq_update)
goto out;
/* No need to scale the clocks if they are gated */
if (!host->ios.clock)
goto out;
spin_lock_bh(&clk_scaling->lock);
if (clk_scaling->clk_scaling_in_progress) {
pr_debug("%s: clocks scaling is already in-progress by mmc thread\n",
mmc_hostname(host));
spin_unlock_bh(&clk_scaling->lock);
goto out;
}
clk_scaling->need_freq_change = true;
clk_scaling->target_freq = *freq;
clk_scaling->state = *freq < clk_scaling->curr_freq ?
MMC_LOAD_LOW : MMC_LOAD_HIGH;
spin_unlock_bh(&clk_scaling->lock);
abort = __mmc_claim_host(host, &clk_scaling->devfreq_abort);
if (abort)
goto out;
if (mmc_card_sd(host->card) && host->card->sdr104_blocked)
goto rel_host;
/*
* In case we were able to claim host there is no need to
* defer the frequency change. It will be done now
*/
clk_scaling->need_freq_change = false;
mmc_host_clk_hold(host);
err = mmc_clk_update_freq(host, *freq, clk_scaling->state);
if (err && err != -EAGAIN) {
pr_err("%s: clock scale to %lu failed with error %d\n",
mmc_hostname(host), *freq, err);
err = mmc_recovery_fallback_lower_speed(host);
} else {
pr_debug("%s: clock change to %lu finished successfully (%s)\n",
mmc_hostname(host), *freq, current->comm);
}
mmc_host_clk_release(host);
rel_host:
mmc_release_host(host);
out:
tsk_restore_flags(current, pflags, PF_MEMALLOC);
return err;
}
/**
* mmc_deferred_scaling() - scale clocks from data path (mmc thread context)
* @host: pointer to mmc host structure
*
* This function does clock scaling in case "need_freq_change" flag was set
* by the clock scaling logic.
*/
void mmc_deferred_scaling(struct mmc_host *host)
{
unsigned long target_freq;
int err;
if (!host->clk_scaling.enable)
return;
if (mmc_card_sd(host->card) && host->card->sdr104_blocked)
return;
spin_lock_bh(&host->clk_scaling.lock);
if (host->clk_scaling.clk_scaling_in_progress ||
!(host->clk_scaling.need_freq_change)) {
spin_unlock_bh(&host->clk_scaling.lock);
return;
}
atomic_inc(&host->clk_scaling.devfreq_abort);
target_freq = host->clk_scaling.target_freq;
host->clk_scaling.clk_scaling_in_progress = true;
host->clk_scaling.need_freq_change = false;
spin_unlock_bh(&host->clk_scaling.lock);
pr_debug("%s: doing deferred frequency change (%lu) (%s)\n",
mmc_hostname(host),
target_freq, current->comm);
err = mmc_clk_update_freq(host, target_freq,
host->clk_scaling.state);
if (err && err != -EAGAIN) {
pr_err("%s: failed on deferred scale clocks (%d)\n",
mmc_hostname(host), err);
mmc_recovery_fallback_lower_speed(host);
} else {
pr_debug("%s: clocks were successfully scaled to %lu (%s)\n",
mmc_hostname(host),
target_freq, current->comm);
}
host->clk_scaling.clk_scaling_in_progress = false;
atomic_dec(&host->clk_scaling.devfreq_abort);
}
EXPORT_SYMBOL(mmc_deferred_scaling);
static int mmc_devfreq_create_freq_table(struct mmc_host *host)
{
int i;
struct mmc_devfeq_clk_scaling *clk_scaling = &host->clk_scaling;
pr_debug("%s: supported: lowest=%lu, highest=%lu\n",
mmc_hostname(host),
host->card->clk_scaling_lowest,
host->card->clk_scaling_highest);
/*
* Create the frequency table and initialize it with default values.
* Initialize it with platform specific frequencies if the frequency
* table supplied by platform driver is present, otherwise initialize
* it with min and max frequencies supported by the card.
*/
if (!clk_scaling->freq_table) {
if (clk_scaling->pltfm_freq_table_sz)
clk_scaling->freq_table_sz =
clk_scaling->pltfm_freq_table_sz;
else
clk_scaling->freq_table_sz = 2;
clk_scaling->freq_table = kzalloc(
(clk_scaling->freq_table_sz *
sizeof(*(clk_scaling->freq_table))), GFP_KERNEL);
if (!clk_scaling->freq_table)
return -ENOMEM;
if (clk_scaling->pltfm_freq_table) {
memcpy(clk_scaling->freq_table,
clk_scaling->pltfm_freq_table,
(clk_scaling->pltfm_freq_table_sz *
sizeof(*(clk_scaling->pltfm_freq_table))));
} else {
pr_debug("%s: no frequency table defined - setting default\n",
mmc_hostname(host));
clk_scaling->freq_table[0] =
host->card->clk_scaling_lowest;
clk_scaling->freq_table[1] =
host->card->clk_scaling_highest;
goto out;
}
}
if (host->card->clk_scaling_lowest >
clk_scaling->freq_table[0])
pr_debug("%s: frequency table undershot possible freq\n",
mmc_hostname(host));
for (i = 0; i < clk_scaling->freq_table_sz; i++) {
if (clk_scaling->freq_table[i] <=
host->card->clk_scaling_highest)
continue;
clk_scaling->freq_table[i] =
host->card->clk_scaling_highest;
clk_scaling->freq_table_sz = i + 1;
pr_debug("%s: frequency table overshot possible freq (%d)\n",
mmc_hostname(host), clk_scaling->freq_table[i]);
break;
}
out:
/**
* devfreq requires unsigned long type freq_table while the
* freq_table in clk_scaling is un32. Here allocates an individual
* memory space for it and release it when exit clock scaling.
*/
clk_scaling->devfreq_profile.freq_table = kzalloc(
clk_scaling->freq_table_sz *
sizeof(*(clk_scaling->devfreq_profile.freq_table)),
GFP_KERNEL);
if (!clk_scaling->devfreq_profile.freq_table)
return -ENOMEM;
clk_scaling->devfreq_profile.max_state = clk_scaling->freq_table_sz;
for (i = 0; i < clk_scaling->freq_table_sz; i++) {
clk_scaling->devfreq_profile.freq_table[i] =
clk_scaling->freq_table[i];
pr_debug("%s: freq[%d] = %u\n",
mmc_hostname(host), i, clk_scaling->freq_table[i]);
}
return 0;
}
/**
* mmc_init_devfreq_clk_scaling() - Initialize clock scaling
* @host: pointer to mmc host structure
*
* Initialize clock scaling for supported hosts. It is assumed that the caller
* ensure clock is running at maximum possible frequency before calling this
* function. Shall use struct devfreq_simple_ondemand_data to configure
* governor.
*/
int mmc_init_clk_scaling(struct mmc_host *host)
{
int err;
if (!host || !host->card) {
pr_err("%s: unexpected host/card parameters\n",
__func__);
return -EINVAL;
}
if (!mmc_can_scale_clk(host) ||
!host->bus_ops->change_bus_speed) {
pr_debug("%s: clock scaling is not supported\n",
mmc_hostname(host));
return 0;
}
pr_debug("registering %s dev (%p) to devfreq",
mmc_hostname(host),
mmc_classdev(host));
if (host->clk_scaling.devfreq) {
pr_err("%s: dev is already registered for dev %p\n",
mmc_hostname(host),
mmc_dev(host));
return -EPERM;
}
spin_lock_init(&host->clk_scaling.lock);
atomic_set(&host->clk_scaling.devfreq_abort, 0);
host->clk_scaling.curr_freq = host->ios.clock;
host->clk_scaling.clk_scaling_in_progress = false;
host->clk_scaling.need_freq_change = false;
host->clk_scaling.is_busy_started = false;
host->clk_scaling.devfreq_profile.polling_ms =
host->clk_scaling.polling_delay_ms;
host->clk_scaling.devfreq_profile.get_dev_status =
mmc_devfreq_get_dev_status;
host->clk_scaling.devfreq_profile.target = mmc_devfreq_set_target;
host->clk_scaling.devfreq_profile.initial_freq = host->ios.clock;
host->clk_scaling.ondemand_gov_data.simple_scaling = true;
host->clk_scaling.ondemand_gov_data.upthreshold =
host->clk_scaling.upthreshold;
host->clk_scaling.ondemand_gov_data.downdifferential =
host->clk_scaling.upthreshold - host->clk_scaling.downthreshold;
err = mmc_devfreq_create_freq_table(host);
if (err) {
pr_err("%s: fail to create devfreq frequency table\n",
mmc_hostname(host));
return err;
}
pr_debug("%s: adding devfreq with: upthreshold=%u downthreshold=%u polling=%u\n",
mmc_hostname(host),
host->clk_scaling.ondemand_gov_data.upthreshold,
host->clk_scaling.ondemand_gov_data.downdifferential,
host->clk_scaling.devfreq_profile.polling_ms);
host->clk_scaling.devfreq = devfreq_add_device(
mmc_classdev(host),
&host->clk_scaling.devfreq_profile,
"simple_ondemand",
&host->clk_scaling.ondemand_gov_data);
if (!host->clk_scaling.devfreq) {
pr_err("%s: unable to register with devfreq\n",
mmc_hostname(host));
return -EPERM;
}
pr_debug("%s: clk scaling is enabled for device %s (%p) with devfreq %p (clock = %uHz)\n",
mmc_hostname(host),
dev_name(mmc_classdev(host)),
mmc_classdev(host),
host->clk_scaling.devfreq,
host->ios.clock);
host->clk_scaling.enable = true;
return err;
}
EXPORT_SYMBOL(mmc_init_clk_scaling);
/**
* mmc_suspend_clk_scaling() - suspend clock scaling
* @host: pointer to mmc host structure
*
* This API will suspend devfreq feature for the specific host.
* The statistics collected by mmc will be cleared.
* This function is intended to be called by the pm callbacks
* (e.g. runtime_suspend, suspend) of the mmc device
*/
int mmc_suspend_clk_scaling(struct mmc_host *host)
{
int err;
if (!host) {
WARN(1, "bad host parameter\n");
return -EINVAL;
}
if (!mmc_can_scale_clk(host) || !host->clk_scaling.enable)
return 0;
if (!host->clk_scaling.devfreq) {
pr_err("%s: %s: no devfreq is assosiated with this device\n",
mmc_hostname(host), __func__);
return -EPERM;
}
atomic_inc(&host->clk_scaling.devfreq_abort);
wake_up(&host->wq);
err = devfreq_suspend_device(host->clk_scaling.devfreq);
if (err) {
pr_err("%s: %s: failed to suspend devfreq\n",
mmc_hostname(host), __func__);
return err;
}
host->clk_scaling.enable = false;
host->clk_scaling.total_busy_time_us = 0;
pr_debug("%s: devfreq was removed\n", mmc_hostname(host));
return 0;
}
EXPORT_SYMBOL(mmc_suspend_clk_scaling);
/**
* mmc_resume_clk_scaling() - resume clock scaling
* @host: pointer to mmc host structure
*
* This API will resume devfreq feature for the specific host.
* This API is intended to be called by the pm callbacks
* (e.g. runtime_suspend, suspend) of the mmc device
*/
int mmc_resume_clk_scaling(struct mmc_host *host)
{
int err = 0;
u32 max_clk_idx = 0;
u32 devfreq_max_clk = 0;
u32 devfreq_min_clk = 0;
if (!host) {
WARN(1, "bad host parameter\n");
return -EINVAL;
}
if (!mmc_can_scale_clk(host))
return 0;
/*
* If clock scaling is already exited when resume is called, like
* during mmc shutdown, it is not an error and should not fail the
* API calling this.
*/
if (!host->clk_scaling.devfreq) {
pr_warn("%s: %s: no devfreq is assosiated with this device\n",
mmc_hostname(host), __func__);
return 0;
}
atomic_set(&host->clk_scaling.devfreq_abort, 0);
max_clk_idx = host->clk_scaling.freq_table_sz - 1;
devfreq_max_clk = host->clk_scaling.freq_table[max_clk_idx];
devfreq_min_clk = host->clk_scaling.freq_table[0];
host->clk_scaling.curr_freq = devfreq_max_clk;
if (host->ios.clock < host->clk_scaling.freq_table[max_clk_idx])
host->clk_scaling.curr_freq = devfreq_min_clk;
host->clk_scaling.clk_scaling_in_progress = false;
host->clk_scaling.need_freq_change = false;
err = devfreq_resume_device(host->clk_scaling.devfreq);
if (err) {
pr_err("%s: %s: failed to resume devfreq (%d)\n",
mmc_hostname(host), __func__, err);
} else {
host->clk_scaling.enable = true;
pr_debug("%s: devfreq resumed\n", mmc_hostname(host));
}
return err;
}
EXPORT_SYMBOL(mmc_resume_clk_scaling);
/**
* mmc_exit_devfreq_clk_scaling() - Disable clock scaling
* @host: pointer to mmc host structure
*
* Disable clock scaling permanently.
*/
int mmc_exit_clk_scaling(struct mmc_host *host)
{
int err;
if (!host) {
pr_err("%s: bad host parameter\n", __func__);
WARN_ON(1);
return -EINVAL;
}
if (!mmc_can_scale_clk(host))
return 0;
if (!host->clk_scaling.devfreq) {
pr_err("%s: %s: no devfreq is assosiated with this device\n",
mmc_hostname(host), __func__);
return -EPERM;
}
err = mmc_suspend_clk_scaling(host);
if (err) {
pr_err("%s: %s: fail to suspend clock scaling (%d)\n",
mmc_hostname(host), __func__, err);
return err;
}
err = devfreq_remove_device(host->clk_scaling.devfreq);
if (err) {
pr_err("%s: remove devfreq failed (%d)\n",
mmc_hostname(host), err);
return err;
}
kfree(host->clk_scaling.devfreq_profile.freq_table);
host->clk_scaling.devfreq = NULL;
atomic_set(&host->clk_scaling.devfreq_abort, 1);
kfree(host->clk_scaling.freq_table);
host->clk_scaling.freq_table = NULL;
pr_debug("%s: devfreq was removed\n", mmc_hostname(host));
return 0;
}
EXPORT_SYMBOL(mmc_exit_clk_scaling);
static inline void mmc_complete_cmd(struct mmc_request *mrq)
{
if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
complete_all(&mrq->cmd_completion);
}
void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
{
if (!mrq->cap_cmd_during_tfr)
return;
mmc_complete_cmd(mrq);
pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
mmc_hostname(host), mrq->cmd->opcode);
}
EXPORT_SYMBOL(mmc_command_done);
/**
* mmc_request_done - finish processing an MMC request
* @host: MMC host which completed request
* @mrq: MMC request which request
*
* MMC drivers should call this function when they have completed
* their processing of a request.
*/
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
int err = cmd->error;
#ifdef CONFIG_MMC_PERF_PROFILING
ktime_t diff;
#endif
if (host->clk_scaling.is_busy_started)
mmc_clk_scaling_stop_busy(host, true);
/* Flag re-tuning needed on CRC errors */
if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
(err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
(mrq->data && mrq->data->error == -EILSEQ) ||
(mrq->stop && mrq->stop->error == -EILSEQ)))
mmc_retune_needed(host);
if (err && cmd->retries && mmc_host_is_spi(host)) {
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
cmd->retries = 0;
}
if (host->ongoing_mrq == mrq)
host->ongoing_mrq = NULL;
mmc_complete_cmd(mrq);
trace_mmc_request_done(host, mrq);
if (err && cmd->retries && !mmc_card_removed(host->card)) {
/*
* Request starter must handle retries - see
* mmc_wait_for_req_done().
*/
if (mrq->done)
mrq->done(mrq);
} else {
mmc_should_fail_request(host, mrq);
if (!host->ongoing_mrq)
led_trigger_event(host->led, LED_OFF);
if (mrq->sbc) {
pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->error,
mrq->sbc->resp[0], mrq->sbc->resp[1],
mrq->sbc->resp[2], mrq->sbc->resp[3]);
}
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), cmd->opcode, err,
cmd->resp[0], cmd->resp[1],
cmd->resp[2], cmd->resp[3]);
if (mrq->data) {
#ifdef CONFIG_MMC_PERF_PROFILING
if (host->perf_enable) {
diff = ktime_sub(ktime_get(), host->perf.start);
if (mrq->data->flags == MMC_DATA_READ) {
host->perf.rbytes_drv +=
mrq->data->bytes_xfered;
host->perf.rtime_drv =
ktime_add(host->perf.rtime_drv,
diff);
} else {
host->perf.wbytes_drv +=
mrq->data->bytes_xfered;
host->perf.wtime_drv =
ktime_add(host->perf.wtime_drv,
diff);
}
}
#endif
pr_debug("%s: %d bytes transferred: %d\n",
mmc_hostname(host),
mrq->data->bytes_xfered, mrq->data->error);
#ifdef CONFIG_BLOCK
if (mrq->lat_hist_enabled) {
ktime_t completion;
u_int64_t delta_us;
completion = ktime_get();
delta_us = ktime_us_delta(completion,
mrq->io_start);
blk_update_latency_hist(
(mrq->data->flags & MMC_DATA_READ) ?
&host->io_lat_read :
&host->io_lat_write, delta_us);
}
#endif
}
if (mrq->stop) {
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->error,
mrq->stop->resp[0], mrq->stop->resp[1],
mrq->stop->resp[2], mrq->stop->resp[3]);
}
if (mrq->done)
mrq->done(mrq);
mmc_host_clk_release(host);
}
}
EXPORT_SYMBOL(mmc_request_done);
static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
/* Assumes host controller has been runtime resumed by mmc_claim_host */
err = mmc_retune(host);
if (err) {
mrq->cmd->error = err;
mmc_request_done(host, mrq);
return;
}
/*
* For sdio rw commands we must wait for card busy otherwise some
* sdio devices won't work properly.
*/
if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
int tries = 500; /* Wait aprox 500ms at maximum */
while (host->ops->card_busy(host) && --tries)
mmc_delay(1);
if (tries == 0) {
mrq->cmd->error = -EBUSY;
mmc_request_done(host, mrq);
return;
}
}
if (mrq->cap_cmd_during_tfr) {
host->ongoing_mrq = mrq;
/*
* Retry path could come through here without having waiting on
* cmd_completion, so ensure it is reinitialised.
*/
reinit_completion(&mrq->cmd_completion);
}
trace_mmc_request_start(host, mrq);
host->ops->request(host, mrq);
}
static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
#ifdef CONFIG_MMC_DEBUG
unsigned int i, sz;
struct scatterlist *sg;
#endif
mmc_retune_hold(host);
if (mmc_card_removed(host->card))
return -ENOMEDIUM;
if (mrq->sbc) {
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->arg, mrq->sbc->flags);
}
pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->cmd->opcode,
mrq->cmd->arg, mrq->cmd->flags);
if (mrq->data) {
pr_debug("%s: blksz %d blocks %d flags %08x "
"tsac %d ms nsac %d\n",
mmc_hostname(host), mrq->data->blksz,
mrq->data->blocks, mrq->data->flags,
mrq->data->timeout_ns / 1000000,
mrq->data->timeout_clks);
}
if (mrq->stop) {
pr_debug("%s: CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->arg, mrq->stop->flags);
}
WARN_ON(!host->claimed);
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
if (mrq->sbc) {
mrq->sbc->error = 0;
mrq->sbc->mrq = mrq;
}
if (mrq->data) {
BUG_ON(mrq->data->blksz > host->max_blk_size);
BUG_ON(mrq->data->blocks > host->max_blk_count);
BUG_ON(mrq->data->blocks * mrq->data->blksz >
host->max_req_size);
#ifdef CONFIG_MMC_DEBUG
sz = 0;
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
sz += sg->length;
BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
#endif
mrq->cmd->data = mrq->data;
mrq->data->error = 0;
mrq->data->mrq = mrq;
if (mrq->stop) {
mrq->data->stop = mrq->stop;
mrq->stop->error = 0;
mrq->stop->mrq = mrq;
}
#ifdef CONFIG_MMC_PERF_PROFILING
if (host->perf_enable)
host->perf.start = ktime_get();
#endif
}
mmc_host_clk_hold(host);
led_trigger_event(host->led, LED_FULL);
if (mmc_is_data_request(mrq)) {
mmc_deferred_scaling(host);
mmc_clk_scaling_start_busy(host, true);
}
__mmc_start_request(host, mrq);
return 0;
}
static int mmc_cmdq_check_retune(struct mmc_host *host)
{
bool cmdq_mode;
int err = 0;
if (!host->need_retune || host->doing_retune || !host->card ||
mmc_card_hs400es(host->card) ||
(host->ios.clock <= MMC_HIGH_DDR_MAX_DTR))
return 0;
cmdq_mode = mmc_card_cmdq(host->card);
if (cmdq_mode) {
err = mmc_cmdq_halt(host, true);
if (err) {
pr_err("%s: %s: failed halting queue (%d)\n",
mmc_hostname(host), __func__, err);
host->cmdq_ops->dumpstate(host);
goto halt_failed;
}
}
mmc_retune_hold(host);
err = mmc_retune(host);
mmc_retune_release(host);
if (cmdq_mode) {
if (mmc_cmdq_halt(host, false)) {
pr_err("%s: %s: cmdq unhalt failed\n",
mmc_hostname(host), __func__);
host->cmdq_ops->dumpstate(host);
}
}
halt_failed:
pr_debug("%s: %s: Retuning done err: %d\n",
mmc_hostname(host), __func__, err);
return err;
}
static int mmc_start_cmdq_request(struct mmc_host *host,
struct mmc_request *mrq)
{
int ret = 0;
if (mrq->data) {
pr_debug("%s: blksz %d blocks %d flags %08x tsac %lu ms nsac %d\n",
mmc_hostname(host), mrq->data->blksz,
mrq->data->blocks, mrq->data->flags,
mrq->data->timeout_ns / NSEC_PER_MSEC,
mrq->data->timeout_clks);
BUG_ON(mrq->data->blksz > host->max_blk_size);
BUG_ON(mrq->data->blocks > host->max_blk_count);
BUG_ON(mrq->data->blocks * mrq->data->blksz >
host->max_req_size);
mrq->data->error = 0;
mrq->data->mrq = mrq;
}
if (mrq->cmd) {
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
}
mmc_host_clk_hold(host);
mmc_cmdq_check_retune(host);
if (likely(host->cmdq_ops->request)) {
ret = host->cmdq_ops->request(host, mrq);
} else {
ret = -ENOENT;
pr_err("%s: %s: cmdq request host op is not available\n",
mmc_hostname(host), __func__);
}
if (ret) {
mmc_host_clk_release(host);
pr_err("%s: %s: issue request failed, err=%d\n",
mmc_hostname(host), __func__, ret);
}
return ret;
}
/**
* mmc_blk_init_bkops_statistics - initialize bkops statistics
* @card: MMC card to start BKOPS
*
* Initialize and enable the bkops statistics
*/
void mmc_blk_init_bkops_statistics(struct mmc_card *card)
{
int i;
struct mmc_bkops_stats *stats;
if (!card)
return;
stats = &card->bkops.stats;
spin_lock(&stats->lock);
stats->manual_start = 0;
stats->hpi = 0;
stats->auto_start = 0;
stats->auto_stop = 0;
for (i = 0 ; i < MMC_BKOPS_NUM_SEVERITY_LEVELS ; i++)
stats->level[i] = 0;
stats->enabled = true;
spin_unlock(&stats->lock);
}
EXPORT_SYMBOL(mmc_blk_init_bkops_statistics);
static void mmc_update_bkops_hpi(struct mmc_bkops_stats *stats)
{
spin_lock_irq(&stats->lock);
if (stats->enabled)
stats->hpi++;
spin_unlock_irq(&stats->lock);
}
static void mmc_update_bkops_start(struct mmc_bkops_stats *stats)
{
spin_lock_irq(&stats->lock);
if (stats->enabled)
stats->manual_start++;
spin_unlock_irq(&stats->lock);
}
static void mmc_update_bkops_auto_on(struct mmc_bkops_stats *stats)
{
spin_lock_irq(&stats->lock);
if (stats->enabled)
stats->auto_start++;
spin_unlock_irq(&stats->lock);
}
static void mmc_update_bkops_auto_off(struct mmc_bkops_stats *stats)
{
spin_lock_irq(&stats->lock);
if (stats->enabled)
stats->auto_stop++;
spin_unlock_irq(&stats->lock);
}
static void mmc_update_bkops_level(struct mmc_bkops_stats *stats,
unsigned level)
{
BUG_ON(level >= MMC_BKOPS_NUM_SEVERITY_LEVELS);
spin_lock_irq(&stats->lock);
if (stats->enabled)
stats->level[level]++;
spin_unlock_irq(&stats->lock);
}
/**
* mmc_set_auto_bkops - set auto BKOPS for supported cards
* @card: MMC card to start BKOPS
* @enable: enable/disable flag
* Configure the card to run automatic BKOPS.
*
* Should be called when host is claimed.
*/
int mmc_set_auto_bkops(struct mmc_card *card, bool enable)
{
int ret = 0;
u8 bkops_en;
BUG_ON(!card);
enable = !!enable;
if (unlikely(!mmc_card_support_auto_bkops(card))) {
pr_err("%s: %s: card doesn't support auto bkops\n",
mmc_hostname(card->host), __func__);
return -EPERM;
}
if (enable) {
if (mmc_card_doing_auto_bkops(card))
goto out;
bkops_en = card->ext_csd.bkops_en | EXT_CSD_BKOPS_AUTO_EN;
} else {
if (!mmc_card_doing_auto_bkops(card))
goto out;
bkops_en = card->ext_csd.bkops_en & ~EXT_CSD_BKOPS_AUTO_EN;
}
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_EN,
bkops_en, 0);
if (ret) {
pr_err("%s: %s: error in setting auto bkops to %d (%d)\n",
mmc_hostname(card->host), __func__, enable, ret);
} else {
if (enable) {
mmc_card_set_auto_bkops(card);
mmc_update_bkops_auto_on(&card->bkops.stats);
} else {
mmc_card_clr_auto_bkops(card);
mmc_update_bkops_auto_off(&card->bkops.stats);
}
card->ext_csd.bkops_en = bkops_en;
pr_debug("%s: %s: bkops state %x\n",
mmc_hostname(card->host), __func__, bkops_en);
}
out:
return ret;
}
EXPORT_SYMBOL(mmc_set_auto_bkops);
/**
* mmc_check_bkops - check BKOPS for supported cards
* @card: MMC card to check BKOPS
*
* Read the BKOPS status in order to determine whether the
* card requires bkops to be started.
*/
void mmc_check_bkops(struct mmc_card *card)
{
int err;
BUG_ON(!card);
if (mmc_card_doing_bkops(card))
return;
err = mmc_read_bkops_status(card);
if (err) {
pr_err("%s: Failed to read bkops status: %d\n",
mmc_hostname(card->host), err);
return;
}
card->bkops.needs_check = false;
mmc_update_bkops_level(&card->bkops.stats,
card->ext_csd.raw_bkops_status);
card->bkops.needs_bkops = card->ext_csd.raw_bkops_status > 0;
}
EXPORT_SYMBOL(mmc_check_bkops);
/**
* mmc_start_manual_bkops - start BKOPS for supported cards
* @card: MMC card to start BKOPS
*
* Send START_BKOPS to the card.
* The function should be called with claimed host.
*/
void mmc_start_manual_bkops(struct mmc_card *card)
{
int err;
BUG_ON(!card);
if (unlikely(!mmc_card_configured_manual_bkops(card)))
return;
if (mmc_card_doing_bkops(card))
return;
mmc_retune_hold(card->host);
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_START,
1, 0, false, true, false);
if (err) {
pr_err("%s: Error %d starting manual bkops\n",
mmc_hostname(card->host), err);
} else {
mmc_card_set_doing_bkops(card);
mmc_update_bkops_start(&card->bkops.stats);
card->bkops.needs_bkops = false;
}
mmc_retune_release(card->host);
}
EXPORT_SYMBOL(mmc_start_manual_bkops);
/*
* mmc_wait_data_done() - done callback for data request
* @mrq: done data request
*
* Wakes up mmc context, passed as a callback to host controller driver
*/
static void mmc_wait_data_done(struct mmc_request *mrq)
{
unsigned long flags;
struct mmc_context_info *context_info = &mrq->host->context_info;
spin_lock_irqsave(&context_info->lock, flags);
context_info->is_done_rcv = true;
wake_up_interruptible(&context_info->wait);
spin_unlock_irqrestore(&context_info->lock, flags);
}
static void mmc_wait_done(struct mmc_request *mrq)
{
complete(&mrq->completion);
}
static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
{
struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
/*
* If there is an ongoing transfer, wait for the command line to become
* available.
*/
if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
wait_for_completion(&ongoing_mrq->cmd_completion);
}
/*
*__mmc_start_data_req() - starts data request
* @host: MMC host to start the request
* @mrq: data request to start
*
* Sets the done callback to be called when request is completed by the card.
* Starts data mmc request execution
* If an ongoing transfer is already in progress, wait for the command line
* to become available before sending another command.
*/
static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
mmc_wait_ongoing_tfr_cmd(host);
mrq->done = mmc_wait_data_done;
mrq->host = host;
init_completion(&mrq->cmd_completion);
err = mmc_start_request(host, mrq);
if (err) {
mrq->cmd->error = err;
mmc_complete_cmd(mrq);
mmc_wait_data_done(mrq);
}
return err;
}
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
mmc_wait_ongoing_tfr_cmd(host);
init_completion(&mrq->completion);
mrq->done = mmc_wait_done;
init_completion(&mrq->cmd_completion);
err = mmc_start_request(host, mrq);
if (err) {
mrq->cmd->error = err;
mmc_complete_cmd(mrq);
complete(&mrq->completion);
}
return err;
}
/*
* mmc_wait_for_data_req_done() - wait for request completed
* @host: MMC host to prepare the command.
* @mrq: MMC request to wait for
*
* Blocks MMC context till host controller will ack end of data request
* execution or new request notification arrives from the block layer.
* Handles command retries.
*
* Returns enum mmc_blk_status after checking errors.
*/
static int mmc_wait_for_data_req_done(struct mmc_host *host,
struct mmc_request *mrq,
struct mmc_async_req *next_req)
{
struct mmc_command *cmd;
struct mmc_context_info *context_info = &host->context_info;
int err;
bool is_done_rcv = false;
unsigned long flags;
while (1) {
wait_event_interruptible(context_info->wait,
(context_info->is_done_rcv ||
context_info->is_new_req));
spin_lock_irqsave(&context_info->lock, flags);
is_done_rcv = context_info->is_done_rcv;
context_info->is_waiting_last_req = false;
spin_unlock_irqrestore(&context_info->lock, flags);
if (is_done_rcv) {
context_info->is_done_rcv = false;
context_info->is_new_req = false;
cmd = mrq->cmd;
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card)) {
err = host->areq->err_check(host->card,
host->areq);
break; /* return err */
} else {
mmc_retune_recheck(host);
pr_info("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host),
cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
__mmc_start_request(host, mrq);
continue; /* wait for done/new event again */
}
} else if (context_info->is_new_req) {
context_info->is_new_req = false;
if (!next_req)
return MMC_BLK_NEW_REQUEST;
}
}
mmc_retune_release(host);
return err;
}
void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd;
while (1) {
wait_for_completion_io(&mrq->completion);
cmd = mrq->cmd;
/*
* If host has timed out waiting for the sanitize/bkops
* to complete, card might be still in programming state
* so let's try to bring the card out of programming
* state.
*/
if ((cmd->bkops_busy || cmd->sanitize_busy) && cmd->error == -ETIMEDOUT) {
if (!mmc_interrupt_hpi(host->card)) {
pr_warn("%s: %s: Interrupted sanitize/bkops\n",
mmc_hostname(host), __func__);
cmd->error = 0;
break;
} else {
pr_err("%s: %s: Failed to interrupt sanitize\n",
mmc_hostname(host), __func__);
}
}
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card)) {
if (cmd->error && !cmd->retries &&
cmd->opcode != MMC_SEND_STATUS &&
cmd->opcode != MMC_SEND_TUNING_BLOCK)
mmc_recovery_fallback_lower_speed(host);
break;
}
mmc_retune_recheck(host);
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host), cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
__mmc_start_request(host, mrq);
}
mmc_retune_release(host);
}
EXPORT_SYMBOL(mmc_wait_for_req_done);
/**
* mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
* @host: MMC host
* @mrq: MMC request
*
* mmc_is_req_done() is used with requests that have
* mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
* starting a request and before waiting for it to complete. That is,
* either in between calls to mmc_start_req(), or after mmc_wait_for_req()
* and before mmc_wait_for_req_done(). If it is called at other times the
* result is not meaningful.
*/
bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
{
if (host->areq)
return host->context_info.is_done_rcv;
else
return completion_done(&mrq->completion);
}
EXPORT_SYMBOL(mmc_is_req_done);
/**
* mmc_pre_req - Prepare for a new request
* @host: MMC host to prepare command
* @mrq: MMC request to prepare for
* @is_first_req: true if there is no previous started request
* that may run in parellel to this call, otherwise false
*
* mmc_pre_req() is called in prior to mmc_start_req() to let
* host prepare for the new request. Preparation of a request may be
* performed while another request is running on the host.
*/
static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
bool is_first_req)
{
if (host->ops->pre_req) {
mmc_host_clk_hold(host);
host->ops->pre_req(host, mrq, is_first_req);
mmc_host_clk_release(host);
}
}
/**
* mmc_post_req - Post process a completed request
* @host: MMC host to post process command
* @mrq: MMC request to post process for
* @err: Error, if non zero, clean up any resources made in pre_req
*
* Let the host post process a completed request. Post processing of
* a request may be performed while another reuqest is running.
*/
static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
int err)
{
if (host->ops->post_req) {
mmc_host_clk_hold(host);
host->ops->post_req(host, mrq, err);
mmc_host_clk_release(host);
}
}
/**
* mmc_cmdq_discard_card_queue - discard the task[s] in the device
* @host: host instance
* @tasks: mask of tasks to be knocked off
* 0: remove all queued tasks
*/
int mmc_cmdq_discard_queue(struct mmc_host *host, u32 tasks)
{
return mmc_discard_queue(host, tasks);
}
EXPORT_SYMBOL(mmc_cmdq_discard_queue);
/**
* mmc_cmdq_post_req - post process of a completed request
* @host: host instance
* @tag: the request tag.
* @err: non-zero is error, success otherwise
*/
void mmc_cmdq_post_req(struct mmc_host *host, int tag, int err)
{
if (likely(host->cmdq_ops->post_req))
host->cmdq_ops->post_req(host, tag, err);
}
EXPORT_SYMBOL(mmc_cmdq_post_req);
/**
* mmc_cmdq_halt - halt/un-halt the command queue engine
* @host: host instance
* @halt: true - halt, un-halt otherwise
*
* Host halts the command queue engine. It should complete
* the ongoing transfer and release the bus.
* All legacy commands can be sent upon successful
* completion of this function.
* Returns 0 on success, negative otherwise
*/
int mmc_cmdq_halt(struct mmc_host *host, bool halt)
{
int err = 0;
if (mmc_host_cq_disable(host)) {
pr_debug("%s: %s: CQE is already disabled\n",
mmc_hostname(host), __func__);
return 0;
}
if ((halt && mmc_host_halt(host)) ||
(!halt && !mmc_host_halt(host))) {
pr_debug("%s: %s: CQE is already %s\n", mmc_hostname(host),
__func__, halt ? "halted" : "un-halted");
return 0;
}
mmc_host_clk_hold(host);
if (host->cmdq_ops->halt) {
err = host->cmdq_ops->halt(host, halt);
if (!err && host->ops->notify_halt)
host->ops->notify_halt(host, halt);
if (!err && halt)
mmc_host_set_halt(host);
else if (!err && !halt) {
mmc_host_clr_halt(host);
wake_up(&host->cmdq_ctx.wait);
}
} else {
err = -ENOSYS;
}
mmc_host_clk_release(host);
return err;
}
EXPORT_SYMBOL(mmc_cmdq_halt);
int mmc_cmdq_start_req(struct mmc_host *host, struct mmc_cmdq_req *cmdq_req)
{
struct mmc_request *mrq = &cmdq_req->mrq;
mrq->host = host;
if (mmc_card_removed(host->card)) {
mrq->cmd->error = -ENOMEDIUM;
return -ENOMEDIUM;
}
return mmc_start_cmdq_request(host, mrq);
}
EXPORT_SYMBOL(mmc_cmdq_start_req);
static void mmc_cmdq_dcmd_req_done(struct mmc_request *mrq)
{
mmc_host_clk_release(mrq->host);
complete(&mrq->completion);
}
int mmc_cmdq_wait_for_dcmd(struct mmc_host *host,
struct mmc_cmdq_req *cmdq_req)
{
struct mmc_request *mrq = &cmdq_req->mrq;
struct mmc_command *cmd = mrq->cmd;
int err = 0;
init_completion(&mrq->completion);
mrq->done = mmc_cmdq_dcmd_req_done;
err = mmc_cmdq_start_req(host, cmdq_req);
if (err)
return err;
wait_for_completion_io(&mrq->completion);
if (cmd->error) {
pr_err("%s: DCMD %d failed with err %d\n",
mmc_hostname(host), cmd->opcode,
cmd->error);
err = cmd->error;
mmc_host_clk_hold(host);
host->cmdq_ops->dumpstate(host);
mmc_host_clk_release(host);
}
return err;
}
EXPORT_SYMBOL(mmc_cmdq_wait_for_dcmd);
int mmc_cmdq_prepare_flush(struct mmc_command *cmd)
{
return __mmc_switch_cmdq_mode(cmd, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 1,
0, true, true);
}
EXPORT_SYMBOL(mmc_cmdq_prepare_flush);
/**
* mmc_start_req - start a non-blocking request
* @host: MMC host to start command
* @areq: async request to start
* @error: out parameter returns 0 for success, otherwise non zero
*
* Start a new MMC custom command request for a host.
* If there is on ongoing async request wait for completion
* of that request and start the new one and return.
* Does not wait for the new request to complete.
*
* Returns the completed request, NULL in case of none completed.
* Wait for the an ongoing request (previoulsy started) to complete and
* return the completed request. If there is no ongoing request, NULL
* is returned without waiting. NULL is not an error condition.
*/
struct mmc_async_req *mmc_start_req(struct mmc_host *host,
struct mmc_async_req *areq, int *error)
{
int err = 0;
int start_err = 0;
struct mmc_async_req *data = host->areq;
/* Prepare a new request */
if (areq)
mmc_pre_req(host, areq->mrq, !host->areq);
if (host->areq) {
err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
if (err == MMC_BLK_NEW_REQUEST) {
if (error)
*error = err;
/*
* The previous request was not completed,
* nothing to return
*/
return NULL;
}
/*
* Check BKOPS urgency for each R1 response
*/
if (host->card && mmc_card_mmc(host->card) &&
((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
(mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
(host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
/* Cancel the prepared request */
if (areq)
mmc_post_req(host, areq->mrq, -EINVAL);
mmc_check_bkops(host->card);
/* prepare the request again */
if (areq)
mmc_pre_req(host, areq->mrq, !host->areq);
}
}
if (!err && areq) {
#ifdef CONFIG_BLOCK
if (host->latency_hist_enabled) {
areq->mrq->io_start = ktime_get();
areq->mrq->lat_hist_enabled = 1;
} else
areq->mrq->lat_hist_enabled = 0;
#endif
start_err = __mmc_start_data_req(host, areq->mrq);
}
if (host->areq)
mmc_post_req(host, host->areq->mrq, 0);
if (err && areq)
mmc_post_req(host, areq->mrq, -EINVAL);
if (err)
host->areq = NULL;
else
host->areq = areq;
if (error)
*error = err;
return data;
}
EXPORT_SYMBOL(mmc_start_req);
/**
* mmc_wait_for_req - start a request and wait for completion
* @host: MMC host to start command
* @mrq: MMC request to start
*
* Start a new MMC custom command request for a host, and wait
* for the command to complete. In the case of 'cap_cmd_during_tfr'
* requests, the transfer is ongoing and the caller can issue further
* commands that do not use the data lines, and then wait by calling
* mmc_wait_for_req_done().
* Does not attempt to parse the response.
*/
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
if (mmc_bus_needs_resume(host))
mmc_resume_bus(host);
#endif
__mmc_start_req(host, mrq);
if (!mrq->cap_cmd_during_tfr)
mmc_wait_for_req_done(host, mrq);
}
EXPORT_SYMBOL(mmc_wait_for_req);
/**
* mmc_interrupt_hpi - Issue for High priority Interrupt
* @card: the MMC card associated with the HPI transfer
*
* Issued High Priority Interrupt, and check for card status
* until out-of prg-state.
*/
int mmc_interrupt_hpi(struct mmc_card *card)
{
int err;
u32 status;
unsigned long prg_wait;
BUG_ON(!card);
if (!card->ext_csd.hpi_en) {
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
return 1;
}
mmc_claim_host(card->host);
err = mmc_send_status(card, &status);
if (err) {
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
goto out;
}
switch (R1_CURRENT_STATE(status)) {
case R1_STATE_IDLE:
case R1_STATE_READY:
case R1_STATE_STBY:
case R1_STATE_TRAN:
/*
* In idle and transfer states, HPI is not needed and the caller
* can issue the next intended command immediately
*/
goto out;
case R1_STATE_PRG:
break;
default:
/* In all other states, it's illegal to issue HPI */
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
mmc_hostname(card->host), R1_CURRENT_STATE(status));
err = -EINVAL;
goto out;
}
err = mmc_send_hpi_cmd(card, &status);
prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
do {
err = mmc_send_status(card, &status);
if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
break;
if (time_after(jiffies, prg_wait)) {
err = mmc_send_status(card, &status);
if (!err && R1_CURRENT_STATE(status) != R1_STATE_TRAN)
err = -ETIMEDOUT;
else
break;
}
} while (!err);
out:
mmc_release_host(card->host);
return err;
}
EXPORT_SYMBOL(mmc_interrupt_hpi);
/**
* mmc_wait_for_cmd - start a command and wait for completion
* @host: MMC host to start command
* @cmd: MMC command to start
* @retries: maximum number of retries
*
* Start a new MMC command for a host, and wait for the command
* to complete. Return any error that occurred while the command
* was executing. Do not attempt to parse the response.
*/
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
struct mmc_request mrq = {NULL};
WARN_ON(!host->claimed);
memset(cmd->resp, 0, sizeof(cmd->resp));
cmd->retries = retries;
mrq.cmd = cmd;
cmd->data = NULL;
mmc_wait_for_req(host, &mrq);
return cmd->error;
}
EXPORT_SYMBOL(mmc_wait_for_cmd);
/**
* mmc_stop_bkops - stop ongoing BKOPS
* @card: MMC card to check BKOPS
*
* Send HPI command to stop ongoing background operations to
* allow rapid servicing of foreground operations, e.g. read/
* writes. Wait until the card comes out of the programming state
* to avoid errors in servicing read/write requests.
*/
int mmc_stop_bkops(struct mmc_card *card)
{
int err = 0;
BUG_ON(!card);
if (unlikely(!mmc_card_configured_manual_bkops(card)))
goto out;
if (!mmc_card_doing_bkops(card))
goto out;
err = mmc_interrupt_hpi(card);
/*
* If err is EINVAL, we can't issue an HPI.
* It should complete the BKOPS.
*/
if (!err || (err == -EINVAL)) {
mmc_card_clr_doing_bkops(card);
mmc_update_bkops_hpi(&card->bkops.stats);
mmc_retune_release(card->host);
err = 0;
}
out:
return err;
}
EXPORT_SYMBOL(mmc_stop_bkops);
int mmc_read_bkops_status(struct mmc_card *card)
{
int err;
u8 *ext_csd;
mmc_claim_host(card->host);
err = mmc_get_ext_csd(card, &ext_csd);
mmc_release_host(card->host);
if (err)
return err;
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS] &
MMC_BKOPS_URGENCY_MASK;
card->ext_csd.raw_exception_status =
ext_csd[EXT_CSD_EXP_EVENTS_STATUS] & (EXT_CSD_URGENT_BKOPS |
EXT_CSD_DYNCAP_NEEDED |
EXT_CSD_SYSPOOL_EXHAUSTED
| EXT_CSD_PACKED_FAILURE);
kfree(ext_csd);
return 0;
}
EXPORT_SYMBOL(mmc_read_bkops_status);
/**
* mmc_set_data_timeout - set the timeout for a data command
* @data: data phase for command
* @card: the MMC card associated with the data transfer
*
* Computes the data timeout parameters according to the
* correct algorithm given the card type.
*/
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
{
unsigned int mult;
if (!card) {
WARN_ON(1);
return;
}
/*
* SDIO cards only define an upper 1 s limit on access.
*/
if (mmc_card_sdio(card)) {
data->timeout_ns = 1000000000;
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = mmc_card_sd(card) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & MMC_DATA_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->csd.tacc_ns * mult;
data->timeout_clks = card->csd.tacc_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (mmc_card_sd(card)) {
unsigned int timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
if (mmc_host_clk_rate(card->host))
timeout_us += data->timeout_clks * 1000 /
(mmc_host_clk_rate(card->host) / 1000);
if (data->flags & MMC_DATA_WRITE)
/*
* The MMC spec "It is strongly recommended
* for hosts to implement more than 500ms
* timeout value even if the card indicates
* the 250ms maximum busy length." Even the
* previous value of 300ms is known to be
* insufficient for some cards.
*/
limit_us = 3000000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
data->timeout_ns = limit_us * 1000;
data->timeout_clks = 0;
}
/* assign limit value if invalid */
if (timeout_us == 0)
data->timeout_ns = limit_us * 1000;
}
/*
* Some cards require longer data read timeout than indicated in CSD.
* Address this by setting the read timeout to a "reasonably high"
* value. For the cards tested, 600ms has proven enough. If necessary,
* this value can be increased if other problematic cards require this.
* Certain Hynix 5.x cards giving read timeout even with 300ms.
* Increasing further to max value (4s).
*/
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
data->timeout_ns = 4000000000u;
data->timeout_clks = 0;
}
/*
* Some cards need very high timeouts if driven in SPI mode.
* The worst observed timeout was 900ms after writing a
* continuous stream of data until the internal logic
* overflowed.
*/
if (mmc_host_is_spi(card->host)) {
if (data->flags & MMC_DATA_WRITE) {
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
} else {
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
/* Increase the timeout values for some bad INAND MCP devices */
if (card->quirks & MMC_QUIRK_INAND_DATA_TIMEOUT) {
data->timeout_ns = 4000000000u; /* 4s */
data->timeout_clks = 0;
}
}
EXPORT_SYMBOL(mmc_set_data_timeout);
/**
* mmc_align_data_size - pads a transfer size to a more optimal value
* @card: the MMC card associated with the data transfer
* @sz: original transfer size
*
* Pads the original data size with a number of extra bytes in
* order to avoid controller bugs and/or performance hits
* (e.g. some controllers revert to PIO for certain sizes).
*
* Returns the improved size, which might be unmodified.
*
* Note that this function is only relevant when issuing a
* single scatter gather entry.
*/
unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
{
/*
* FIXME: We don't have a system for the controller to tell
* the core about its problems yet, so for now we just 32-bit
* align the size.
*/
sz = ((sz + 3) / 4) * 4;
return sz;
}
EXPORT_SYMBOL(mmc_align_data_size);
/**
* __mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
* @abort: whether or not the operation should be aborted
*
* Claim a host for a set of operations. If @abort is non null and
* dereference a non-zero value then this will return prematurely with
* that non-zero value without acquiring the lock. Returns zero
* with the lock held otherwise.
*/
int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int stop;
bool pm = false;
might_sleep();
add_wait_queue(&host->wq, &wait);
spin_lock_irqsave(&host->lock, flags);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
stop = abort ? atomic_read(abort) : 0;
if (stop || !host->claimed || host->claimer == current)
break;
spin_unlock_irqrestore(&host->lock, flags);
schedule();
spin_lock_irqsave(&host->lock, flags);
}
set_current_state(TASK_RUNNING);
if (!stop) {
host->claimed = 1;
host->claimer = current;
host->claim_cnt += 1;
if (host->claim_cnt == 1)
pm = true;
} else
wake_up(&host->wq);
spin_unlock_irqrestore(&host->lock, flags);
remove_wait_queue(&host->wq, &wait);
if (pm) {
mmc_host_clk_hold(host);
pm_runtime_get_sync(mmc_dev(host));
}
if (host->ops->enable && !stop && host->claim_cnt == 1)
host->ops->enable(host);
return stop;
}
EXPORT_SYMBOL(__mmc_claim_host);
/**
* mmc_try_claim_host - try exclusively to claim a host
* and keep trying for given time, with a gap of 10ms
* @host: mmc host to claim
* @dealy_ms: delay in ms
*
* Returns %1 if the host is claimed, %0 otherwise.
*/
int mmc_try_claim_host(struct mmc_host *host, unsigned int delay_ms)
{
int claimed_host = 0;
unsigned long flags;
int retry_cnt = delay_ms/10;
bool pm = false;
do {
spin_lock_irqsave(&host->lock, flags);
if (!host->claimed || host->claimer == current) {
host->claimed = 1;
host->claimer = current;
host->claim_cnt += 1;
claimed_host = 1;
if (host->claim_cnt == 1)
pm = true;
}
spin_unlock_irqrestore(&host->lock, flags);
if (!claimed_host)
mmc_delay(10);
} while (!claimed_host && retry_cnt--);
if (pm) {
mmc_host_clk_hold(host);
pm_runtime_get_sync(mmc_dev(host));
}
if (host->ops->enable && claimed_host && host->claim_cnt == 1)
host->ops->enable(host);
return claimed_host;
}
EXPORT_SYMBOL(mmc_try_claim_host);
/**
* mmc_release_host - release a host
* @host: mmc host to release
*
* Release a MMC host, allowing others to claim the host
* for their operations.
*/
void mmc_release_host(struct mmc_host *host)
{
unsigned long flags;
WARN_ON(!host->claimed);
if (host->ops->disable && host->claim_cnt == 1)
host->ops->disable(host);
spin_lock_irqsave(&host->lock, flags);
if (--host->claim_cnt) {
/* Release for nested claim */
spin_unlock_irqrestore(&host->lock, flags);
} else {
host->claimed = 0;
host->claimer = NULL;
spin_unlock_irqrestore(&host->lock, flags);
wake_up(&host->wq);
pm_runtime_mark_last_busy(mmc_dev(host));
pm_runtime_put_autosuspend(mmc_dev(host));
mmc_host_clk_release(host);
}
}
EXPORT_SYMBOL(mmc_release_host);
/*
* This is a helper function, which fetches a runtime pm reference for the
* card device and also claims the host.
*/
void mmc_get_card(struct mmc_card *card)
{
pm_runtime_get_sync(&card->dev);
mmc_claim_host(card->host);
#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
if (mmc_bus_needs_resume(card->host))
mmc_resume_bus(card->host);
#endif
}
EXPORT_SYMBOL(mmc_get_card);
/*
* This is a helper function, which releases the host and drops the runtime
* pm reference for the card device.
*/
void mmc_put_card(struct mmc_card *card)
{
mmc_release_host(card->host);
pm_runtime_mark_last_busy(&card->dev);
pm_runtime_put_autosuspend(&card->dev);
}
EXPORT_SYMBOL(mmc_put_card);
/*
* Internal function that does the actual ios call to the host driver,
* optionally printing some debug output.
*/
void mmc_set_ios(struct mmc_host *host)
{
struct mmc_ios *ios = &host->ios;
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u timing %u\n",
mmc_hostname(host), ios->clock, ios->bus_mode,
ios->power_mode, ios->chip_select, ios->vdd,
1 << ios->bus_width, ios->timing);
if (ios->clock > 0)
mmc_set_ungated(host);
host->ops->set_ios(host, ios);
if (ios->old_rate != ios->clock) {
if (likely(ios->clk_ts)) {
char trace_info[80];
snprintf(trace_info, 80,
"%s: freq_KHz %d --> %d | t = %d",
mmc_hostname(host), ios->old_rate / 1000,
ios->clock / 1000, jiffies_to_msecs(
(long)jiffies - (long)ios->clk_ts));
trace_mmc_clk(trace_info);
}
ios->old_rate = ios->clock;
ios->clk_ts = jiffies;
}
}
EXPORT_SYMBOL(mmc_set_ios);
/*
* Control chip select pin on a host.
*/
void mmc_set_chip_select(struct mmc_host *host, int mode)
{
mmc_host_clk_hold(host);
host->ios.chip_select = mode;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
WARN_ON(hz && hz < host->f_min);
if (hz > host->f_max)
hz = host->f_max;
host->ios.clock = hz;
mmc_set_ios(host);
}
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
mmc_host_clk_hold(host);
__mmc_set_clock(host, hz);
mmc_host_clk_release(host);
}
#ifdef CONFIG_MMC_CLKGATE
/*
* This gates the clock by setting it to 0 Hz.
*/
void mmc_gate_clock(struct mmc_host *host)
{
unsigned long flags;
WARN_ON(!host->ios.clock);
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_old = host->ios.clock;
host->ios.clock = 0;
host->clk_gated = true;
spin_unlock_irqrestore(&host->clk_lock, flags);
mmc_set_ios(host);
}
/*
* This restores the clock from gating by using the cached
* clock value.
*/
void mmc_ungate_clock(struct mmc_host *host)
{
/*
* We should previously have gated the clock, so the clock shall
* be 0 here! The clock may however be 0 during initialization,
* when some request operations are performed before setting
* the frequency. When ungate is requested in that situation
* we just ignore the call.
*/
if (host->clk_old) {
WARN_ON(host->ios.clock);
/* This call will also set host->clk_gated to false */
__mmc_set_clock(host, host->clk_old);
/*
* We have seen that host controller's clock tuning circuit may
* go out of sync if controller clocks are gated.
* To workaround this issue, we are triggering retuning of the
* tuning circuit after ungating the controller clocks.
*/
mmc_retune_needed(host);
}
}
void mmc_set_ungated(struct mmc_host *host)
{
unsigned long flags;
/*
* We've been given a new frequency while the clock is gated,
* so make sure we regard this as ungating it.
*/
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_gated = false;
spin_unlock_irqrestore(&host->clk_lock, flags);
}
#else
void mmc_set_ungated(struct mmc_host *host)
{
}
void mmc_gate_clock(struct mmc_host *host)
{
}
#endif
int mmc_execute_tuning(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u32 opcode;
int err;
if (!host->ops->execute_tuning)
return 0;
if (mmc_card_mmc(card))
opcode = MMC_SEND_TUNING_BLOCK_HS200;
else
opcode = MMC_SEND_TUNING_BLOCK;
mmc_host_clk_hold(host);
err = host->ops->execute_tuning(host, opcode);
mmc_host_clk_release(host);
if (err)
pr_err("%s: tuning execution failed: %d\n",
mmc_hostname(host), err);
else
mmc_retune_enable(host);
return err;
}
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
{
mmc_host_clk_hold(host);
host->ios.bus_mode = mode;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Change data bus width of a host.
*/
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
{
mmc_host_clk_hold(host);
host->ios.bus_width = width;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Set initial state after a power cycle or a hw_reset.
*/
void mmc_set_initial_state(struct mmc_host *host)
{
mmc_retune_disable(host);
if (mmc_host_is_spi(host))
host->ios.chip_select = MMC_CS_HIGH;
else {
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
}
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
host->ios.drv_type = 0;
host->ios.enhanced_strobe = false;
/*
* Make sure we are in non-enhanced strobe mode before we
* actually enable it in ext_csd.
*/
if ((host->caps2 & MMC_CAP2_HS400_ES) &&
host->ops->hs400_enhanced_strobe)
host->ops->hs400_enhanced_strobe(host, &host->ios);
mmc_set_ios(host);
}
/**
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
* @vdd: voltage (mV)
* @low_bits: prefer low bits in boundary cases
*
* This function returns the OCR bit number according to the provided @vdd
* value. If conversion is not possible a negative errno value returned.
*
* Depending on the @low_bits flag the function prefers low or high OCR bits
* on boundary voltages. For example,
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
*
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
*/
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
const int max_bit = ilog2(MMC_VDD_35_36);
int bit;
if (vdd < 1650 || vdd > 3600)
return -EINVAL;
if (vdd >= 1650 && vdd <= 1950)
return ilog2(MMC_VDD_165_195);
if (low_bits)
vdd -= 1;
/* Base 2000 mV, step 100 mV, bit's base 8. */
bit = (vdd - 2000) / 100 + 8;
if (bit > max_bit)
return max_bit;
return bit;
}
/**
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
* @vdd_min: minimum voltage value (mV)
* @vdd_max: maximum voltage value (mV)
*
* This function returns the OCR mask bits according to the provided @vdd_min
* and @vdd_max values. If conversion is not possible the function returns 0.
*
* Notes wrt boundary cases:
* This function sets the OCR bits for all boundary voltages, for example
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
* MMC_VDD_34_35 mask.
*/
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
u32 mask = 0;
if (vdd_max < vdd_min)
return 0;
/* Prefer high bits for the boundary vdd_max values. */
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
if (vdd_max < 0)
return 0;
/* Prefer low bits for the boundary vdd_min values. */
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
if (vdd_min < 0)
return 0;
/* Fill the mask, from max bit to min bit. */
while (vdd_max >= vdd_min)
mask |= 1 << vdd_max--;
return mask;
}
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
#ifdef CONFIG_OF
/**
* mmc_of_parse_voltage - return mask of supported voltages
* @np: The device node need to be parsed.
* @mask: mask of voltages available for MMC/SD/SDIO
*
* Parse the "voltage-ranges" DT property, returning zero if it is not
* found, negative errno if the voltage-range specification is invalid,
* or one if the voltage-range is specified and successfully parsed.
*/
int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
{
const u32 *voltage_ranges;
int num_ranges, i;
voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
if (!voltage_ranges) {
pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
return 0;
}
if (!num_ranges) {
pr_err("%s: voltage-ranges empty\n", np->full_name);
return -EINVAL;
}
for (i = 0; i < num_ranges; i++) {
const int j = i * 2;
u32 ocr_mask;
ocr_mask = mmc_vddrange_to_ocrmask(
be32_to_cpu(voltage_ranges[j]),
be32_to_cpu(voltage_ranges[j + 1]));
if (!ocr_mask) {
pr_err("%s: voltage-range #%d is invalid\n",
np->full_name, i);
return -EINVAL;
}
*mask |= ocr_mask;
}
return 1;
}
EXPORT_SYMBOL(mmc_of_parse_voltage);
#endif /* CONFIG_OF */
static int mmc_of_get_func_num(struct device_node *node)
{
u32 reg;
int ret;
ret = of_property_read_u32(node, "reg", &reg);
if (ret < 0)
return ret;
return reg;
}
struct device_node *mmc_of_find_child_device(struct mmc_host *host,
unsigned func_num)
{
struct device_node *node;
if (!host->parent || !host->parent->of_node)
return NULL;
for_each_child_of_node(host->parent->of_node, node) {
if (mmc_of_get_func_num(node) == func_num)
return node;
}
return NULL;
}
#ifdef CONFIG_REGULATOR
/**
* mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
* @vdd_bit: OCR bit number
* @min_uV: minimum voltage value (mV)
* @max_uV: maximum voltage value (mV)
*
* This function returns the voltage range according to the provided OCR
* bit number. If conversion is not possible a negative errno value returned.
*/
static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
{
int tmp;
if (!vdd_bit)
return -EINVAL;
/*
* REVISIT mmc_vddrange_to_ocrmask() may have set some
* bits this regulator doesn't quite support ... don't
* be too picky, most cards and regulators are OK with
* a 0.1V range goof (it's a small error percentage).
*/
tmp = vdd_bit - ilog2(MMC_VDD_165_195);
if (tmp == 0) {
*min_uV = 1650 * 1000;
*max_uV = 1950 * 1000;
} else {
*min_uV = 1900 * 1000 + tmp * 100 * 1000;
*max_uV = *min_uV + 100 * 1000;
}
return 0;
}
/**
* mmc_regulator_get_ocrmask - return mask of supported voltages
* @supply: regulator to use
*
* This returns either a negative errno, or a mask of voltages that
* can be provided to MMC/SD/SDIO devices using the specified voltage
* regulator. This would normally be called before registering the
* MMC host adapter.
*/
int mmc_regulator_get_ocrmask(struct regulator *supply)
{
int result = 0;
int count;
int i;
int vdd_uV;
int vdd_mV;
count = regulator_count_voltages(supply);
if (count < 0)
return count;
for (i = 0; i < count; i++) {
vdd_uV = regulator_list_voltage(supply, i);
if (vdd_uV <= 0)
continue;
vdd_mV = vdd_uV / 1000;
result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
}
if (!result) {
vdd_uV = regulator_get_voltage(supply);
if (vdd_uV <= 0)
return vdd_uV;
vdd_mV = vdd_uV / 1000;
result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
}
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
/**
* mmc_regulator_set_ocr - set regulator to match host->ios voltage
* @mmc: the host to regulate
* @supply: regulator to use
* @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
*
* Returns zero on success, else negative errno.
*
* MMC host drivers may use this to enable or disable a regulator using
* a particular supply voltage. This would normally be called from the
* set_ios() method.
*/
int mmc_regulator_set_ocr(struct mmc_host *mmc,
struct regulator *supply,
unsigned short vdd_bit)
{
int result = 0;
int min_uV, max_uV;
if (vdd_bit) {
mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
result = regulator_set_voltage(supply, min_uV, max_uV);
if (result == 0 && !mmc->regulator_enabled) {
result = regulator_enable(supply);
if (!result)
mmc->regulator_enabled = true;
}
} else if (mmc->regulator_enabled) {
result = regulator_disable(supply);
if (result == 0)
mmc->regulator_enabled = false;
}
if (result)
dev_err(mmc_dev(mmc),
"could not set regulator OCR (%d)\n", result);
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
int min_uV, int target_uV,
int max_uV)
{
/*
* Check if supported first to avoid errors since we may try several
* signal levels during power up and don't want to show errors.
*/
if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
return -EINVAL;
return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
max_uV);
}
/**
* mmc_regulator_set_vqmmc - Set VQMMC as per the ios
*
* For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
* That will match the behavior of old boards where VQMMC and VMMC were supplied
* by the same supply. The Bus Operating conditions for 3.3V signaling in the
* SD card spec also define VQMMC in terms of VMMC.
* If this is not possible we'll try the full 2.7-3.6V of the spec.
*
* For 1.2V and 1.8V signaling we'll try to get as close as possible to the
* requested voltage. This is definitely a good idea for UHS where there's a
* separate regulator on the card that's trying to make 1.8V and it's best if
* we match.
*
* This function is expected to be used by a controller's
* start_signal_voltage_switch() function.
*/
int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct device *dev = mmc_dev(mmc);
int ret, volt, min_uV, max_uV;
/* If no vqmmc supply then we can't change the voltage */
if (IS_ERR(mmc->supply.vqmmc))
return -EINVAL;
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_120:
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1100000, 1200000, 1300000);
case MMC_SIGNAL_VOLTAGE_180:
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1700000, 1800000, 1950000);
case MMC_SIGNAL_VOLTAGE_330:
ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
if (ret < 0)
return ret;
dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
__func__, volt, max_uV);
min_uV = max(volt - 300000, 2700000);
max_uV = min(max_uV + 200000, 3600000);
/*
* Due to a limitation in the current implementation of
* regulator_set_voltage_triplet() which is taking the lowest
* voltage possible if below the target, search for a suitable
* voltage in two steps and try to stay close to vmmc
* with a 0.3V tolerance at first.
*/
if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
min_uV, volt, max_uV))
return 0;
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
2700000, volt, 3600000);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
#endif /* CONFIG_REGULATOR */
int mmc_regulator_get_supply(struct mmc_host *mmc)
{
struct device *dev = mmc_dev(mmc);
int ret;
mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
if (IS_ERR(mmc->supply.vmmc)) {
if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_dbg(dev, "No vmmc regulator found\n");
} else {
ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
if (ret > 0)
mmc->ocr_avail = ret;
else
dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
}
if (IS_ERR(mmc->supply.vqmmc)) {
if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_dbg(dev, "No vqmmc regulator found\n");
}
return 0;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
int bit;
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
dev_warn(mmc_dev(host),
"card claims to support voltages below defined range\n");
ocr &= ~0x7F;
}
ocr &= host->ocr_avail;
if (!ocr) {
dev_warn(mmc_dev(host), "no support for card's volts\n");
return 0;
}
if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
bit = ffs(ocr) - 1;
ocr &= 3 << bit;
mmc_power_cycle(host, ocr);
} else {
bit = fls(ocr) - 1;
ocr &= 3 << bit;
if (bit != host->ios.vdd)
dev_warn(mmc_dev(host), "exceeding card's volts\n");
}
return ocr;
}
int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
int err = 0;
int old_signal_voltage = host->ios.signal_voltage;
host->ios.signal_voltage = signal_voltage;
if (host->ops->start_signal_voltage_switch) {
mmc_host_clk_hold(host);
err = host->ops->start_signal_voltage_switch(host, &host->ios);
mmc_host_clk_release(host);
}
if (err)
host->ios.signal_voltage = old_signal_voltage;
return err;
}
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
{
struct mmc_command cmd = {0};
int err = 0;
u32 clock;
BUG_ON(!host);
/*
* Send CMD11 only if the request is to switch the card to
* 1.8V signalling.
*/
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return __mmc_set_signal_voltage(host, signal_voltage);
/*
* If we cannot switch voltages, return failure so the caller
* can continue without UHS mode
*/
if (!host->ops->start_signal_voltage_switch)
return -EPERM;
if (!host->ops->card_busy)
pr_warn("%s: cannot verify signal voltage switch\n",
mmc_hostname(host));
cmd.opcode = SD_SWITCH_VOLTAGE;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
/*
* Hold the clock reference so clock doesn't get auto gated during this
* voltage switch sequence.
*/
mmc_host_clk_hold(host);
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
goto err_command;
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
err = -EIO;
goto err_command;
}
/*
* The card should drive cmd and dat[0:3] low immediately
* after the response of cmd11, but wait 1 ms to be sure
*/
mmc_delay(1);
if (host->ops->card_busy && !host->ops->card_busy(host)) {
err = -EAGAIN;
goto power_cycle;
}
/*
* During a signal voltage level switch, the clock must be gated
* for 5 ms according to the SD spec
*/
host->card_clock_off = true;
clock = host->ios.clock;
host->ios.clock = 0;
mmc_set_ios(host);
if (__mmc_set_signal_voltage(host, signal_voltage)) {
/*
* Voltages may not have been switched, but we've already
* sent CMD11, so a power cycle is required anyway
*/
err = -EAGAIN;
host->ios.clock = clock;
mmc_set_ios(host);
host->card_clock_off = false;
goto power_cycle;
}
/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
mmc_delay(10);
host->ios.clock = clock;
mmc_set_ios(host);
host->card_clock_off = false;
/* Wait for at least 1 ms according to spec */
mmc_delay(1);
/*
* Failure to switch is indicated by the card holding
* dat[0:3] low
*/
if (host->ops->card_busy && host->ops->card_busy(host))
err = -EAGAIN;
power_cycle:
if (err) {
pr_debug("%s: Signal voltage switch failed, "
"power cycling card\n", mmc_hostname(host));
mmc_power_cycle(host, ocr);
}
err_command:
mmc_host_clk_release(host);
return err;
}
/*
* Select timing parameters for host.
*/
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
{
mmc_host_clk_hold(host);
host->ios.timing = timing;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
/*
* Select appropriate driver type for host.
*/
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
{
mmc_host_clk_hold(host);
host->ios.drv_type = drv_type;
mmc_set_ios(host);
mmc_host_clk_release(host);
}
int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
int card_drv_type, int *drv_type)
{
struct mmc_host *host = card->host;
int host_drv_type = SD_DRIVER_TYPE_B;
int drive_strength;
*drv_type = 0;
if (!host->ops->select_drive_strength)
return 0;
/* Use SD definition of driver strength for hosts */
if (host->caps & MMC_CAP_DRIVER_TYPE_A)
host_drv_type |= SD_DRIVER_TYPE_A;
if (host->caps & MMC_CAP_DRIVER_TYPE_C)
host_drv_type |= SD_DRIVER_TYPE_C;
if (host->caps & MMC_CAP_DRIVER_TYPE_D)
host_drv_type |= SD_DRIVER_TYPE_D;
/*
* The drive strength that the hardware can support
* depends on the board design. Pass the appropriate
* information and let the hardware specific code
* return what is possible given the options
*/
mmc_host_clk_hold(host);
drive_strength = host->ops->select_drive_strength(card, max_dtr,
host_drv_type,
card_drv_type,
drv_type);
mmc_host_clk_release(host);
return drive_strength;
}
/*
* Apply power to the MMC stack. This is a two-stage process.
* First, we enable power to the card without the clock running.
* We then wait a bit for the power to stabilise. Finally,
* enable the bus drivers and clock to the card.
*
* We must _NOT_ enable the clock prior to power stablising.
*
* If a host does all the power sequencing itself, ignore the
* initial MMC_POWER_UP stage.
*/
void mmc_power_up(struct mmc_host *host, u32 ocr)
{
if (host->ios.power_mode == MMC_POWER_ON)
return;
mmc_host_clk_hold(host);
mmc_pwrseq_pre_power_on(host);
host->ios.vdd = fls(ocr) - 1;
host->ios.power_mode = MMC_POWER_UP;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmc_delay(10);
mmc_pwrseq_post_power_on(host);
host->ios.clock = host->f_init;
host->ios.power_mode = MMC_POWER_ON;
mmc_set_ios(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmc_delay(10);
mmc_host_clk_release(host);
}
void mmc_power_off(struct mmc_host *host)
{
if (host->ios.power_mode == MMC_POWER_OFF)
return;
mmc_host_clk_hold(host);
mmc_pwrseq_power_off(host);
host->ios.clock = 0;
host->ios.vdd = 0;
host->ios.power_mode = MMC_POWER_OFF;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
/*
* Some configurations, such as the 802.11 SDIO card in the OLPC
* XO-1.5, require a short delay after poweroff before the card
* can be successfully turned on again.
*/
mmc_delay(1);
mmc_host_clk_release(host);
}
void mmc_power_cycle(struct mmc_host *host, u32 ocr)
{
mmc_power_off(host);
/* Wait at least 1 ms according to SD spec */
mmc_delay(1);
mmc_power_up(host, ocr);
}
/*
* Cleanup when the last reference to the bus operator is dropped.
*/
static void __mmc_release_bus(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(host->bus_refs);
BUG_ON(!host->bus_dead);
host->bus_ops = NULL;
}
/*
* Increase reference count of bus operator
*/
static inline void mmc_bus_get(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs++;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Decrease reference count of bus operator and free it if
* it is the last reference.
*/
static inline void mmc_bus_put(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs--;
if ((host->bus_refs == 0) && host->bus_ops)
__mmc_release_bus(host);
spin_unlock_irqrestore(&host->lock, flags);
}
int mmc_resume_bus(struct mmc_host *host)
{
unsigned long flags;
int err = 0;
if (!mmc_bus_needs_resume(host))
return -EINVAL;
pr_debug("%s: Starting deferred resume\n", mmc_hostname(host));
spin_lock_irqsave(&host->lock, flags);
host->bus_resume_flags &= ~MMC_BUSRESUME_NEEDS_RESUME;
spin_unlock_irqrestore(&host->lock, flags);
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead && host->card) {
mmc_power_up(host, host->card->ocr);
BUG_ON(!host->bus_ops->resume);
host->bus_ops->resume(host);
if (mmc_card_cmdq(host->card)) {
err = mmc_cmdq_halt(host, false);
if (err)
pr_err("%s: %s: unhalt failed: %d\n",
mmc_hostname(host), __func__, err);
else
mmc_card_clr_suspended(host->card);
}
}
mmc_bus_put(host);
pr_debug("%s: Deferred resume completed\n", mmc_hostname(host));
return 0;
}
EXPORT_SYMBOL(mmc_resume_bus);
/*
* Assign a mmc bus handler to a host. Only one bus handler may control a
* host at any given time.
*/
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
unsigned long flags;
BUG_ON(!host);
BUG_ON(!ops);
WARN_ON(!host->claimed);
spin_lock_irqsave(&host->lock, flags);
BUG_ON(host->bus_ops);
BUG_ON(host->bus_refs);
host->bus_ops = ops;
host->bus_refs = 1;
host->bus_dead = 0;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Remove the current bus handler from a host.
*/
void mmc_detach_bus(struct mmc_host *host)
{
unsigned long flags;
BUG_ON(!host);
WARN_ON(!host->claimed);
WARN_ON(!host->bus_ops);
spin_lock_irqsave(&host->lock, flags);
host->bus_dead = 1;
spin_unlock_irqrestore(&host->lock, flags);
mmc_bus_put(host);
}
static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
bool cd_irq)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->removed);
spin_unlock_irqrestore(&host->lock, flags);
#endif
/*
* If the device is configured as wakeup, we prevent a new sleep for
* 5 s to give provision for user space to consume the event.
*/
if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
device_can_wakeup(mmc_dev(host)))
pm_wakeup_event(mmc_dev(host), 5000);
host->detect_change = 1;
/*
* Change in cd_gpio state, so make sure detection part is
* not overided because of manual resume.
*/
if (cd_irq && mmc_bus_manual_resume(host))
host->ignore_bus_resume_flags = true;
if (delayed_work_pending(&host->detect))
cancel_delayed_work(&host->detect);
mmc_schedule_delayed_work(&host->detect, delay);
}
/**
* mmc_detect_change - process change of state on a MMC socket
* @host: host which changed state.
* @delay: optional delay to wait before detection (jiffies)
*
* MMC drivers should call this when they detect a card has been
* inserted or removed. The MMC layer will confirm that any
* present card is still functional, and initialize any newly
* inserted.
*/
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
{
_mmc_detect_change(host, delay, true);
}
EXPORT_SYMBOL(mmc_detect_change);
void mmc_init_erase(struct mmc_card *card)
{
unsigned int sz;
if (is_power_of_2(card->erase_size))
card->erase_shift = ffs(card->erase_size) - 1;
else
card->erase_shift = 0;
/*
* It is possible to erase an arbitrarily large area of an SD or MMC
* card. That is not desirable because it can take a long time
* (minutes) potentially delaying more important I/O, and also the
* timeout calculations become increasingly hugely over-estimated.
* Consequently, 'pref_erase' is defined as a guide to limit erases
* to that size and alignment.
*
* For SD cards that define Allocation Unit size, limit erases to one
* Allocation Unit at a time.
* For MMC, have a stab at ai good value and for modern cards it will
* end up being 4MiB. Note that if the value is too small, it can end
* up taking longer to erase. Also note, erase_size is already set to
* High Capacity Erase Size if available when this function is called.
*/
if (mmc_card_sd(card) && card->ssr.au) {
card->pref_erase = card->ssr.au;
card->erase_shift = ffs(card->ssr.au) - 1;
} else if (card->erase_size) {
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
if (sz < 128)
card->pref_erase = 512 * 1024 / 512;
else if (sz < 512)
card->pref_erase = 1024 * 1024 / 512;
else if (sz < 1024)
card->pref_erase = 2 * 1024 * 1024 / 512;
else
card->pref_erase = 4 * 1024 * 1024 / 512;
if (card->pref_erase < card->erase_size)
card->pref_erase = card->erase_size;
else {
sz = card->pref_erase % card->erase_size;
if (sz)
card->pref_erase += card->erase_size - sz;
}
} else
card->pref_erase = 0;
}
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
unsigned int arg, unsigned int qty)
{
unsigned int erase_timeout;
if (arg == MMC_DISCARD_ARG ||
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
erase_timeout = card->ext_csd.trim_timeout;
} else if (card->ext_csd.erase_group_def & 1) {
/* High Capacity Erase Group Size uses HC timeouts */
if (arg == MMC_TRIM_ARG)
erase_timeout = card->ext_csd.trim_timeout;
else
erase_timeout = card->ext_csd.hc_erase_timeout;
} else {
/* CSD Erase Group Size uses write timeout */
unsigned int mult = (10 << card->csd.r2w_factor);
unsigned int timeout_clks = card->csd.tacc_clks * mult;
unsigned int timeout_us;
/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
if (card->csd.tacc_ns < 1000000)
timeout_us = (card->csd.tacc_ns * mult) / 1000;
else
timeout_us = (card->csd.tacc_ns / 1000) * mult;
/*
* ios.clock is only a target. The real clock rate might be
* less but not that much less, so fudge it by multiplying by 2.
*/
timeout_clks <<= 1;
timeout_us += (timeout_clks * 1000) /
(mmc_host_clk_rate(card->host) / 1000);
erase_timeout = timeout_us / 1000;
/*
* Theoretically, the calculation could underflow so round up
* to 1ms in that case.
*/
if (!erase_timeout)
erase_timeout = 1;
}
/* Multiplier for secure operations */
if (arg & MMC_SECURE_ARGS) {
if (arg == MMC_SECURE_ERASE_ARG)
erase_timeout *= card->ext_csd.sec_erase_mult;
else
erase_timeout *= card->ext_csd.sec_trim_mult;
}
erase_timeout *= qty;
/*
* Ensure at least a 1 second timeout for SPI as per
* 'mmc_set_data_timeout()'
*/
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
unsigned int erase_timeout;
if (card->ssr.erase_timeout) {
/* Erase timeout specified in SD Status Register (SSR) */
erase_timeout = card->ssr.erase_timeout * qty +
card->ssr.erase_offset;
} else {
/*
* Erase timeout not specified in SD Status Register (SSR) so
* use 250ms per write block.
*/
erase_timeout = 250 * qty;
}
/* Must not be less than 1 second */
if (erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
if (mmc_card_sd(card))
return mmc_sd_erase_timeout(card, arg, qty);
else
return mmc_mmc_erase_timeout(card, arg, qty);
}
static u32 mmc_get_erase_qty(struct mmc_card *card, u32 from, u32 to)
{
u32 qty = 0;
/*
* qty is used to calculate the erase timeout which depends on how many
* erase groups (or allocation units in SD terminology) are affected.
* We count erasing part of an erase group as one erase group.
* For SD, the allocation units are always a power of 2. For MMC, the
* erase group size is almost certainly also power of 2, but it does not
* seem to insist on that in the JEDEC standard, so we fall back to
* division in that case. SD may not specify an allocation unit size,
* in which case the timeout is based on the number of write blocks.
*
* Note that the timeout for secure trim 2 will only be correct if the
* number of erase groups specified is the same as the total of all
* preceding secure trim 1 commands. Since the power may have been
* lost since the secure trim 1 commands occurred, it is generally
* impossible to calculate the secure trim 2 timeout correctly.
*/
if (card->erase_shift)
qty += ((to >> card->erase_shift) -
(from >> card->erase_shift)) + 1;
else if (mmc_card_sd(card))
qty += to - from + 1;
else
qty += ((to / card->erase_size) -
(from / card->erase_size)) + 1;
return qty;
}
static int mmc_cmdq_send_erase_cmd(struct mmc_cmdq_req *cmdq_req,
struct mmc_card *card, u32 opcode, u32 arg, u32 qty)
{
struct mmc_command *cmd = cmdq_req->mrq.cmd;
int err;
memset(cmd, 0, sizeof(struct mmc_command));
cmd->opcode = opcode;
cmd->arg = arg;
if (cmd->opcode == MMC_ERASE) {
cmd->flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
cmd->busy_timeout = mmc_erase_timeout(card, arg, qty);
} else {
cmd->flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
}
err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req);
if (err) {
pr_err("mmc_erase: group start error %d, status %#x\n",
err, cmd->resp[0]);
return -EIO;
}
return 0;
}
static int mmc_cmdq_do_erase(struct mmc_cmdq_req *cmdq_req,
struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command *cmd = cmdq_req->mrq.cmd;
unsigned int qty = 0;
unsigned long timeout;
unsigned int fr, nr;
int err;
fr = from;
nr = to - from + 1;
qty = mmc_get_erase_qty(card, from, to);
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
err = mmc_cmdq_send_erase_cmd(cmdq_req, card, MMC_ERASE_GROUP_START,
from, qty);
if (err)
goto out;
err = mmc_cmdq_send_erase_cmd(cmdq_req, card, MMC_ERASE_GROUP_END,
to, qty);
if (err)
goto out;
err = mmc_cmdq_send_erase_cmd(cmdq_req, card, MMC_ERASE,
arg, qty);
if (err)
goto out;
timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
do {
memset(cmd, 0, sizeof(struct mmc_command));
cmd->opcode = MMC_SEND_STATUS;
cmd->arg = card->rca << 16;
cmd->flags = MMC_RSP_R1 | MMC_CMD_AC;
/* Do not retry else we can't see errors */
err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req);
if (err || (cmd->resp[0] & 0xFDF92000)) {
pr_err("error %d requesting status %#x\n",
err, cmd->resp[0]);
err = -EIO;
goto out;
}
/* Timeout if the device never becomes ready for data and
* never leaves the program state.
*/
if (time_after(jiffies, timeout)) {
pr_err("%s: Card stuck in programming state! %s\n",
mmc_hostname(card->host), __func__);
err = -EIO;
goto out;
}
} while (!(cmd->resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG));
out:
return err;
}
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command cmd = {0};
unsigned int qty = 0, busy_timeout = 0;
bool use_r1b_resp = false;
unsigned long timeout;
unsigned int fr, nr;
int err;
fr = from;
nr = to - from + 1;
qty = mmc_get_erase_qty(card, from, to);
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
mmc_retune_hold(card->host);
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = from;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group start error %d, "
"status %#x\n", err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = to;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group end error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_ERASE;
cmd.arg = arg;
busy_timeout = mmc_erase_timeout(card, arg, qty);
/*
* If the host controller supports busy signalling and the timeout for
* the erase operation does not exceed the max_busy_timeout, we should
* use R1B response. Or we need to prevent the host from doing hw busy
* detection, which is done by converting to a R1 response instead.
*/
if (card->host->max_busy_timeout &&
busy_timeout > card->host->max_busy_timeout) {
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
} else {
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
cmd.busy_timeout = busy_timeout;
use_r1b_resp = true;
}
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: erase error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
if (mmc_host_is_spi(card->host))
goto out;
/*
* In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
* shall be avoided.
*/
if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
goto out;
timeout = jiffies + msecs_to_jiffies(busy_timeout);
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
/* Do not retry else we can't see errors */
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err || (cmd.resp[0] & 0xFDF92000)) {
pr_err("error %d requesting status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
/* Timeout if the device never becomes ready for data and
* never leaves the program state.
*/
if (time_after(jiffies, timeout)) {
pr_err("%s: Card stuck in programming state! %s\n",
mmc_hostname(card->host), __func__);
err = -EIO;
goto out;
}
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
out:
mmc_retune_release(card->host);
return err;
}
static unsigned int mmc_align_erase_size(struct mmc_card *card,
unsigned int *from,
unsigned int *to,
unsigned int nr)
{
unsigned int from_new = *from, nr_new = nr, rem;
/*
* When the 'card->erase_size' is power of 2, we can use round_up/down()
* to align the erase size efficiently.
*/
if (is_power_of_2(card->erase_size)) {
unsigned int temp = from_new;
from_new = round_up(temp, card->erase_size);
rem = from_new - temp;
if (nr_new > rem)
nr_new -= rem;
else
return 0;
nr_new = round_down(nr_new, card->erase_size);
} else {
rem = from_new % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from_new += rem;
if (nr_new > rem)
nr_new -= rem;
else
return 0;
}
rem = nr_new % card->erase_size;
if (rem)
nr_new -= rem;
}
if (nr_new == 0)
return 0;
*to = from_new + nr_new;
*from = from_new;
return nr_new;
}
int mmc_erase_sanity_check(struct mmc_card *card, unsigned int from,
unsigned int nr, unsigned int arg)
{
if (!(card->host->caps & MMC_CAP_ERASE) ||
!(card->csd.cmdclass & CCC_ERASE))
return -EOPNOTSUPP;
if (!card->erase_size)
return -EOPNOTSUPP;
if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
return -EOPNOTSUPP;
if ((arg & MMC_SECURE_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
return -EOPNOTSUPP;
if ((arg & MMC_TRIM_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
return -EOPNOTSUPP;
if (arg == MMC_SECURE_ERASE_ARG) {
if (from % card->erase_size || nr % card->erase_size)
return -EINVAL;
}
return 0;
}
int mmc_cmdq_erase(struct mmc_cmdq_req *cmdq_req,
struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
int ret;
ret = mmc_erase_sanity_check(card, from, nr, arg);
if (ret)
return ret;
if (arg == MMC_ERASE_ARG) {
rem = from % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from += rem;
if (nr > rem)
nr -= rem;
else
return 0;
}
rem = nr % card->erase_size;
if (rem)
nr -= rem;
}
if (nr == 0)
return 0;
to = from + nr;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
return mmc_cmdq_do_erase(cmdq_req, card, from, to, arg);
}
EXPORT_SYMBOL(mmc_cmdq_erase);
/**
* mmc_erase - erase sectors.
* @card: card to erase
* @from: first sector to erase
* @nr: number of sectors to erase
* @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
*
* Caller must claim host before calling this function.
*/
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
int ret;
ret = mmc_erase_sanity_check(card, from, nr, arg);
if (ret)
return ret;
if (arg == MMC_ERASE_ARG)
nr = mmc_align_erase_size(card, &from, &to, nr);
if (nr == 0)
return 0;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
/*
* Special case where only one erase-group fits in the timeout budget:
* If the region crosses an erase-group boundary on this particular
* case, we will be trimming more than one erase-group which, does not
* fit in the timeout budget of the controller, so we need to split it
* and call mmc_do_erase() twice if necessary. This special case is
* identified by the card->eg_boundary flag.
*/
rem = card->erase_size - (from % card->erase_size);
if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
ret = mmc_do_erase(card, from, from + rem - 1, arg);
from += rem;
if ((ret) || (to <= from))
return ret;
}
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
int mmc_can_erase(struct mmc_card *card)
{
if ((card->host->caps & MMC_CAP_ERASE) &&
(card->csd.cmdclass & CCC_ERASE) && card->erase_size)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_erase);
int mmc_can_trim(struct mmc_card *card)
{
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_trim);
int mmc_can_discard(struct mmc_card *card)
{
/*
* As there's no way to detect the discard support bit at v4.5
* use the s/w feature support filed.
*/
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_discard);
int mmc_can_sanitize(struct mmc_card *card)
{
if (!mmc_can_trim(card) && !mmc_can_erase(card))
return 0;
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_sanitize);
int mmc_can_secure_erase_trim(struct mmc_card *card)
{
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
unsigned int nr)
{
if (!card->erase_size)
return 0;
if (from % card->erase_size || nr % card->erase_size)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
unsigned int arg)
{
struct mmc_host *host = card->host;
unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
unsigned int last_timeout = 0;
unsigned int max_busy_timeout = host->max_busy_timeout ?
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
if (card->erase_shift) {
max_qty = UINT_MAX >> card->erase_shift;
min_qty = card->pref_erase >> card->erase_shift;
} else if (mmc_card_sd(card)) {
max_qty = UINT_MAX;
min_qty = card->pref_erase;
} else {
max_qty = UINT_MAX / card->erase_size;
min_qty = card->pref_erase / card->erase_size;
}
/*
* We should not only use 'host->max_busy_timeout' as the limitation
* when deciding the max discard sectors. We should set a balance value
* to improve the erase speed, and it can not get too long timeout at
* the same time.
*
* Here we set 'card->pref_erase' as the minimal discard sectors no
* matter what size of 'host->max_busy_timeout', but if the
* 'host->max_busy_timeout' is large enough for more discard sectors,
* then we can continue to increase the max discard sectors until we
* get a balance value. In cases when the 'host->max_busy_timeout'
* isn't specified, use the default max erase timeout.
*/
do {
y = 0;
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
timeout = mmc_erase_timeout(card, arg, qty + x);
if (qty + x > min_qty && timeout > max_busy_timeout)
break;
if (timeout < last_timeout)
break;
last_timeout = timeout;
y = x;
}
qty += y;
} while (y);
if (!qty)
return 0;
/*
* When specifying a sector range to trim, chances are we might cross
* an erase-group boundary even if the amount of sectors is less than
* one erase-group.
* If we can only fit one erase-group in the controller timeout budget,
* we have to care that erase-group boundaries are not crossed by a
* single trim operation. We flag that special case with "eg_boundary".
* In all other cases we can just decrement qty and pretend that we
* always touch (qty + 1) erase-groups as a simple optimization.
*/
if (qty == 1)
card->eg_boundary = 1;
else
qty--;
/* Convert qty to sectors */
if (card->erase_shift)
max_discard = qty << card->erase_shift;
else if (mmc_card_sd(card))
max_discard = qty + 1;
else
max_discard = qty * card->erase_size;
return max_discard;
}
unsigned int mmc_calc_max_discard(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_discard, max_trim;
if (!host->max_busy_timeout ||
(host->caps2 & MMC_CAP2_MAX_DISCARD_SIZE))
return UINT_MAX;
/*
* Without erase_group_def set, MMC erase timeout depends on clock
* frequence which can change. In that case, the best choice is
* just the preferred erase size.
*/
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
return card->pref_erase;
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
if (mmc_can_trim(card)) {
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
if (max_trim < max_discard)
max_discard = max_trim;
} else if (max_discard < card->erase_size) {
max_discard = 0;
}
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
mmc_hostname(host), max_discard, host->max_busy_timeout ?
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
return max_discard;
}
EXPORT_SYMBOL(mmc_calc_max_discard);
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
{
struct mmc_command cmd = {0};
if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
mmc_card_hs400(card) || mmc_card_hs400es(card))
return 0;
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = blocklen;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blocklen);
int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
bool is_rel_write)
{
struct mmc_command cmd = {0};
cmd.opcode = MMC_SET_BLOCK_COUNT;
cmd.arg = blockcount & 0x0000FFFF;
if (is_rel_write)
cmd.arg |= 1 << 31;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blockcount);
static void mmc_hw_reset_for_init(struct mmc_host *host)
{
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
return;
mmc_host_clk_hold(host);
host->ops->hw_reset(host);
mmc_host_clk_release(host);
}
/*
* mmc_cmdq_hw_reset: Helper API for doing
* reset_all of host and reinitializing card.
* This must be called with mmc_claim_host
* acquired by the caller.
*/
int mmc_cmdq_hw_reset(struct mmc_host *host)
{
if (!host->bus_ops->reset)
return -EOPNOTSUPP;
return host->bus_ops->reset(host);
}
EXPORT_SYMBOL(mmc_cmdq_hw_reset);
int mmc_hw_reset(struct mmc_host *host)
{
int ret;
if (!host->card)
return -EINVAL;
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
mmc_bus_put(host);
return -EOPNOTSUPP;
}
ret = host->bus_ops->reset(host);
mmc_bus_put(host);
if (ret)
pr_warn("%s: tried to reset card, got error %d\n",
mmc_hostname(host), ret);
return ret;
}
EXPORT_SYMBOL(mmc_hw_reset);
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
{
host->f_init = freq;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: trying to init card at %u Hz\n",
mmc_hostname(host), __func__, host->f_init);
#endif
mmc_power_up(host, host->ocr_avail);
/*
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
* do a hardware reset if possible.
*/
mmc_hw_reset_for_init(host);
/*
* sdio_reset sends CMD52 to reset card. Since we do not know
* if the card is being re-initialized, just send it. CMD52
* should be ignored by SD/eMMC cards.
* Skip it if we already know that we do not support SDIO commands
*/
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
sdio_reset(host);
mmc_go_idle(host);
if (!(host->caps2 & MMC_CAP2_NO_SD))
mmc_send_if_cond(host, host->ocr_avail);
/* Order's important: probe SDIO, then SD, then MMC */
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
if (!mmc_attach_sdio(host))
return 0;
if (!(host->caps2 & MMC_CAP2_NO_SD))
if (!mmc_attach_sd(host))
return 0;
if (!(host->caps2 & MMC_CAP2_NO_MMC))
if (!mmc_attach_mmc(host))
return 0;
mmc_power_off(host);
return -EIO;
}
int _mmc_detect_card_removed(struct mmc_host *host)
{
int ret;
if (!host->card || mmc_card_removed(host->card))
return 1;
ret = host->bus_ops->alive(host);
/*
* Card detect status and alive check may be out of sync if card is
* removed slowly, when card detect switch changes while card/slot
* pads are still contacted in hardware (refer to "SD Card Mechanical
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
* detect work 200ms later for this case.
*/
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
mmc_detect_change(host, msecs_to_jiffies(200));
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
}
if (ret) {
if (host->ops->get_cd && host->ops->get_cd(host)) {
ret = mmc_recovery_fallback_lower_speed(host);
} else {
mmc_card_set_removed(host->card);
if (host->card->sdr104_blocked) {
mmc_host_set_sdr104(host);
host->card->sdr104_blocked = false;
}
pr_debug("%s: card remove detected\n",
mmc_hostname(host));
}
}
return ret;
}
int mmc_detect_card_removed(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int ret;
WARN_ON(!host->claimed);
if (!card)
return 1;
if (!mmc_card_is_removable(host))
return 0;
ret = mmc_card_removed(card);
/*
* The card will be considered unchanged unless we have been asked to
* detect a change or host requires polling to provide card detection.
*/
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
return ret;
host->detect_change = 0;
if (!ret) {
ret = _mmc_detect_card_removed(host);
if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
/*
* Schedule a detect work as soon as possible to let a
* rescan handle the card removal.
*/
cancel_delayed_work(&host->detect);
_mmc_detect_change(host, 0, false);
}
}
return ret;
}
EXPORT_SYMBOL(mmc_detect_card_removed);
/*
* This should be called to make sure that detect work(mmc_rescan)
* is completed.Drivers may use this function from async schedule/probe
* contexts to make sure that the bootdevice detection is completed on
* completion of async_schedule.
*/
void mmc_flush_detect_work(struct mmc_host *host)
{
flush_delayed_work(&host->detect);
}
EXPORT_SYMBOL(mmc_flush_detect_work);
void mmc_rescan(struct work_struct *work)
{
unsigned long flags;
struct mmc_host *host =
container_of(work, struct mmc_host, detect.work);
spin_lock_irqsave(&host->lock, flags);
if (host->rescan_disable) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
spin_unlock_irqrestore(&host->lock, flags);
/* If there is a non-removable card registered, only scan once */
if (!mmc_card_is_removable(host) && host->rescan_entered)
return;
host->rescan_entered = 1;
if (host->trigger_card_event && host->ops->card_event) {
mmc_claim_host(host);
host->ops->card_event(host);
mmc_release_host(host);
host->trigger_card_event = false;
}
mmc_bus_get(host);
/*
* if there is a _removable_ card registered, check whether it is
* still present
*/
if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
host->bus_ops->detect(host);
host->detect_change = 0;
if (host->ignore_bus_resume_flags)
host->ignore_bus_resume_flags = false;
/*
* Let mmc_bus_put() free the bus/bus_ops if we've found that
* the card is no longer present.
*/
mmc_bus_put(host);
mmc_bus_get(host);
/* if there still is a card present, stop here */
if (host->bus_ops != NULL) {
mmc_bus_put(host);
goto out;
}
/*
* Only we can add a new handler, so it's safe to
* release the lock here.
*/
mmc_bus_put(host);
mmc_claim_host(host);
if (mmc_card_is_removable(host) && host->ops->get_cd &&
host->ops->get_cd(host) == 0) {
mmc_power_off(host);
mmc_release_host(host);
goto out;
}
mmc_rescan_try_freq(host, host->f_min);
host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
mmc_release_host(host);
out:
if (host->caps & MMC_CAP_NEEDS_POLL)
mmc_schedule_delayed_work(&host->detect, HZ);
}
void mmc_start_host(struct mmc_host *host)
{
mmc_claim_host(host);
host->f_init = max(freqs[0], host->f_min);
host->rescan_disable = 0;
host->ios.power_mode = MMC_POWER_UNDEFINED;
if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
mmc_power_off(host);
else
mmc_power_up(host, host->ocr_avail);
mmc_gpiod_request_cd_irq(host);
mmc_register_extcon(host);
mmc_release_host(host);
_mmc_detect_change(host, 0, false);
}
void mmc_stop_host(struct mmc_host *host)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->removed = 1;
spin_unlock_irqrestore(&host->lock, flags);
#endif
if (host->slot.cd_irq >= 0)
disable_irq(host->slot.cd_irq);
host->rescan_disable = 1;
cancel_delayed_work_sync(&host->detect);
/* clear pm flags now and let card drivers set them as needed */
host->pm_flags = 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead) {
/* Calling bus_ops->remove() with a claimed host can deadlock */
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
mmc_bus_put(host);
return;
}
mmc_bus_put(host);
BUG_ON(host->card);
mmc_unregister_extcon(host);
mmc_claim_host(host);
mmc_power_off(host);
mmc_release_host(host);
}
int mmc_power_save_host(struct mmc_host *host)
{
int ret = 0;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead) {
mmc_bus_put(host);
return -EINVAL;
}
if (host->bus_ops->power_save)
ret = host->bus_ops->power_save(host);
mmc_bus_put(host);
mmc_power_off(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_save_host);
int mmc_power_restore_host(struct mmc_host *host)
{
int ret;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead) {
mmc_bus_put(host);
return -EINVAL;
}
mmc_power_up(host, host->card->ocr);
mmc_claim_host(host);
ret = host->bus_ops->power_restore(host);
mmc_release_host(host);
mmc_bus_put(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_restore_host);
/*
* Add barrier request to the requests in cache
*/
int mmc_cache_barrier(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int err = 0;
if (!card->ext_csd.cache_ctrl ||
(card->quirks & MMC_QUIRK_CACHE_DISABLE))
goto out;
if (!mmc_card_mmc(card))
goto out;
if (!card->ext_csd.barrier_en)
return -ENOTSUPP;
/*
* If a device receives maximum supported barrier
* requests, a barrier command is treated as a
* flush command. Hence, it is betetr to use
* flush timeout instead a generic CMD6 timeout
*/
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 0x2, 0);
if (err)
pr_err("%s: cache barrier error %d\n",
mmc_hostname(host), err);
out:
return err;
}
EXPORT_SYMBOL(mmc_cache_barrier);
/*
* Flush the cache to the non-volatile storage.
*/
int mmc_flush_cache(struct mmc_card *card)
{
int err = 0;
if (mmc_card_mmc(card) &&
(card->ext_csd.cache_size > 0) &&
(card->ext_csd.cache_ctrl & 1) &&
(!(card->quirks & MMC_QUIRK_CACHE_DISABLE))) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 1, 0);
if (err == -ETIMEDOUT) {
pr_err("%s: cache flush timeout\n",
mmc_hostname(card->host));
err = mmc_interrupt_hpi(card);
if (err) {
pr_err("%s: mmc_interrupt_hpi() failed (%d)\n",
mmc_hostname(card->host), err);
err = -ENODEV;
}
} else if (err) {
pr_err("%s: cache flush error %d\n",
mmc_hostname(card->host), err);
}
}
return err;
}
EXPORT_SYMBOL(mmc_flush_cache);
#ifdef CONFIG_PM_SLEEP
/* Do the card removal on suspend if card is assumed removeable
* Do that in pm notifier while userspace isn't yet frozen, so we will be able
to sync the card.
*/
static int mmc_pm_notify(struct notifier_block *notify_block,
unsigned long mode, void *unused)
{
struct mmc_host *host = container_of(
notify_block, struct mmc_host, pm_notify);
unsigned long flags;
int err = 0;
switch (mode) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
case PM_RESTORE_PREPARE:
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 1;
spin_unlock_irqrestore(&host->lock, flags);
cancel_delayed_work_sync(&host->detect);
if (!host->bus_ops)
break;
/* Validate prerequisites for suspend */
if (host->bus_ops->pre_suspend)
err = host->bus_ops->pre_suspend(host);
if (!err)
break;
/* Calling bus_ops->remove() with a claimed host can deadlock */
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
host->pm_flags = 0;
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
case PM_POST_RESTORE:
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 0;
if (mmc_bus_manual_resume(host) &&
!host->ignore_bus_resume_flags) {
spin_unlock_irqrestore(&host->lock, flags);
break;
}
spin_unlock_irqrestore(&host->lock, flags);
_mmc_detect_change(host, 0, false);
}
return 0;
}
void mmc_register_pm_notifier(struct mmc_host *host)
{
host->pm_notify.notifier_call = mmc_pm_notify;
register_pm_notifier(&host->pm_notify);
}
void mmc_unregister_pm_notifier(struct mmc_host *host)
{
unregister_pm_notifier(&host->pm_notify);
}
#endif
/**
* mmc_init_context_info() - init synchronization context
* @host: mmc host
*
* Init struct context_info needed to implement asynchronous
* request mechanism, used by mmc core, host driver and mmc requests
* supplier.
*/
void mmc_init_context_info(struct mmc_host *host)
{
spin_lock_init(&host->context_info.lock);
host->context_info.is_new_req = false;
host->context_info.is_done_rcv = false;
host->context_info.is_waiting_last_req = false;
init_waitqueue_head(&host->context_info.wait);
}
#ifdef CONFIG_MMC_EMBEDDED_SDIO
void mmc_set_embedded_sdio_data(struct mmc_host *host,
struct sdio_cis *cis,
struct sdio_cccr *cccr,
struct sdio_embedded_func *funcs,
int num_funcs)
{
host->embedded_sdio_data.cis = cis;
host->embedded_sdio_data.cccr = cccr;
host->embedded_sdio_data.funcs = funcs;
host->embedded_sdio_data.num_funcs = num_funcs;
}
EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
#endif
static int __init mmc_init(void)
{
int ret;
ret = mmc_register_bus();
if (ret)
return ret;
ret = mmc_register_host_class();
if (ret)
goto unregister_bus;
ret = sdio_register_bus();
if (ret)
goto unregister_host_class;
return 0;
unregister_host_class:
mmc_unregister_host_class();
unregister_bus:
mmc_unregister_bus();
return ret;
}
static void __exit mmc_exit(void)
{
sdio_unregister_bus();
mmc_unregister_host_class();
mmc_unregister_bus();
}
#ifdef CONFIG_BLOCK
static ssize_t
latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct mmc_host *host = cls_dev_to_mmc_host(dev);
size_t written_bytes;
written_bytes = blk_latency_hist_show("Read", &host->io_lat_read,
buf, PAGE_SIZE);
written_bytes += blk_latency_hist_show("Write", &host->io_lat_write,
buf + written_bytes, PAGE_SIZE - written_bytes);
return written_bytes;
}
/*
* Values permitted 0, 1, 2.
* 0 -> Disable IO latency histograms (default)
* 1 -> Enable IO latency histograms
* 2 -> Zero out IO latency histograms
*/
static ssize_t
latency_hist_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_host *host = cls_dev_to_mmc_host(dev);
long value;
if (kstrtol(buf, 0, &value))
return -EINVAL;
if (value == BLK_IO_LAT_HIST_ZERO) {
memset(&host->io_lat_read, 0, sizeof(host->io_lat_read));
memset(&host->io_lat_write, 0, sizeof(host->io_lat_write));
} else if (value == BLK_IO_LAT_HIST_ENABLE ||
value == BLK_IO_LAT_HIST_DISABLE)
host->latency_hist_enabled = value;
return count;
}
static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
latency_hist_show, latency_hist_store);
void
mmc_latency_hist_sysfs_init(struct mmc_host *host)
{
if (device_create_file(&host->class_dev, &dev_attr_latency_hist))
dev_err(&host->class_dev,
"Failed to create latency_hist sysfs entry\n");
}
void
mmc_latency_hist_sysfs_exit(struct mmc_host *host)
{
device_remove_file(&host->class_dev, &dev_attr_latency_hist);
}
#endif
subsys_initcall(mmc_init);
module_exit(mmc_exit);
MODULE_LICENSE("GPL");